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Recently, Wu in 2018 established interesting results in the framework of interval spaces. He initiated the idea of near-fixed points and
proved some related basic results in metric interval, norm interval, and hyperspaces. In 2015, Khojasteh et al. gave the concept of
simulation functions and studied some fixed-point results inmetric spaces.Motivated by this work, we give some near-coincidence point
results in norm interval spaces using the concept given by Khojasteh et al. Examples are also provided for the validation of the results.

1. Introduction

Many researchers are still showing high interest in the field
of metric fixed-point theory. .ey are working in different
directions and generalizing the remarkable results in this
area [1–4]. .e first one who took interest in this area was
Poincare. Later, Brouwer established a (topological) fixed-
point theorem. .e metric fixed-point theory attracts re-
searchers due to its applications in both applied and pure
mathematics. .ere are many applications of metric fixed-
point theory in the existence of solutions for nonlinear
systems. In 1922, Banach [5] established a remarkable result,
known as the Banach contraction principle (BCP).

.is BCP was modified and generalized in different
forms and structures. Among them, there are dislocated
quasi metric spaces [6], cone metric spaces [7], generalized
metric spaces [8], controlled metric spaces [9], orthogonal
partial b-metric spaces [10], etc.

Khojasteh et al. [11] modified the contractive condition
by introducing the concept of a simulation function

S: [0,∞) × [0,∞)⟶ R. Later, Roldan Lopez de Hierro
et al. [12, 13] extended the stated concept and investigated
some coincidence point results in metric spaces. With the
help of a simulation-type function, Argoubi et al. [14] gave
interesting results in partial ordered metric spaces. Alharbi
et al. [15] made a generalization by combining the concept of
simulation and admissible functions in the related literature.
Alsubaie et al. [16] proved some common fixed-point results
for two mappings in the setting of metric spaces by using the
concept of a simulation function. Alqahtani et al. [17] proved
fixed-point results by introducing the concept of a bilateral
contraction which is a combination of Ćirić- and Caristi-
type contractions. In [18], the authors studied the existence
and uniqueness of a common fixed point in the setting of b-
metric spaces, by using the concept of extended Z-con-
tractions associated with an ψ− simulation function. In [19],
the authors established results on the existence of best
proximity points of certain mappings using simulation
functions in complete metric spaces. Later, Karapinar [20]
presented some fixed-point results by defining a new
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contractive condition via admissible mappings imbedded in
a simulation function.

Recently, Wu [21] initiated the concept of interval
spaces. .ese spaces contain all closed bounded intervals
over the set R. Over the interval spaces, he defined a metric,
as well as a norm using the equivalence relation Ω

�
. .ese

spaces are called metric intervals and norm interval spaces,
respectively. He studied near-fixed-point results in metric
intervals, as well as in norm interval spaces. After this, he
gave the concept of a hyperspace, which is a space containing
all possible subsets of a vector space. He defined null sets, as
well as the equivalence relation Ω

�
in a hyperspace and

defined a norm over this type of spaces. He also presented
near-fixed-point results in hyperspaces. For more details, see
[22–24].

Inspired by the work done in [11, 21, 22], we established
some near-coincidence point results in metric interval and
hyperspaces [25] via a simulation function. We also pre-
sented some near-coincidence point results in norm interval
spaces via a simulation function. For validation of results
and definitions, some examples are provided.

2. Preliminaries

In this section, some basic definitions and results are stated
related to the existing literature.

2.1. Interval Spaces. Let I be the set containing all close
bounded intervals of the form [σ, υ], where σ, υ ∈ R and
σ ≤ υ. Also, σ ∈ R is considered as an element [σ, σ] ∈ I [21].

.e binary operation of addition and scaler multipli-
cation is stated as follows:

[σ, υ]⊕ σ′, υ′  � σ + σ′, υ + υ′ ,

k[σ, υ] �
[kσ, kυ], k≥ 0,

[kυ, kσ], k< 0.


