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/e number of phase wraps that result from the carrier component can be completely eliminated or reduced by first applying a fast
Fourier transform (FFT) to the image and then shifting the spectrum to the origin. However, because the spectrum can only be
shifted by an integer number, the phase wraps of the carrier component cannot be completely reduced. In this paper, an improved
carrier frequency-shifting algorithm based on 2-FFTfor phase wrap reduction is proposed which allows the spectrum to be shifted
by a rational number. Firstly, the phase wraps are reduced by the conventional FFTfrequency shift method. Secondly, the wrapped
phase with residual carrier components is filtered and magnified sequentially; the amplified phase is transformed into the
frequency domain using an FFT, and then, the wrapped phase with the residual carrier components can be further reduced by
shifting the spectrum by a rational number. Simulations and experiments were conducted to validate the efficiency of the
proposed method.

1. Introduction

In optical metrology, two-dimensional (2D) phase-based
techniques have been widely used in various measurement
applications, such as deformation and vibration measure-
ment and three-dimensional (3D) surface measurement
[1–3]. In these applications, information is always encoded
in a modulated fringe, which can be directly projected by a
commercial projector or generated using the interference
method [4–6]. /en, the phase is calculated from the arc-
tangent function based on a phase-shifting or Fourier
transform method [7]. From the mathematical properties of
the arctangent function, 2π phase jumps exist in the recovery
phase signal, which is called a wrapped phase. To obtain a
continuous phase distribution, a phase unwrapping proce-
dure is required [8]. /eoretically, a phase unwrapping al-
gorithm starts at a particular pixel and then searches for the
phase jumps; it adds +2π or − 2π at each jump detected, and
the phase of two neighboring points becomes continuous;

however, it is easily affected by phase noise in practical
applications. In recent years, researchers have conducted
many studies on the phase unwrapping algorithm, which has
made phase unwrapping technology more powerful; how-
ever, there are still problems, such as poor accuracy and low
efficiency [9–11].

In some cases, phase unwrapping can be avoided or the
phase wraps can be significantly reduced, for example, in
fringe projection or off-axis holographic profilometry
[12–14]. In these techniques, a carrier signal is included in
the extracted phase information. By applying a Fourier
transform and shifting the spectrum to the origin, the carrier
phase can be eliminated. /erefore, fewer wraps or even
phase unwrapping are obtained. Because the spectrum can
only be shifted by an integer number in a conventional fast
Fourier transform (FFT), while the carrier frequency is al-
ways a fraction in a practical application, the carrier phase
cannot be reduced completely, thereby resulting in a mea-
surement error. To solve this problem, researchers have
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developed several approaches. Gdeisat et al. proposed a zero-
padding method to enlarge the array size of the origin phase
image, which achieves a high frequency resolution [15].
Good results can be obtained but with low computational
efficiency. Wang et al. presented a fast two-step method to
reduce the phase wraps. In their method, a frequency peak
was calculated first using an FFT, and then, the sub-pixel
spectral peak was determined by applying a discrete Fourier
transform to the iteratively up-sampled area around the
initial frequency peak location [16]. High accuracy and
efficiency can be achieved based on their method.

In this paper, an improved carrier frequency-shifting
algorithm based on 2-FFT for phase wrap reduction is
proposed, which is more concise and intuitive and does not
require zero-padding and iterative sampling. In the first step,
an FFT is applied to an image, and the phase wraps are
reduced by shifting the spectrum to the origin by an integer
number. In the second step, the wrapped phase that results
from the residual carrier components is filtered and mag-
nified sequentially, and then, the amplified phase is trans-
formed into the frequency domain using an FFT. Finally, the
wrapped phase that results from the residual carrier com-
ponents is further reduced by shifting the spectrum by a
rational number.

