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Melanoma malignancy recognition is a challenging task due to the existence of intraclass similarity, natural or clinical artefacts,
skin contrast variation, and higher visual similarity among the normal or melanoma-affected skin. To overcome these problems,
we propose a novel solution by leveraging “region-extreme convolutional neural network” for melanoma malignancy recognition
as malignant or benign. Recent works on melanoma malignancy recognition employed the traditional machine learning
techniques based on various handcrafted features or the recently introduced CNN network. However, the efficient training of
these models is possible, if they localize the melanoma affected region and learn high-level feature representation frommelanoma
lesion to predict melanoma malignancy. In this paper, we incorporate this observation and propose a novel “region-extreme
convolutional neural network” for melanoma malignancy recognition. Our proposed region-extreme convolutional neural
network refines dermoscopy images to eliminate natural or clinical artefacts, localizes melanoma affected region, and defines
precise boundary around the melanoma lesion. *e defined melanoma lesion is used to generate deep feature maps for model
learning using the extreme learning machine (ELM) classifier. *e proposed model is evaluated on two challenge datasets (ISIC-
2016 and ISIC-2017) and performs better than ISIC challenge winners. Our region-extreme convolutional neural network
recognizes the melanoma malignancy 85% on ISIC-2016 and 93% on ISIC-2017 datasets. Our region-extreme convolutional
neural network precisely segments the melanoma lesion with an average Jaccard index of 0.93 and Dice score of 0.94. *e region-
extreme convolutional neural network has several advantages: it eliminates the clinical and natural artefacts from dermoscopic
images, precisely localizes and segments the melanoma lesion, and improves the melanoma malignancy recognition through
feedforward model learning. *e region-extreme convolutional neural network achieves significant performance improvement
over existing methods that makes it adaptable for solving complex medical image analysis problems.

1. Introduction

Melanoma is a dangerous form of skin cancer and it is
difficult to identify it at an earlier stage due to visual sim-
ilarity with normal skin. *e morality rate of melanoma is
more than 75% every year [1]. In the year 2020, 76,380 new
cases of melanoma are suspected to be diagnosed and
around 10,130 deaths are reported in the USA [2]. Fortu-
nately, melanoma is curable if it is diagnosed and medicated
at an earlier stage. *erefore, earlier diagnosis is desirable to
improve the patient’s survival rate [3–5]. Dermoscopy im-
ages are used for the diagnosis of melanoma and it is reliable

than a visual melanoma inspection procedure through the
naked eye. However, the manual melanoma diagnosis
through the naked eye is error-prone and time-consuming,
and different dermatologists’ diagnosis predictions often
vary that adversely affect the earlier treatment of disease [6].
*erefore, the automatic diagnosis of melanoma facilitates
the dermatologists and supports them to validate their
predictions even at earlier stages.

Melanoma recognition is a challenging domain due to
visual similarity among the types of melanoma such as color,
size, texture, location, and shape.*e boundaries are also not
obscure, and variation makes the task of recognition more
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complicated at an earlier stage. Moreover, some artefacts
such as hair, blood vessels, gel bubble, and clinical ruler
marks also degrade the recognition performance [1]. To
support the earlier diagnosis and to solve this challenging
problem, computer vision-based computer-aided diagnosis
(CAD) tools are capable of detecting and recognizing
melanoma to assist the dermatologists [7]. Recently, much
effort has been invested in the recognition of melanoma
automatically [8–14]. Earlier studies employ the low-level
handcrafted features to classify normal and melanoma skin
regions, including texture [15, 16], shape [17], and color
[17, 18] attributes. Some traditional investigations suggest
combining handcrafted features along with selection of
features to improve the recognition of melanoma [19, 20].
However, the handcrafted features hold low-level repre-
sentation of melanoma which is not effective to inculcate
higher visual similarity among normal and melanoma le-
sions. Moreover, the artefacts within the dermoscopic im-
ages lead to a higher misclassification rate. *e researchers
also used the segmentation of melanoma region and
extracted features from the segmented region to recognize
melanoma [16, 19–21]. *e feature representation from
segmented melanoma region results in better recognition
due to a well-defined area of interest. Still, these techniques
employ low-level handcrafted feature representation for
segmentation and classification with limited recognition
capabilities.