(1)

Due to the inverse property, the above space does not
fulfill the condition of a conventional vector space. For
[σ, υ] ∈ I, the subtraction

[σ, υ]⊖[σ, υ] � [σ, υ]⊕[− υ, − σ] � [σ − υ, υ − σ] (2)

does not give the zero element [0, 0]. So the inverse of [σ, υ]

does not exist. For the above deficiency, the null set was
defined by Wu [21] as follows.

2.2. Null Set. .e null set contains all the elements of the
type [− σ, σ], and so it is defined as follows:

Ω � [σ, υ]⊖[σ, υ]; [σ, υ] is an element of I{ }, (3)

or

Ω � [− α, α]; α≥ 0{ }. (4)

2.3. Binary Relation Ω
�
. We write [σ, υ]Ω

�
[σ′, υ′] iff there

exist ω1,ω2 ∈ Ω such that

[σ, υ]⊕ω1 � σ′, υ′ ⊕ω2. (5)

Clearly, we can have [σ, υ] � [σ′, υ′]⇒[σ, υ]Ω
�

[σ′, υ′] by
taking ω1 � ω2 � [0, 0]. However, the converse is not true in
general.

Proposition 1 (see [21]). Ω
�
is an equivalence relation.

According to the equivalence relation Ω
�
, the equivalence

class of almost identical intervals is defined as 〈[σ, υ]〉 �

[p, q] ∈ I: [σ, υ]Ω
�

[p, q]  for any [σ, υ] ∈ I.

2.4. Norm Interval Space. .e pair (I, ‖ · ‖) fulfilling the
following axioms is called a norm interval space [21]:

(i) ‖[σ, υ]‖ � 0 implies [σ, υ] ∈ Ω
(ii) ‖α[σ, υ]‖ � |α|‖[σ, υ]‖

(iii) ‖[σ, υ]⊕[σ′, υ′]‖≤ ‖[σ, υ]‖ + ‖[σ′, υ′]‖ for all
[σ, υ], [σ′, υ′] ∈ I, where I contains all close
bounded intervals over R with the null set Ω and
‖ · ‖ is a real-valued mapping on I

We say that the null condition is satisfied by ‖ · ‖ if the
condition (iii) is replaced by

‖[σ, υ]‖ � 0 if and only if [σ, υ] ∈ Ω. (6)

‖ · ‖ is said to satisfy the null equalities if for all ω1,ω2 ∈ Ω
and [σ, υ], [σ′, υ′] ∈ I, the following equalities hold:

(1) ‖([σ, υ]⊕ω1)⊖([σ′, υ′]⊕ω2)‖ � ‖[σ, υ]⊖[σ′, υ′]‖
(2) ‖([σ, υ]⊕ω1)⊖([σ′, υ′])‖ � ‖[σ, υ]⊖[σ′, υ′]‖
(3) ‖([σ, υ])⊖([σ′, υ′]⊕ω2)‖ � ‖[σ, υ]⊖[σ′, υ′]‖

Definition 1. If (I, ‖ · ‖) is a norm interval space, then

(i) .e mapping ‖ · ‖ is said to satisfy the null super-
inequality if

‖[σ, υ]⊕ω‖≥ ‖[σ, υ]‖, for any [σ, υ] ∈ I andω ∈ Ω.

(7)

(ii) .e mapping ‖ · ‖ is said to satisfy the null sub-
inequality if

‖[σ, υ]⊕ω‖≤ ‖[σ, υ]‖, for any [σ, υ] ∈ I andω ∈ Ω.

(8)

(iii) .emapping ‖ · ‖ is said to satisfy the null equality if

‖[σ, υ]⊕ω‖ � ‖[σ, υ]‖, for any [σ, υ] ∈ I andω ∈ Ω.

(9)

Example 1. Let ‖ · ‖ be a nonnegative real-valued function
defined on I by

‖[σ, υ]‖ � |σ + υ|. (10)

.en, (I, ‖ · ‖) forms a norm interval space such that ‖ · ‖

satisfies the null equality.
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Proposition 2 (see [21]). Let (I, ‖ · ‖) be a norm interval
space such that ‖ · ‖ satisfies the null super-inequality. Ben,
for any [σ, υ], [σ′, υ′], [σ1, υ1], [σ2, υ2], . . . , [σm, υm], we have

[σ, υ]⊖ σ′, υ′ 
����

����≤ [σ, υ]⊖ σ1, υ1 
����

���� + σ1, υ1 ⊖ σ2, υ2 
����

����

+ · · · + σm, υm ⊖ υ, υ′ 
����

����.