2. Principle

2.1. AlgorithmPrinciple. /e proposed method includes two
steps, which both use carrier frequency-shifting algorithm
based on 2-FFT to roughly remove and precisely remove the
phase wraps respectively, which further reduce the wrapped
phase that results from the residual carrier components.
Suppose the deformation fringe pattern modulated by the
surface of the object is

I(x, y) � cos 2π
A + C

N
x + φ(x, y)􏼢 􏼣, (1)

where (A + C)/N is the carrier frequency along the X di-
rection, A is an integer, C is a rational number, C ∈ (0, 1),
and φ(x, y) is the modulation phase produced by the
modulation of the object surface. In the first step, the phase
wrap is roughly eliminated using the conventional FFT
frequency shift method. Since the spectrum can only be
shifted by an integer number, its residual linear phase is

2π(B/N)x, B ∈ (− 0.5, 0.5). In order to eliminate the re-
sidual phase, in the second step, the phase information of
equation (1) is amplified by multiplying it by a large number
K; the corresponding cosine fringe pattern is

I(x, y) � cos 2π
KB

N
x + Kφ(x, y)􏼔 􏼕, (2)

where KB � A0 + C0, A0 is an integer, and C0 ∈ (0, 1).
Similarly, A0 can be obtained by applying a Fourier trans-
form and shifting the spectrum of equation (2). Now, A0 and
K are both known, the dominant component of the original
residual linear phase can be determined as 2πA0/(KN)x,
and the residual linear phase becomes 2pB0/(KN)x,
B0 ∈ (− 0.5, 0.5). /erefore, the phase wraps can be further
reduced by eliminating the residual carrier phase infor-
mation 2πA0/(KN)x, and the theoretical accuracy is 1/K. It
is worth mentioning that there is a problem on the above
analysis, which is that the phase of the object will change
from φ(x, y) to Kφ(x, y) according to equation (2), namely,
when the residual carrier frequency is amplified and fre-
quency of the object will be amplified too, which may cause
frequency aliasing and exceed the Nyquist sampling fre-
quency, thereby causing wrong determination of A0. To
avoid this problem, Gauss filtering is first carried out before
amplifying the phase information to suppress the high
frequency information. Meanwhile, in order to avoid under
sampling from the amplification of residual carrier infor-
mation, we have

2π
K|B|

N
< π. (3)

Since |B|< 0.5, K<N can be calculated using equation
(3), that is, the theoretical maximum value of the large
number K is N.

2.2. Analysis of the Algorithm. In this section, the effec-
tiveness of the proposed algorithm is demonstrated using a
numerical simulation based on fringe projection profilom-
etry. A simulation object with a pixel size of 512 × 512 is
generated by the peak function in MATLAB. Its 3D surface
shape is shown in Figure 1, and the mathematical expression
is as follows:

φ(x, y) � 3(1 − x)
2 exp − x

2
− (y + 1)

2
􏼐 􏼑 − 10

x

5
− x

3
− y

5
􏼒 􏼓∗ exp − x

2
− y

2
􏼐 􏼑 −

exp − (x + 1)
2

− y
2

􏼐 􏼑

3
. (4)

/e fringe pattern of the simulated object is generated by

I(x, y) � cos 2πfxx + 2πfyy + φ(x, y)􏽨 􏽩, (5)

where fx and fy are the carrier frequencies along the X and
Y directions, respectively. In the simulation, the value of fx

is set to 50/512, and to simplify the model, the value of fy is
set to 0.

/e four-step phase-shifting method is used to calculate
the phase information of the simulated object. First, four
simulated fringe patterns are generated using equation (6),
and a π/2 increment of the phase is introduced between the
four fringe patterns./en, the phase information is extracted
using equation (7), and the wrapped phase map is shown in
Figure 2:
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I0(x, y) � cos 2πfxx + φ(x, y)􏼂 􏼃,

I1(x, y) � cos 2πfxx + φ(x, y) +
π
2

􏼔 􏼕,

I2(x, y) � cos 2πfxx + φ(x, y) + π􏼂 􏼃,

I3(x, y) � cos 2πfxx + φ(x, y) +
3π
2

􏼔 􏼕,

(6)

φ1(x, y) � tan− 1 I3 − I1( 􏼁

I0 − I2
􏼢 􏼣, (7)

where φ1(x, y) is the wrapped phase produced using the
four-step phase-shifting method and tan− 1 is the four-
quadrant arctangent operator. From Figure 2, we can see
that many wraps appear in the phase image. To eliminate the
phase wraps, the conventional FFTfrequency shift method is
used first. /e following is used to convert the wrapped
phase map into the complex array O(x, y):

O(x, y) � exp j∗φ1(x, y)􏼂 􏼃, (8)

where j is equal to
���
− 1

√
. /e 2D Fourier transform is applied

to O(x, y) as follows:

Φ(u, v) � F[O(x, y)], (9)

where F[·] is the 2D Fourier transform operator, and the terms
u and v are the horizontal and vertical frequencies, respectively.
Assuming that the peak of the spectrum is located at (u0, v0),
the phase is eliminated by shifting the spectrum to the origin,
that is,Φ(u − u0, v − v0). /e 2D inverse Fourier transform of
the phase-shifted frequency signal is calculated as

ψ(x, y) � F
− 1 Φ u − u0, v − v0( 􏼁􏼂 􏼃, (10)

where F− 1[·] is the 2D inverse Fourier transform operator.
Phase information is extracted using

ϕ1(x, y) � tan− 1 Im[ψ(x, y)]

Re[ψ(x, y)]
􏼨 􏼩, (11)

where Im and Re represent the imaginary part and real part
of the complex array ψ(x, y), respectively, and the phase
wraps in the original phase map are eliminated, as shown in
Figure 3.

As can be seen from Figure 3, the phase wraps are
completely eliminated. Note that the size of the simulated
object is 512 × 512. /e frequency interval after the Fourier
transform is 1/512, and the simulated carrier frequency is set
to 50/512, which is exactly an integer multiple of the fre-
quency interval. /erefore, in this case, the carrier frequency
is precisely determined from the peak location of the
spectrum based on the conventional FFT method, and no
residual carrier signal exists in the phase map.

However, the carrier frequency is rarely exactly an in-
teger multiple of the frequency interval in a practical ap-
plication. /e carrier phase cannot be reduced completely
using the conventional FFT frequency shift method. To
visualize this problem, a second simulation is conducted. All
parameters are the same as those in the first simulation,
except that the value of fx is set to 50.32/512./e simulation
results are presented in Figure 4. Because the carrier fre-
quency calculated from the peak location of the spectrum is
50/512, a residual carrier phase exists, as shown in
Figure 4(b). /erefore, the phase wraps that result from the
carrier phase cannot be completely eliminated using the
conventional FFT frequency shift method.

To overcome this problem, a simple two-step algorithm
for phase wrap reduction is presented as follows: the
principle of this method is demonstrated based on a sim-
ulation in which all the simulation parameters are the same
as those in the second simulation. In the first step, the carrier
frequency is roughly determined based on the conventional
FFT frequency-shifting method, and the phase with the
residual carrier information is shown in Figure 4(b).

In the second step, the residual phase shown in
Figure 4(b) is amplified by multiplying it by a large number
K and then calculating the magnified residual carrier fre-
quency using an FFT. Consequently, the residual carrier
frequency is further roughly determined by dividing the
known number K, and the phase wraps are further reduced
by removing this residual carrier information.

It is worth mentioning that when the residual phase is
amplified, the frequency of the detected object is amplified
simultaneously, which may cause frequency aliasing and
exceed the Nyquist sampling frequency. /e magnified

Figure 2: Wrapped phase image of the simulation object.
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Figure 1: 3D surface shape of the simulation object.
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residual carrier frequency may be incorrectly determined.
/erefore, high frequency information needs to be sup-
pressed. Before the residual phase shown in Figure 4(b) is
amplified, a Gauss filter shown in Figure 5(a) is used first.
Additionally, the phase information after the phase wraps
are initially eliminated is processed using Gauss filtering
G(x, y) � exp[− (x2 + y2)/2σ2]:

ϕ2(x, y) � F[ψ(x, y)]􏼈 􏼉∗G(x, y), (12)

where σ is set to 25. Figure 5(b) shows the filtered phase
shown in Figure 4(b).

Following the above analysis, the filtered phase shown in
Figure 5(b) is multiplied by a factor of K, where K� 50, and
the amplified phase is shown in Figure 6(a). Using an FFT
again, the location of the spectral peak of the amplified phase
is determined, thereby obtaining the magnified residual
carrier frequency. Finally, the magnified residual carrier
frequency is divided by K, that is, 50, and the residual carrier
frequency with a rational number is obtained. By reducing
this residual carrier information from the phase shown in
Figure 4, the unwrapped phase shown in Figure 6(b), and its

3D distribution shown in Figure 6(c), the phase wraps that
result from the carrier phase are completely eliminated
based on our proposed method.