Recently, the deep learning techniques have revolu-
tionized the biomedical image analysis domain, including
segmentation [22, 23], detection [24–27], and classification
[28–30]. *e multilayer high-dimensional CNN feature
representations capture discriminative attributes for the
accurate recognition of melanoma. Codella et al. [31] sug-
gested deep features representation to classify melanoma
using support vector machine (SVM). Kawahara et al. [32]
presented the benefit of transfer learning of pretrained
model including AlexNet [31] and tuned the model for
melanoma representation. Yu et al. employed the deep re-
sidual network to classify benign and malignant melanoma
with a deeper model of CNN [33]. Zhen et al. introduced the
features extraction from pretrained ResNet50 and local
descriptor fisher vector encoding scheme to train the SVM
model for melanoma malignancy recognition [34]. Mela-
noma malignancy recognition from deep learning tech-
niques indicated good performance as compared to
handcrafted features due to high-level feature representation
of melanoma.

*is research work aims to propose a novel approach for
melanoma malignancy recognition and to overcome all the
challenges present in the dermoscopic images (Figure 1).*e
proposed “region-extreme convolutional neural network”
differs from the existing melanoma recognition methods in
the following ways. First, while existing CNN approaches for
melanoma recognition make deterministic diagnosis deci-
sion based on features extracted from the entire dermoscopy
image, the proposed “region-extreme convolutional neural
network” improves the recognition performance by intro-
ducing the localization block that allows precise melanoma
segmentation and removes artefacts. *en, decision

boundaries are established based on these segmented lesions
to predict the melanomamalignancy.*emalignancy model
generated from melanoma lesion plays an important role in
accurate prediction as it improves the melanoma malig-
nancy recognition performance through considering only
melanoma affected lesion unlike entire dermoscopy image.
*erefore, the model obtained from the proposed method
improves the recognition performance as compared to
existingmethods.*e proposed approach is evaluated on the
ISIC-2016 and ISIC-2017 challenge datasets and experi-
mental finding portrays good recognition performance.

Our contributions in this paper are summarized as
follows:

(1) We propose region-extreme convolutional neural
network for localization and recognition of mela-
noma malignancy at an earlier stage

(2) Our experimental finding reveals that deep features
extracted from the penultimate layers are more
powerful than the features extracted from higher-
order layers of CNN because the receptive fields of
penultimate layers hold higher semantics and con-
textual information of melanoma malignancy

(3) Rigorous experimentation against the state-of-the-
art methods is performed to establish the effective-
ness of the proposed approach

2. TheProposedRegion-ExtremeConvolutional
Neural Network for Melanoma
Malignancy Recognition

Dermoscopic images used for the recognition of mela-
noma are occluded with clinical and natural artefacts.
Moreover, a huge variation and intraclass visual similarity
also exist among the melanoma and non-melanoma re-
gions that adversely degrade the recognition performance
[1]. To overcome these challenges, we propose a novel
scheme to mitigate these challenges and recognize the
melanoma malignancy with higher recognition rate, as
shown in Figure 2. In the first step, we refine the images
and localize the melanoma affected region. *en, the lo-
calized region is used to segment the melanoma region.
*e localization and segmentation block use the training
pair of images including RGB dermoscopic image and
corresponding ground truth mask images to generate
melanoma localization model during training phase. *e
location coordinates of melanoma are obtained through
binarization of the ground truth image. After binarization,
we apply the region split and merged segmentation on
binary ground truth image to acquire the location infor-
mation (x, y, w, h) of melanoma by extracting the largest
connected component. *ese coordinates’ information
from ground truth image IG is used to map the location of
melanoma in the RGB dermoscopy image I. *ese coor-
dinates (x, y, w, h) along with RGB dermoscopic images
are presented to RCNN to generate a model for the
melanoma localization. *e RCNN employs selective
search to produce region proposal, and deep convolutional

2 Mathematical Problems in Engineering



features are extracted from each proposal. *e softmax
layer classifies the test sample proposal into the melanoma
affected or normal skin region, while the classification
softmax layer recognizes the chosen proposals as mela-
noma-affected region, and the suspected proposals are
passed through the regression layer of RCNN [35]. *e
regression layer computes the intersection over union
score (IoU) using greedy suppression algorithm to detect
the part of skin as melanoma or normal region. In our case,
if the region’s regression score is higher than 0.5, then the
proposal is localized as melanoma lesion to reduce the false
positive localization. *erefore, only true positive pro-
posals with regression IoU scores greater than 0.5 are
considered as melanoma area; otherwise, it is considered as
normal skin area. In the third step, the segmented mela-
noma regions are used to extract deep features for the
recognition purpose. *e architecture of proposed region-
extreme convolutional neural network is shown in Figure 2
and elaborated in detail in the following sections.