(11)

Proposition 3. Let (I, ‖ · ‖) be a norm interval space; then,
the following hold:

(i) If ‖ · ‖ satisfies the null equality, then for all
[σ, υ], [σ′, υ′] ∈ I,

[σ, υ] Ω
�
σ′, υ′  implies ‖[σ, υ]‖ � σ′, υ′ 

����
����. (12)

(ii) For any [σ, υ], [σ′, υ′] ∈ I,

[σ, υ]⊖ σ′, υ′ 
����

���� � 0, implies [σ, υ]Ω
�
σ′, υ′ . (13)

(iii) If ‖ · ‖ satisfies the null super-inequality and null
condition, then for any [σ, υ], [σ′, υ′] ∈ I,

[σ, υ]Ω
�
σ′, υ′ , implies [σ, υ]⊖ σ′, υ′ 

����
���� � 0. (14)

For proof of the above propositions, see [21].

Definition 2. Let (I, ‖ · ‖) be a norm interval space. A se-
quence [σn, υn] 

+∞
n�1 is said to converge to a limit [σ, υ] if and

only if

limn⟶∞ σn, υn ⊖[σ, υ]
����

���� � 0. (15)

Proposition 4. Consider a norm interval space (I, ‖ · ‖) with
the null set Ω.

(i) If the null super-inequality holds for ‖ · ‖, then the
convergence of the sequence [σn, υn] 

+∞
n�1 to [σ, υ] and

[σ′, υ′] simultaneously implies 〈[σ, υ]〉 � 〈[σ′, υ′]〉
(ii) If the null equality holds for ‖ · ‖ and the sequence

[σn, υn] 
+∞
n�1 converges to [σ, υ], then for any

[σ′, υ′] ∈ 〈[σ, υ]〉, the given sequence will also con-
verge to [σ′, υ′]

Definition 3. Consider the norm interval space (I, ‖ · ‖) with
the null set Ω, where ‖ · ‖ satisfies the null equality. If
[σ, υ] ∈ I is the limit of the sequence [σn, υn] 

+∞
n�1, then

〈[σ, υ]〉 is called the class limit. We can also write

lim
n⟶∞

σn, υn  � 〈[σ, υ]〉. (16)

Proposition 5 (see [21]). In the norm interval space (I, ‖ · ‖)

if the null super-inequality holds for ‖ · ‖, the class limit is
unique.

Definition 4. A sequence [σn, υn] 
+∞
n�1 in a norm interval

space (I, ‖ · ‖) is called a Cauchy sequence if and only if for
any ε≥ 0, there exists K ∈ N such that

σn, υn ⊖ σm, υm 
����

����< ε, (17)

for m, n>K with m≠ n. If every Cauchy sequence is con-
vergent in I, then I is complete.

Definition 5. A complete norm interval space (I, ‖ · ‖) is
called a Banach interval space.

Example 2. Let ‖ · ‖ be a nonnegative real-valued function
defined on I by

‖[σ, υ]‖ � |σ + υ|. (18)

.en, (I, ‖ · ‖) forms a Banach interval space such that
‖ · ‖ satisfies the null equality.

Definition 6. Let F be a self-mapping on I. .en, the point
[σo, υo] ∈ I is called a near-fixed point of F if and only if
F[σo, υo]Ω

�
[σo, υo].

Definition 7 (see [11, 12]). A function S: [0,∞)×

[0,∞)⟶ R is called a simulation function if the following
conditions hold:

S1. S(0, 0) � 0
S2. S(α, β)< β − α for all α, β> 0
S3. If αn , βn  are two sequences in (0,∞) such that
limn⟶∞αn � limn⟶∞βn > 0 and αn < βn for all n ∈ N,
then

lim
n⟶∞

supS αn, βn( < 0. (19)

By (S2), we must have

S(α, α)< 0. (20)

.e following are some interesting examples of simu-
lation functions:

(i) S(α, β) � χ(β) − Υ(α) for all α, β ∈ [0,∞) where χ
and c are continuous on [0,∞) such that c(α) �

χ(α) if and only if α � 0 and c(α)< α≤ χ(α) for all
α> 0. If we take c(β) � λβ and χ(α) � α, then
S(α, β) � λβ − α.