As we can see, although the spectrum can only be shifted
by an integer number based on the conventional FFT
method, it can be shifted by a rational number, that is, an
integer times 1/K, based on our proposed method. /eo-
retically, the larger the value of K, the better. However, the
value of K cannot be infinite, and K<N was determined by
equation (3). When K is too large, the remaining frequency
of the object after Gauss filtering is still very high, and the
magnified residual carrier frequency will be mis-determined
because of frequency aliasing. To demonstrate this issue,
different amplification factors (K) and standard deviations
(σ) are selected for a simulation, and the corresponding
relationship between K, σ, and residual carrier frequency is
obtained, as shown in Table 1.

Because the carrier frequency of the simulation object is
50.32/512 and, in the first step, the carrier frequency cal-
culated from the peak location of the spectrum is 50/512, the
residual carrier frequency is 0.32/512. From Table 1, we can
see that when the amplification factor is 50, 100, and 250, the
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Figure 3: Recovered phase using the conventional FFT method (fx � 50/512): (a) 2D phase image; (b) 3D phase image.
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Figure 4: Recovered phase using the conventional FFT method (fx � 50.32/512): (a) 2D phase image; (b) 3D phase image.
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residual carrier frequency is 0.320/512; and, if K is equal to
500, the residual carrier frequency is 0.320/512 only when σ
is equal to 25. In a practical application, to avoid frequency
aliasing, the recommended value is K� 50 and σ � 25. Note
that this is not a strict criterion, and a slightly larger or
smaller value would not affect the result significantly.
Clearly, carrier information still exists because the residual
carrier frequency can be only shifted by a rational number

that is an integer times 1/50; however, this remaining carrier
frequency is very small and can be ignored in most cases.

3. Experimental Results

To verify the feasibility of the proposed method, we tested a
face model with smooth shapes using a fringe projection
measurement system. /e fringe projection measurement
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Figure 6: (a) Image of the amplified filtered phase. (b) 2D image of the recovered phase. (c) 3D image of the recovered phase.
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Figure 5: (a) 3D shape of the Gauss filtering function. (b) Phase image after removing the high frequency.
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system consisted of a computer, DLP projector, and CCD
camera, as shown in Figure 7. One of the deformed fringe
patterns captured by the CCD camera is shown in
Figure 8(a).

In the above simulation analysis, the phase information
of the model was calculated using the four-step phase-

shifting method; however, this method still had phase errors
[17]. To reduce these errors and improve accuracy, the five-
step phase-shifting method was adopted to calculate the
phase information of the object in the experiment; the
phase-shifted fringe images are given by

Ii(x, y) � Ia(x, y) + M(x, y)cos 2πf0 x + φe(x, y) +
2π
5

􏼒 􏼓∗ (i − 1)􏼔 􏼕, i � 1, 2, 3, 4, and 5, (13)

where Ia(x, y) is the background intensity, M(x, y) is the
modulation of the fringe, and a 2π/5 increment of the phase

is introduced between the five fringe patterns. /e phase
information is given by

φe1
� tan− 1 I1 sin(0π/5) + I2 sin(2π/5) + I3 sin(4π/5) + I4 sin(6π/5) + I5 sin(8π/5)􏼂 􏼃

I1 cos(0π/5) + I2 cos(2π/5) + I3 cos(4π/5) + I4 cos(6π/5) + I5 cos(8π/5)􏼂 􏼃
􏼨 􏼩, (14)

and this is shown as a wrapped phase map in Figure 8(b).
We first used the conventional FFT frequency shift

method to reduce the phase wraps that resulted from the
carrier phase. /e wrapped phase map shown in Figure 8(b)
was Fourier transformed using equations (8) and (9). /e
resultant phase map was then calculated using equations (10)
and (11) and is shown in Figures 9(a) and 9(b). /e

unwrapped phase image for this case is shown in Figure 9(c).
However, the phase wraps that resulted from the carrier
phase could not be completely eliminated.

To further improve the calculation accuracy and reduce
the error in the process of phase wrap reduction, we used the
proposed method to further reduce the residual carrier
phase of Figure 9(b). /e filtered phase was calculated using

Table 1: Corresponding relationship between K, σ, and residual phase frequency.