2.1. Mathematical Formulation of Melanoma Recognition.
Given an input dermoscopy image Di from the i training
samples, the skin refinement block of region-extreme
convolutional neural network enhances the perceptual
quality of dermoscopic image and processed image I is
processed further for the melanoma localization.

Training of the melanoma localization block requires
predicted melanoma region IP and corresponding ground
truth location of melanoma region IG. IG is presented as
pairs (Ii

P, Ii
G) where i � 1, 2, 3, . . . , N are the training

samples and N represents the total number of training

samples. Here, IG and IP are the rectangular regions as
(x, y, w, h) with pixel location (x, y), weight as w, and
height as h. To localize the melanoma lesion precisely,
optimal transformation functions are established by the
region-extreme convolutional neural network to reduce the
localization error and exactly map the predicted bounding
box IP location (x, y), width w, and height h of melanoma
region over ground truth bounding box IG. *e four
transformation functions tx(IP), ty(IP), tw(IP), and th(IP)

are mathematically represented as

IGx
� IPw

tx IP(  + IPx
. (1)

Here, IGx
is the centroid x pixel location of actual

melanoma lesion, IPx
, IPw

are horizontal and width-wise
predicted melanoma lesions, and tw is a logarithmic rep-
resentation of targeted horizontal coordinate of melanoma
lesion.

IGy
� IPh

ty IP(  + IPy
, (2)

where IGy
is the centroid y pixel location of actual mel-

anoma lesion, IPy
and IPh

are vertical and height-wise
predicted melanoma lesions, and ty is a logarithmic rep-
resentation of targeted vertical coordinate of melanoma
lesion.

IGw
� IPw

e
tw IP( ). (3)

Similarly, IGw
is the width of the actual melanoma lesion,

IPw
and IP represent thewidth-wise predictedmelanoma lesion

and overall predicted melanoma lesion, and tw is a logarithmic
representation of targeted width of melanoma lesion.

ISIC images
Benign and malignant 
melanoma recognition 

Skin refinement
block

Localization and
segmentation block

Deep features
extraction block

Feed-forward
model learning block

Figure 2: *e architecture diagram of the proposed region-extreme convolutional neural network for malignancy recognition melanoma.

(a) (b) (c) (d) (e)

Figure 1: (a–e) Sample of ISIC-2016, and ISIC-2017 dataset illustrating the clinical artefacts and natural artefacts. *ese artefacts consist of
(a) color and illumination variation, (b) variation in contrast, (c) black frame and clinical rule marks, (d) natural hair, and (e) clinical color
swatches.
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IGh
� IPh

e
th IP( ). (4)

IGh
represents height, IPh

and IP represent the height-
wise predicted melanoma lesion and overall predicted
melanoma lesion, and th is a logarithmic representation of
targeted height of melanoma lesion.

t∗Ip � ωT
∗ϕ3Ip. (5)

Here, t∗Ipε[tx(IP), ty(IP), tw(IP), th(IP)] is the target
location of melanoma lesion to map predicted melanoma
lesion IP on actual melanoma lesion IG. tx(IP), ty(IP),
tw(IP), and th(IP) are transformation functions to linearly
predict the region proposal IP using deep features of pooling
layer 3 (ϕ3) where ϕ is 2D compressed receptive field. For
precise prediction of melanoma lesion, ω∗ are the weights
adapted during training phase through gradient decent al-
gorithm and t∗ is respective mapping function for location
(x, y), width w, and height h, where ∗ε[x, y, w, h] and ω∗ is
1D weight matrix. tx(IP) and ty(IP) specify mapping of IP

centroid keeping the characteristic of scale in-variance.
tw(IP) and th(IP) are a logarithmic representation of width
and height of IP.

*e regression targets R∗ε[Rx, Ry, Rw, Rh] for accurate
localization of melanoma region are listed numerically as
follows:

Rx �
IGx

− IPx

IPw

. (6)

Here, Rx is the regression target function at horizontal
axis. IGx

is horizontal location of actual melanoma lesion.
IPx

, IPw
represent the horizontal location and width-wise

predicted melanoma lesions.

Ry �
IGy

− IPy

IPh

, (7)

Ry is the regression target function at vertical axis. IGy
is

vertical location of actual melanoma lesion. IPy
, IPh

represent
the vertical location and height-wise predicted melanoma
lesions.