(ii) S(α, β) � β − χ(β) − α for all α, β ∈ [0,∞) where χ
is continuous on [0,∞) such that χ(α) � 0 if and
only if α � 0 (see Example 2.2 in [11]).

(iii) S(α, β) � βχ(β) − α for all α, β ∈ [0,∞) where χ is a
mapping such that limα⟶r+χ(t)< 1 for all r> 0 [12].

(iv) S(α, β) � η(β) − α for all α, β ∈ [0,∞), where η is an
upper semicontinuous function so that η(α)< α for
all α> 0 and η(0) � 0 [12].

Mathematical Problems in Engineering 3



3. Results and Discussion

Proposition 6. In an interval space I with the null set Ω,
[σ, υ]Ω

�
[σ′, υ′] iff σ′ − σ � υ − υ′.

Proof. Let us suppose that [σ, υ]Ω
�

[σ′, υ′]; then, by defini-
tion, there exist [− k, k] and [− h, h] in Ω such that

[σ, υ]⊕[− k, k] � σ′, υ′ ⊕[− h, h], (21)

that is,

[σ − k, υ + k] � σ′ − h, υ′ + h . (22)

.is implies that

σ − k � σ′ − h,

υ + k � υ′ + h,

σ − σ′ � k − h,

υ − υ′ � − k + h,

σ − σ′ � k − h,

υ − υ′ � − (k − h).

(23)

Putting the values of k − h from the 1st equality in the
second equality, we have

υ − υ′ � − σ − σ′( , implies σ′ − σ � υ − υ′. (24)

Conversely, now, let us suppose that σ′ − σ � υ − υ′;
then, we have to show that

[σ, υ]Ω
�
σ′, υ′ . (25)

Hence,

σ′ − σ � υ − υ′ � k,

σ′ − σ � k,

υ − υ′ � k,

σ � σ′ − k,

υ � υ′ + k,

(26)

which implies

[σ, υ] � σ′ − k, υ′ + k ,

[σ, υ] � σ′, υ′ ⊕[− k, k],
(27)

and so from the last equality, we have

[σ, υ]Ω
�
σ′, υ′ . (28)

□

Example 3. Taking the intervals [3, 7] and [4, 6], we have
4 − 3 � 7 − 6 � 1 and hence by the above function, we have
[3, 7]Ω

�
[4, 6]. For verification, take ω1 � [0.0] and

ω2 � [− 1, 1]. .en,

[3, 7]⊕[0, 0] � [4, 6]⊕[− 1, 1]. (29)

Definition 8. For a point [σ, υ] ∈ I, if F[σ, υ]Ω
�

g[σ, υ], then
the point [σ, υ] is called a near-coincidence point of F and g.

Example 4. Taking the function F[x, y] � [x2 − 1, 2y2 + 1]

and g[x, y] � [x2, 2y2], then we can verify that [3, 5] is the
near-coincidence point for the functions defined above.

Definition 9. If F and g are two self-mappings over (I, ‖ · ‖)

such that

lim
n⟶∞

Fg σn, υn ⊖gF σn, υn 
����

���� � 0, (30)

then the mappings are called compatible.

Definition 10. If Fg[σ, υ]Ω
�

gF[σ, υ] for all [σ, υ] ∈ (I, d),
then F and g are called commuting mappings.

Definition 11. F is a (Z‖·‖, g)-contraction in (I, ‖ · ‖) cor-
responding to a simulation function S ∈ Z if

S F[σ, υ]⊖F σ′, υ′ 
����

����, g[σ, υ]⊖g σ′, υ′ 
����

���� ≥ 0, (31)

for all [σ, υ], [σ′, υ′] ∈ I such that g[σ, υ]Ω
≠

g[σ′, υ′].