σ
Amplification factor (K)

10 20 30 40 50 100 250 500

Residual carrier frequency

15 0.300/512 0.250/512 0.367/512 0.325/512 0.320/512 0.320/512 0.320/512 0.322/512
25 0.300/512 0.250/512 0.367/512 0.325/512 0.320/512 0.320/512 0.320/512 0.320/512
35 0.300/512 0.250/512 0.367/512 0.325/512 0.320/512 0.320/512 0.320/512 0.322/512
45 0.300/512 0.250/512 0.367/512 0.350/512 0.320/512 0.320/512 0.320/512 0.322/512
55 0.300/512 0.250/512 0.367/512 0.350/512 0.320/512 0.320/512 0.320/512 0.322/512

Face model

CCD

Computer

Projector

Figure 7: /e fringe projection measurement system.
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equation (12), which is shown in Figure 10(a), and amplified
by multiplying it by 50. /en, the magnified residual carrier
frequency was calculated using an FFT. /e inverse Fourier
transform was then calculated using equation (10). /e
phase was extracted using equation (11) and is shown in
Figures 10(b) and 10(c). /e unwrapped image is shown in

Figure 10(d), which shows that the phase wraps that resulted
from the carrier phase were completely eliminated.

In order to further test the performance of our proposed
method, a USB disk was measured. One of the deformed
fringe patterns is shown in Figure 11(a). /e procedure was
similar to the previous experiment. /e five-step phase-
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Figure 9: Recovered phase using the conventional FFTfrequency shift method: (a) 2D phase image, (b) 3D phase image, and (c) unwrapped
phase image.
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Figure 8: (a) One of the deformed fringe patterns. (b) Wrapped phase image.
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Figure 10: (a) Phase image after removing the high frequency. (b) 2D image of the recovered phase. (c) 3D image of the recovered
phase. (d) Unwrapped phase image.
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Figure 11: Continued.
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shifting method was adopted to calculate the phase infor-
mation of the object, and the wrapped phasemap is shown in
Figure 11(b). Firstly, the conventional FFT frequency shift
method was used to reduce the phase wraps that resulted
from the carrier phase. /e resultant phase map is shown in
Figures 11(c) and 11(d), and the phase wraps that resulted
from the carrier phase could not be completely eliminated.
/en, the proposed method was used to further reduce the
residual carrier phase. /e filtered phase is shown in

Figure 11(e), which wasmultiplied by 50. And, themagnified
residual carrier frequency was calculated using an FFT. /e
wrapped phase that results from the residual carrier com-
ponents is further reduced by shifting the spectrum, as
shown in Figures 11(f) and 11(g).

Because the existence of the high order harmonic in the
projected fringe affects the initial determination of the initial
carrier frequency, it can be seen that the wraps from the
residual linear phase in Figure 11(d) are more than those in
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Figure 11: (a) One of the deformed fringe patterns, (b) wrapped phase image, (c) resultant phase using the conventional FFTfrequency shift
method (2D), (d) 3D image of the resultant phase, (e) phase image after removing the high frequency, (f ) resultant phase using the proposed
method, and (g) 3D image of the resultant phase.

Mathematical Problems in Engineering 9



Figure 9(b). However, as shown in Figure 11(g), the linear
phase can be basically eliminated based on our proposed
method, which further demonstrates the superiority of the
proposed method compared with the conventional method.

4. Conclusion

In this paper, we presented an improved carrier frequency-
shifting algorithm based on 2-FFTfor phase wrap reduction.
By first applying an FFT to the wrapped phase with the
carrier, most of the carrier components were removed by
spectrum shifting. Because the spectrum can only be shifted
by an integer number, residual carrier information
remained. By applying a second FFT to the filtered and
amplified phases with the residual carrier information, the
carrier frequency was further determined, and the wrapped
phase that resulted from the carrier was almost eliminated.
And, we demonstrated both theoretically and experimentally
the reliability of the proposed method and contrasted this
method with the conventional FFTmethod. As a result, the
spectrum can be only shifted by an integer number in the
conventional FFT method, and the phase wraps resulting
from the carrier phase cannot be eliminated entirely, while
noninteger frequency shift can be achieved in our proposed
method, and the phase wraps resulting from the carrier
phase can be significantly eliminated.
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