Rw � log
IGx

IPw

, (8)

Rw is the regression target function for width mapping. IGx
is

horizontal location of actual melanoma lesion. IPw
repre-

sents the width-wise predicted melanoma lesion.

Rh � log
IGy

IPh

, (9)

Rh is the regression target function for height mapping. IGy
is

vertical location of actual melanoma lesion. IPh
represents

the height-wise predicted melanoma lesion. For simplicity,
we represent the regression target functions Rx,Ry,Rw,Rh as
R(x, y, w, h).

Region-extreme convolutional neural network performs
melanoma lesion localization through greedy overlapping
criteria of ground truth bounding boxes and predicted

boxes, known as intersection-over-union (IoU). *e infor-
mation extracted from the proposal IP improves learning, if
IP is close to one of the ground truth boxes IG [35]. *e IoU
threshold chosen for melanoma detection is greater than 0.5
and score lower than 0.5 is rejected by the localization block
to improve localization. *e acceptable range of melanoma
lesion localization is opted within the IoU of 0.5–1, where
0.3–0 is chosen for background normal skin region.

*emelanoma localization block defines a bounding box
across the melanoma lesion and then crops the infected
region. *e cropped region is segmented into melanoma
defined region and normal skin region. *e melanoma
defined lesion is passed to deep feature extraction block for
discriminative feature maps generation and melanoma
malignancy recognition.

*e problem to recognize benign and malignant mela-
noma from training dermoscopy melanoma lesion
R(x, y, w, h) can be written as forecasting class probability
problem:

RE zj, R(x, y, w, h)  � P(class|R(x, y, w, h)), (10)

where RE is the predicted class recognized by the proposed
region-extreme convolutional neural network and
P(class|R(x, y, w, h)) represents the probabilities of benign
b and malignant m melanoma class, where class ε(b, m), b

stands for benign and m stands for malignant melanoma
class. *e test sample zj is fed to region-extreme con-
volutional neural networkRE to predict the class probability
of benign b and malignant m melanoma. Region-extreme
convolutional neural networkRE recognizes the benign and
malignant melanoma classes as shown in (10).

2.2. SkinRefinementBlock. Dermoscopy imaging techniques
are used for diagnosis of melanoma because these images
examine the skin lesion at deeper level and ensure maximum
perceptual ability for melanoma diagnosis [3]. Although
dermoscopic images enhance the visual clarity, still there is a
need to improve the manual prediction through advanced
deep learning techniques.

*e artefacts within the dermoscopy images D are re-
sponsible for degrading the melanoma segmentation per-
formance. *erefore, the hair, clinical rule marks, and veins
are removed through morphological closing operation ap-
plied twice across the image using equation (11). *e two-
line structuring elements S1 of 10 pixels in 90∘ and 180∘ are
used to eliminate the hair and clinical rule marks in hori-
zontal and vertical direction. We have selected these
structuring elements to remove the line shape objects in-
cluding the hair and clinical rule marks from the RGB
dermoscopy images, as these artefacts degrade the seg-
mentation quality of melanoma.

J � D⊕ S1( ⊖ S1. (11)

In equation (11), J represents the enhanced dermoscopic
image through morphological closing operation, where D is
input dermoscopic image and S1 is line structuring element.
*en, the resultant image J is processed further to improve
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the image edges and entropy through unsharp filtering
operation.

Js � J × funsharp. (12)

*e unsharp filter funsharp is convolved with the image J

to smooth the image and generate a blur image Js.

funsharp � −
i

πσ4
1 −

a
2

+ b
2

2σ2
 e

a2+b2/2σ2( ). (13)

Here, funsharp represents the unsharp kernel to transform
dermoscopic image J into enhanced image Js. a and b

represent the distance from centroid pixel in horizontal and
vertical direction, and σ represents the standard deviation of
image pixel’s probability distribution.

I � J − Js(x, y). (14)

*en, the smooth image Js is subtracted from original
image J, to obtain the sharped image I as shown in equation
(14). After refining the dermoscopy images, I are forwarded
to localization and segmentation block for localization of
melanoma lesion.

2.3. Localization and Segmentation Block. Melanoma local-
ization is a significant step in the proposed region-extreme
convolutional neural network as the entire dermoscopic
image consists of normal skin and clinical or natural arte-
facts along with melanoma lesion. *e architecture of CNN
network is used as backbone model in learning of region-
extreme convolutional neural network model which is
shown in Table 1.