Example 5. Define the mappings F and g as
F[x, y] � [x2 − 1, 2y2 + 1] andg[x, y] � [x2, 2y2]; then, F

satisfies the criteria of (Z‖·‖, g)-contraction in (I, ‖ · ‖)

according to the simulation function S(s, t) � λt − s, where
λ≥ 1.

Definition 12. For a sequence [σn, υn]  in the Banach in-
terval space (I, ‖ · ‖), if

g σn+1, υn+1 ( Ω
�

F σn, υn ( , for all n≥ 0, (32)

then the sequence is known as a Picard (F, g) sequence at the
point [σo, υo].

Theorem 1. Let F[σ, υ] � [f1(σ), f2(υ)] and
G[σ, υ] � [g1(σ), g2(υ)] be two self-mappings over the in-
terval space I, where f1(σ)≤f2(υ) and g1(σ)≤g2(υ) for all
σ ≤ υ. If σ is a coincidence point for f1 and g1 and υ is a
coincidence point for f2 and g2, then [σ, υ] is a near-coin-
cidence point for F and G.

Proof. As σ and υ are coincidence points for f1, g1 and f2,
g2, respectively, we have

f1(σ) � g1(σ),

f2(υ) � g2(υ).
(33)

.is implies that

f1(σ), f2(υ)  � g1(σ), g2(υ) ,

f1(σ), f2(υ) Ω
�

g1(σ), g2(υ) ,

F[σ, υ]Ω
�

G[σ, υ].

(34)
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Hence, a near-coincidence point for the mappings F and
G is [σ, υ] over the interval space I..e converse of the above
statement is not true in general, because [f1(σ),

f2(υ)]Ω
�

[g1(σ), g2(υ)] does not imply f1(σ) �

g1(σ) andf2(υ) � g2(υ). □

Example 6. Taking the function F[x, y] � [x2, |y| + 1] and
G[x, y] � [|x|, y2 + 1], then clearly − 1 is a coincidence point
for x2 and |x| and 1 is a coincidence point for |y| + 1 and
y2 + 1. So, [− 1, 1] is a near-coincidence point for F and G

since F[− 1, 1] � [1, 2] � [1, 2] � G[1, 2]. For justifying the
converse of the above statement, we can verify that
[− (1/2), (1/2)] is a near-coincidence point for F and G, but
− (1/2) and (1/2) are not coincidence points for x2 and |x|

and |y| + 1 and y2 + 1, respectively. As F[− (1/2), (1/2)] �

[(1/4), (3/2)] and G[− (1/2), (1/2)] � [(1/2), (5/4)], to prove
that [− (1/2), (1/2)] is a near-coincidence point; we have to
show [(1/4), (3/2)]Ω

�
[(1/2), (5/4)]. Taking ω1 � [0, 0] and

ω2 � [− (1/4), (1/4)], we have
1
4
,
3
2

 ⊕[0, 0] �
1
2
,
5
4

 ⊕ −
1
4
,
1
4

 . (35)

Lemma 1. Let F[σ, υ] � [f1(σ), f2(υ)] and
G[σ, υ] � [g1(σ), g2(υ)] be two self-mappings over the in-
terval space I, where f1(σ)≤f2(υ) and g1(σ)≤g2(υ) for all
σ ≤ υ. If g1(σ) − f1(σ) � f2(υ) − g2(υ) for some [σ, υ] ∈ I,
then [σ, υ] is a near-coincidence point for F and G.

Proof. Using Proposition 6, g1(σ) − f1(σ) � f2(υ) − g2(υ)

implies that [f1(σ), f2(υ)]Ω
�

[g1(σ), g2(υ)], i.e.,

F[σ, υ]Ω
�

G[σ, υ]. (36)

Hence, it is proved that [σ, υ] is a near-coincidence point
for F and G. □

Lemma 2. Consider a Banach interval space I with a
(Z‖·‖, g)-contraction F. If [σ, ]] and [σ′, ]′] both are the near-
coincidence points for F and g, then

F[σ, ]]Ω
�

g[σ, ]]Ω
�

g σ′, ]′ Ω
�

F σ′, ]′ . (37)

Furthermore, the equivalence class of a near-coincidence
point is unique if F or g is injective.