Recent deep learning approaches have achieved good
results in automatic malignancy recognition of melanoma
but still there is a need to improve the recognition per-
formance as difference exists between the expert prediction
and the prediction obtained from automated method due to
challenges mentioned above. *erefore, proposing the dis-
criminative melanoma malignancy representation still de-
mands more analysis with limited training data available.
Recent findings employ very large deep networks for the
malignancy analysis and prediction. However, it is very
difficult to explore very deep networks and identify optimal
solution as compared to shallower networks. Moreover, the
problem of vanishing gradient becomes more crucial during
training of very deep convolutional neural network and thus,
it is more challenging to identify reasonable hyper-
parameters of large networks. Like other biomedical image
analysis tasks, the availability of skin lesion training data is
limited which makes the malignancy recognition problem
even more challenging. We exploit the significance of
melanoma lesion segmentation and investigate the benefits
of generating learning model based on melanoma affected
skin pixels only, despite the entire dermoscopy image. In this
way, inference model becomes more decisive and performs
accurate melanoma malignancy predictions.

In the proposed scheme, region based convolutional
neural network (RCNN) is used for melanoma affected le-
sion localization that transforms the melanoma detection

task as regression problem to predict the possible location of
melanoma lesion [1]. We have selected RCNN because
RCNN is able to learn the melanoma representation from
the deep features and localize accurate region of melanoma
[1]. *erefore, RCNN is applied to the image for localization
of melanoma region. During training, region-extreme
convolutional neural network considers the melanoma le-
sion and the rest of the region is considered as background,
including the clinical artefacts, e.g., black frame, clinical
swatches, clinical scale marks, and healthy skin.

We opt for localization of melanoma lesion R(x, y, w, h)

to reduce the search space for precise segmentation of
melanoma affected region that is free from normal skin and
artefacts. RCNN localizes a rectangular region R(x, y, w, h)

around the melanoma infected lesion. For more preciseness,
melanoma lesion R(x, y, w, h) is further processed to
remove normal skin pixels and define precise boundaries
around the melanoma affected region. *erefore, fuzzy c
means (FCM) clustering algorithm is applied to segment out
melanoma region. *e FCM clusters the image pixels and
the FCM algorithm requires a predefined number of clusters
as an input parameter. In our approach, as localized region
consists of melanoma region and normal skin pixels,
therefore FCM divides the image into two groups resulting
in definite melanoma boundary representation. *e FCM
clustering refines the segmentation clusters caε(1,2) through
evolving the objective function Od under defined initial
conditions.

Ssa �
1


24
k�1 R(x, y, w, h) − ca

����
����

(2/d− 1)/ R(x, y, w, h) − ck

����
���� 

.

(15)

*e variable d describes the total number of pixels
existing within the localized rectangular melanoma region
R(x, y, w, h) and Ssa describes the degree of membership of
pixels with cluster a, having cluster center ca.

ca �


N
s�1SsaR(x, y, w, h)


N
s�1S

d
sa

. (16)

In order to define precise pixel’s membership of
R(x, y, w, h) with cluster center ca, the local minima are
estimated through computing the objective function Od:

Od � 
d

S�1


2

a�1
S

d
sa R(x, y, w, h) − ca



2
. (17)

When the centroids of FCM converge, the segmentation
of R(x, y, w, h) generates melanoma affected region with
defined boundaries which is separated from the normal skin
region.

2.4. Deep Feature Extraction Block. After segmenting the
melanoma affected lesion R(x, y, w, h), deep feature rep-
resentation FN of benign and malignant melanoma is
computed through CNN model. In our algorithm, we have
used AlexNet [36], VGG16 [37], VGG19 [37], ResNet18
[38], ResNet101 [38], GoogleNet [39], and DenseNet201
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[40], and the best performing model is chosen from these
CNN models to capture a deep visual representation of
benign and malignant melanoma. We have explored the
recognition capabilities of the deep features at different
network depths and the impact of suitable CNN network for
melanoma malignancy prediction from the dermoscopic
images. In the proposed technique, deep features are
extracted from either pooling or fully connected layers and
softmax layer is eliminated. *e deep feature representation
FN of benign and malignant melanoma is normalized
through min-max normalization algorithm and then passed
to PCA to optimize the features equations (18) and (19). *e
PCA reduces the variance among the features of similar class
and improves the learning process.