Proof. Let [σ, ]] and [σ′, ]′] be two near-coincidence points
of F and g. .en, we have

F[σ, ]]Ω
�

g[σ, ]],

F σ′, ]′ Ω
�

g σ′, ]′ .
(38)

In the above requirement, the two equalities are clear.
We only need to show that g[σ, ]]Ω

�
g[σ′, ]′]. On the

contrary, let us suppose that g[σ, ]]Ω
�

g[σ′, ]′]; so we have

g[σ, ]]⊖g σ′, ]′ 
����

����≥ 0. (39)

As the mapping F is a (Z‖·‖, g)-contraction, by defini-
tion, we have

0≤ S F[σ, ]]⊖F σ′, ]′ 
����

����, g[σ, ]]⊖g σ′, ]′ 
����

���� 

� S g[σ, ]]⊖g σ′, ]′ 
����

����, g[σ, ]]⊖g σ′, ]′ 
����

���� .
(40)

.e last inequality is a contradiction to (20) in the
definition of the simulation function, i.e., S(r, r)< 0, where
r> 0. So our supposition is wrong and we accept that
g[σ, ]]Ω

�
g[σ′, ]′].

Hence, we prove that

F[σ, ]]Ω
�

g[σ, ]]Ω
�

g σ′, ]′ Ω
�

F σ′, ]′ . (41)

Furthermore, let F be injective; then, the equivalence
class of a near-coincidence point is unique. By the above
work, we have

F[σ, ]]Ω
�

g[σ, ]]Ω
�

g σ′, ]′ Ω
�

F σ′, ]′ . (42)

It implies that

F[σ, ]]Ω
�

F σ′, ]′ . (43)

As F is injective, [σ, ]]Ω
�

[σ′, ]′]. It further implies that
〈[σ, ]]〉 � 〈[σ′, ]′]〉. □

Theorem 2. Consider a (z‖·‖, g)-contraction F in the Banach
interval space (I, ‖ · ‖) where ‖ · ‖ satisfies the null equality
and F and g are continuous and compatible mappings.
Assume that the space is satisfying the CLR(F,g) property.
Ben, a near-coincidence point exists for F and g.

Proof. As the space (I, ‖ · ‖) satisfies the CLR(F,g) property,
i.e., there exists a Picard sequence [σn, ]n] , such that

g σn+1, ]n+1 Ω
�

F σn, ]n , for all n≥ 0. (44)

.ere are two possibilities: either the sequence [σn, ]n] 

contains a near-coincidence point, or it converges to the
near-coincidence point. We will take the case that the se-
quence does not contain a near-coincidence point. Hence,

g σn, ]n Ω
�

F σn, ]n Ω
�

g σn+1, ]n+1 , for all n≥ 0. (45)

.e result will be proved in the following steps.
First of all, we will show that

lim
n⟶∞

g σn, ]n ⊖g σn+1, ]n+1 
����

���� � 0. (46)

As F is a (z‖·‖, g)-contraction, by CLR(F,g) property and
condition (ii) of a simulation function, we have

0≤ S F σn, ]n ⊖F σn+1, ]n+1 
����

����, g σn, ]n ⊖g σn+1, ]n+1 
����

���� 

� S g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����, g σn, ]n ⊖g σn+1, ]n+1 
����

���� 

< g σn, ]n ⊖g σn+1, ]n+1 
����

���� − g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����.

(47)

.is implies that

0< g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����< g σn, ]n ⊖g σn+1, ]n+1 
����

����.

(48)
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.e sequence ‖g[σn, ]n]⊖g[σn+1, ]n+1]‖  is nonnegative
and decreasing, so it converges to a limit, say Ł, i.e.,

lim
n⟶∞

g σn, ]n ⊖g σn+1, ]n+1 
����

���� � Ł. (49)

We have to show that Ł � 0. On the contrary, let us
suppose that Ł> 0. Consider the sequences with the same
limit rn � ‖g[σn+1, ]n+1]⊖g[σn+2, ]n+2]‖  and
sn � ‖g[σn, ]n]⊖g[σn+1, ]n+1]‖  such that rn < sn for all
n ∈ N.