FN
′ ] � τ]. (18)

*e mathematical expression (equation (18)) represents
the principal component symmetric matrix FN

′, which is also
known as co-variance matrix, where τ represents the di-
agonal matrix and ] represents the orthogonal projections
matrix which is used for PCA computation.

FN
′ �

]11FN . . . ]1nFN

⋮ ⋱ ⋮

]nnFN . . . ]nnFN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

*e idea of using PCA on top of the deep features is to
identify significant pattern that is helpful in recognition and
improving the learning performance. Recently, PCA was
applied in hierarchical layers for feature extraction that
validates the performance improvement hypothesis [41].
PCA features were used to train autoencoder, and significant
performance improvement was reported [42]. In our work,
we have extracted the deep features from CNN network,
normalized them, and then used PCA to optimize the deep
features without reducing the dimension. Despite [41, 42],
we have used PCA after deep features extraction from CNN
to get discriminative features. We have observed that PCA
significantly improves the recognition of benign and ma-
lignant melanoma using the deep convolutional features.
*e PCA detects the correlation ] among CNN features of

the same class and reduces the correlated features within the
different class which is significant to discriminate the benign
and malignant melanoma. *e experiments and results are
discussed in Section 3.4.2.

Deep features FN
′ are normalized within minimum

feature FNmin
′ and maximum feature FNmax

′ range to optimize
the decision boundaries of recognition model and reduce the
search space with benefits of lower computational time. *e
extracted deep principle component FN

′ strengthens the
decision boundaries of model and supports in precise
prediction of melanoma benign and malignant class.

2.5. Feed-Forward Model Learning Block. *e extreme
learning machine (ELM) performs fast learning using single-
layer feed-forward neural network with defined number of
hidden nodes. Our previous work indicated that ELM holds
better generalization performance as compared to back-
propagation algorithms [43]. *e weights and biases of
ELM’s first layer are randomly assigned and remain con-
stant, while the weights and biases of hidden layer are opted
to minimize the least square error between actual and
predicted class, thus establishing stronger decision bound-
aries [44, 45].

*e feed-forward model learning block constitutes ELM
classifier to learnmodel for benign andmalignantmelanoma
recognition using deep principle components features FN

′.
ELM consists of training parameters and these parameters
are responsible for generating decision boundaries among
benign and malignant melanoma. *e selection of number
of training parameters is a significant process and reduces
the classification loss. A single output unit is used to predict
benign and malignant melanoma through ELM output
function yL(FN

′) described as

yL FN
′(  � 

L

j�1
ωihi FN
′( , (20)

where ωi � ω1,ω2,ω3, . . . ,ωL describes the output weights
and hi(FN

′ ) � h1(FN
′ ), h2(FN

′ ), . . . , hL(FN
′ ) describes the weight

existing between output vector and L hidden nodes. *e
classification decision function of ELM is

Table 1: *e region-extreme convolutional neural network architecture used for localization of melanoma.

Layers Functionality Filters Size Stride Padding
Input layer Preprocesses the input dermoscopic image 32× 32× 3
Convolutional layer Convolves input data with kernels 3 5× 5 0
Max pooling Performs maximum pooling operation on receptive fields 3× 3 2
RELU Applies RELU activation function on receptive fields
Convolutional layer Convolves receptive fields with kernels 32 5× 5 1 2
RELU Applies RELU activation function on receptive fields
Average pooling Performs average pooling on receptive fields 3× 3 2 0
Convolutional layer Convolves receptive fields with kernels 64 5× 5 1 2
RELU Applies RELU activation function on receptive fields
Avg pooling Performs average pooling on receptive fields 3× 3 2 0
Fully connected Flattens the receptive fields from 2D to 1D 64
RELU Applies RELU activation function on receptive fields
Fully connected Transforms high level melanoma representation to nonlinear transfer function 2
Softmax Assigns class probabilities to region proposals
Regression Performs non-maximum suppression and estimates the location of melanoma
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yL FN
′(  � sign hiωi( . (21)

*e objective function of ELM optimizes the decision
boundaries to generalize the prediction performance with
minimum classification loss. *e mathematical represen-
tation of objective function is shown in the following
expression:

f° � minimize
Hωi − T

����
����
2
,

ωi.

⎧⎨

⎩ (22)

Here, H† represents the matrix of hidden layer’s output
as

H �

h1FN1′
. . . hLFN1′

⋮ ⋱ ⋮

h1FNN
′ . . . hLFNN

′





. (23)

*e ELM decision boundaries are established through
maximizing the margins among the benign and malignant
melanoma within feature representation ‖2/ωi‖ andminimal
least square method is used to minimize the norm of output
weights ‖ωi‖.

ωi � H
†
T. (24)

*e parameter H† is Moore–Penrose inverse matrix
which is computed from orthogonal projection along with
single value decomposition method. At test time, the ELM
performs the prediction of class labels using decision
function and predicts the melanoma malignancy through
estimating the highest value of output node. *e detailed
explanation about ELM can be found in [44].

3. Experimental Results

3.1. Datasets, Hardware Specification, and Evaluation
Parameters. *e proposed technique is evaluated using
ISIC-2016 and ISIC-2017 challenge dataset [46]. *e ISIC-
2016 consists of 900 training and 350 testing samples. *e
ISIC-2016 dataset constitutes training data from 727 non-
melanoma patients and 173 melanoma patients, while test
sample contains data of 304 melanoma patients and 75
melanoma patients. *e ISIC-2017 dataset consists of 2000
training samples, 150 validation, and 600 test samples of
dermoscopy images. *e training set constitutes data of 374
melanoma patients, 254 seborrheic keratosis patients, and
1372 benign nevi patients samples, while the test set contains
data of 117 melanoma patients, 97 seborrheic patients, and
393 benign nevi patients.

*e experiments are conducted on system with 2.59GHz
Core i7 CPU, 12GB RAM, and NVIDIA GeForce GTX-950
Graphic Processing Unit.

Our proposed technique constitutes skin refinement
step, melanoma localization, segmentation, and recognition
of melanoma benign and malignant class. Each part of the
proposed technique is evaluated with different evaluation
measures. As the skin refinement phase is an enhancement
process which was applied to improve the visual

representation of image, therefore we have used peak signal
to noise ratio (PSNR), root mean square error (RMSE), and
universal image quality index (UIQI) for the evaluation of
skin refinement step.

For the evaluation of melanoma localization, mean av-
erage precision (mAP) is used to estimate the precise lo-
calization. *e intersection over union (IoU) measure is
chosen within the range of 0.5–1 for melanoma detection.
Jaccard index (Ja), dice score (Di), sensitivity (SE), speci-
ficity (SP), and accuracy (Ac) are used for evaluation of
segmentation step. At ISIC-2016 and ISIC-2017 challenges,
the contestants were ranked based on Ja index for the
segmentation task. In the case of recognition step, four
parameters are used to evaluate the classification task in-
cluding, accuracy (AC), average precision (AP), sensitivity
(SE), specificity (SP), and F1 − score, respectively. Ac, SP,
and SE are a similar metric as in segmentation. However, in
the case of classification, they are recorded at the image level.
In classification problems, F1-score is interpreted as a better
choice to examine the performance of classifier using
weighted average of sensitivity and specificity information.
In the dataset, the testing set constitutes imbalance samples
around 75 melanoma and 304 non-melanoma samples.
*erefore, the false positive rate is smaller and true negative
rate is larger comparatively. *e organizers of the challenge
employ average precision AP to rank the classification al-
gorithms of participants [46].

3.2. Performance Evaluation of Skin Refinement. In the skin
refinement step, the noisy artefacts are removed and visual
information of dermoscopic images is refined to enhance the
perceptual quality of the images. *e skin refinement step is
applied to all the dermoscopy images of ISIC-2016 and ISIC-
2017 datasets. *e resultant output samples are represented
in Figure 3, and it can be observed that morphological
operations and noise removal step resulted in dermoscopic
images free from the clinical artefacts, e.g., rule marks and
natural artefacts like the hair and blood vessels.

To further examine the quality of resultant image obtained
from the skin refinement step, the image quality was esti-
mated using RMSE, PSNR, and UIQI, and results are rep-
resented in Table 2. *e PSNRmeasure is higher than 37.8 dB
that signifies the higher ratio of information within the re-
sultant refined image and minimum RMSE error. Moreover,
the UIQI observation portrays the lower information loss in
terms of contrast, illumination, and structural information on
application of skin refinement step. As UIQI value is within
the range of 0.4–0.7, and this measure represents the good
perceptual quality of the preprocessed image.*erefore, these
evaluation measures indicate that skin refinement step re-
moved the natural and clinical artefacts without degrading the
perceptual information of dermoscopic images.