Now, by condition (iii) of the simulation function, we
have

0> limsup
n⟶∞

S rn, sn( ( 

� limsup
n⟶∞

S g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����,

g σn, ]n ⊖g σn+1, ]n+1 
����

����.

(50)

It is a contradiction because

S g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����, g σn, ]n ⊖g σn+1, ]n+1 
����

���� > 0.

(51)

.us, Ł � 0. .at is,

lim
n⟶∞

g σn, ]n ⊖g σn+1, ]n+1 
����

���� � 0. (52)

Next, we will show that the sequence g[σn, ]n]  is a
Cauchy sequence. Let us suppose, on the contrary, that
g[σn, ]n]  is not Cauchy. So there will exist εo > 0 such that
for all N ∈ N, there exist positive integers m, n such that

g σn, ]n ⊖g σm, ]m 
����

����> εo. (53)

We can construct two partial subsequences g[σnk
, ]nk

] 

and g[σmk
, ] k{ }]  such that no ≤ nk ≤mk and

g σnk
, ]nk

 ⊖g σmk
, ]mk

 
�����

�����> εo, for all k ∈ N. (54)

Let mk be the smallest positive integer in
nk, nk + 1, nk + 2, . . . . .en,

g σmk− 1, ]mk− 1 ⊖g σnk
, ]nk

 
�����

�����≤ εo, for all k ∈ N. (55)

Also, mk > nk from (54), so mk ≥ nk + 1 for all k ∈ N. But
mk � nk + 1 is not possible taking into account (52) and (54)
simultaneously. So, we have mk ≥ nk + 2 for any k ∈ N. It
follows that nk+1 <mk <mk+1 for all k ∈ N. From (54) and
(55), we have

εo < g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����

≤ g σmk
, ]mk

 ⊖g σmk− 1
, ]mk− 1

 
�����

����� + g σmk− 1
, ]mk− 1

 ⊖g σnk
, ]nk

 
�����

�����

≤ g σmk
, ]mk

 ⊖g σmk− 1
, ]mk− 1

 
�����

����� + εo, for all k ∈ N.

(56)

.erefore,

lim
k⟶∞

g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� � εo. (57)

Also,

lim
k⟶∞

g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

����� � εo. (58)

As F is a (Zd, g)-contraction associated with S,

0≤ S F σmk
, ]mk

 ⊖F σnk
, ]nk

 
�����

�����, g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� 

� S g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����, g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� 

< g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� − g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����.

(59)

.us,

0< g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����< g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����.

(60)

Let

rn � g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����,

sn � g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����.
(61)

Clearly, rn, sn > 0, limn⟶∞rn � limn⟶∞sn � εo, and
rn < sn.

So by S3,

0≤ limsup
k⟶∞

S g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����,

g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����< 0,

(62)

which is a contradiction. .us, g[σn, ]n]  is a Cauchy se-
quence in (I, d).

.at is, g[σn, ]n]  is a Cauchy sequence. Now, as the
space is complete, the sequence g[σn, ]n]  will converge to a
limit [σ, ]]. Since the mappings F and g are continuous, one
writes

g σn, ]n ⟶ [σ, ]], impliesgg σn, ]n ⟶ g[σ, ]],

g σn, ]n ⟶ [σ, ]], impliesFg σn, ]n ⟶ F[σ, ]].

(63)

.e compatibility of the mappings yields that

lim
n⟶∞

Fg σn, ]n ⊖gF σn, ]n 
����

���� � 0. (64)

Consider

‖F[σ, ]]⊖g[σ, ]]‖ � lim
n⟶∞

Fg σn, ]n ⊖gg σn+1, ]n+1 
����

����

� lim
n⟶∞

Fg σn, ]n ⊖gF σn, ]n 
����

����,

‖F[σ, ]]⊖g[σ, ]]‖ � 0.

(65)

From the above function, we have F[σ, ]]Ω
�

g[σ, ]]; i.e.,
[σ, ]] is a near-coincidence point of F and g. □

Example 7. Consider the two continuous self-mappings F

and g in the Banach interval space (I, ‖ · ‖) defined by
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F[σ, υ] � [2σ − 4, 2υ + 4].

g[σ, υ] � [σ − 2, υ + 2].
(66)

.e function F is a (z‖·‖, g)-contraction according to the
simulation function S(s, t) � λt − s, where λ≥ 2. Also, the
functions F and g are compatible. .e sequence
[(− 1/n), (1/n)] is a Picard sequence, i.e.,

g σn+1, υn+1 ( Ω
�

F σn, υn ( , for all n≥ 2,

g
− 1

n + 1
,

1
n + 1

  Ω
�

F
− 1
n

,
1
n

  ,

− 1
n + 1

− 2,
1

n + 1
+ 2 Ω

�

− 2
n

− 4,
2
n

+ 4 .

(67)

We can easily show that g([σn+1, υn+1])Ω
�

F([σn, υn]), for all n≥ 0, by taking ω1 � [(− ((2n2 + 3n +

2)/(n(n + 1)))), ((2n2 + 3n + 2)/n(n + 1))] and ω2 � [0, 0].
.en,

− 1
n + 1

− 2,
1

n + 1
+ 2 ⊕ −

2n
2

+ 3n + 2
n(n + 1)

,
2n

2
+ 3n + 2

n(n + 1)
 

�
− 2
n

− 4,
2
n

+ 4 ⊕[0, 0].

(68)

If we replace the compatibility of mappings by com-
muting mappings, then the following corollary can be stated.

Corollary 1. Consider the continuous and commuting
mappings F and g in the Banach interval space (I, ‖ · ‖) such
that the criteria of Z-contraction is satisfied by F. Assume that
CLR(F, g) property holds in I; then, a near-coincidence point
exists for F and g.

Corollary 2. Consider a Banach interval space (I, ‖ · ‖) with
two self-mappings F and g. Ben, a near-coincidence point
exists for F and g if

F[σ, υ]⊖F σ′, υ′ 
����

����≤ λ g[σ, υ]⊖g σ′, υ′ 
����

����, (69)

for all [σ, υ], [σ′, υ′] ∈ I, where g[σ, υ]Ω
≠

g[σ′, υ′] and
λ ∈ [0, 1).

Proof. Taking the simulation function S(σ, υ) � λυ − σ for
all σ, υ ∈ [0,∞) and λ ∈ [0, 1), according to the above
condition, we have

F[σ, υ]⊖F σ′, υ′ 
����

����≤ λ g[σ, υ]⊖g σ′, υ′ 
����

����,

for all [σ, υ], σ′, υ′  ∈ I.
(70)

It implies that

0≤ λ g[σ, υ]⊖g σ′, υ′ 
����

���� − F[σ, υ]⊖F σ′, υ′ 
����

����

≤ S F[σ, υ]⊖F σ′, υ′ 
����

����, g[σ, υ]⊖g σ′, υ′ 
����

���� .
(71)

.e last inequality allows to say that F is a
Z‖·‖ − contraction, and hence, by .eorem 2, there will be a
near-coincidence point for F and g. □

Corollary 3. Consider a Banach interval space (I, ‖ · ‖) with
self-mappings F and g such that

F[σ, υ]⊖F σ′, υ′ 
����

����≤ g[σ, υ]⊖g σ′, υ′ 
����

����

− Φ g[σ, υ]⊖g σ′, υ′ 
����

���� 

∀[σ, υ], σ′, υ′  ∈ I,

(72)

whereΦ is a lower semicontinuous function defined on [0,∞)

so that Φ− 1(0) � 0; then, F and g have a near-coincidence
point in I.

Proof. It suffices to take the simulation function S(σ, υ) �

υ − Φ(υ) − σ for all σ, υ ∈ [0,∞). .en, we can easily prove
that F is a z − contraction. So by .eorem 2, there exists a
near-coincidence point for F and g. □
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