3.3. Segmentation Phase. *e next step after refining the
dermoscopic images is localization and segmentation of
melanoma lesion and the resulting segmented lesion is
considered as region of interest (ROI) for the learning of
melanomamalignancymodel. In this experiment, localization
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and segmentation performance of region-extreme convolu-
tional neural network is evaluated. For generation of locali-
zation model, we trained the localization block using training
images of datasets and evaluated the performance of trained
localization model using test samples.

*e internal representation of the feature map to
discriminate the melanoma region through localization
and segmentation block is shown in Figure 4. *e CNN
softmax layer was responsible for predicting the proba-
bilities at pixel level for categorizing each pixel into normal

(a) (b) (c) (d)

Figure 3: *e resultant output sample of skin refinement phase. (a) *e clinical and natural artefacts including thick and thin hair, black
frame, clinical rule marks, gel bubbles, and color swatches. (b) *e resultant intermediate output of morphological operation. (c) *e
resultant output of morphological closing operation and smooth operation. (d) *e sharp image obtained after unsharped filter’s
convolution.
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or melanoma affected pixel. *e localization block used
these labeled pixels and applied selective search to select
region proposal and computed the intersection over union
(IoU) threshold for estimation of melanoma lesion. We

have opted 0.5 IoU threshold for the detection of mela-
noma lesion; the region is considered as normal skin re-
gion below this value as shown in Figure 5. *e RCNN
localized the melanoma lesion with 0.94 mAP for ISIC-

Table 2: *e performance of skin refinement step is estimated through computing PSNR, UIQI, and RMSE, considering each type of
artefact.

Dataset ISIC-2016 ISIC-2017
Artefacts PSNR UIQI RMSE PSNR UIQI RMSE

Black frame

33.00 0.61 9.98 37.00 0.81 9.01
28.52 0.41 16.56 38.52 0.77 7.86
34.00 0.60 9.24 32.40 0.68 8.42
30.30 0.54 13.50 33.53 0.74 8.50

*ick hair

30.67 060 12.92 34.74 070 10.82
31.75 0.50 11.41 34.95 0.68 09.41
30.02 0.50 13.93 36.22 0.78 08.13
35.70 0.51 7.25 38.70 0.67 4.98

*in hair

34.50 0.43 8.31 38.90 0.63 9.21
32.57 0.64 10.39 33.67 0.70 9.78
33.70 0.58 9.15 37.97 0.78 8.85
37.78 0.56 5.65 44.78 0.87 3.85

Rule marks

18.90 0.40 50.12 28.98 0.56 45.22
29.71 0.57 14.43 32.34 0.67 23.98
32.26 0.55 10.77 34.66 0.54 18.37
32.35 0.50 10.65 36.79 0.67 14.85

Swatches

35.31 0.55 7.57 33.22 0.55 7.57
32.35 0.53 10.66 34.75 0.65 9.76
33.05 0.67 9.82 38.15 0.77 10.24
30.25 0.70 13.72 37.67 0.87 12.62

Figure 4: *e deep feature representation of melanoma region and normal skin region. *ese deep features are used to establish the model
for melanomamalignancy recognition.*e green overlay represents the normal skin attributes and purple overlay represents the melanoma
affected lesion through localization and segmentation block.
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2016 and 0.95 mAP for ISIC-2017 dataset, as illustrated in
Table 3.

For the comparison with other methods, the melanoma
localized regions are further processed to obtain fine
boundaries of melanoma region. *e FCM clustered the
pixels into melanoma lesion and normal skin. *e resulting
performance portrayed the good melanoma segmentation
results as illustrated in Figure 6. *e average values of SP as
0.9417, SE as 0.9782, Ac as 0.948, Di as 0.94, and Ja as 0.93
were recorded.

Our results are better than the state-of-the-art methods
due to precise localization of melanoma lesion through the
proposed method. In the few cases, localization block was
unable to detect the melanoma region due to visual simi-
larity with normal skin regions, as shown in Figure 7 [1].

3.4.PerformanceEvaluationofRecognitionTask. To build the
recognition model, we trained the recognition block using
training images of ISIC-2016 and ISIC-2017 datasets and
evaluated the performance of trained model using test
samples. *e sigmoid activation function of ELM was used
for feed-forward model learning with 150000 number of
hidden nodes. *e backbone CNN models opted for to
extract deep discriminative representation of melanoma
were AlexNet [36], VGG16 [37], VGG19 [37], ResNet50
[38], ResNet101 [38], GoogleNet [39], and DenseNet201
[40], and their performance was observed based on seg-
mented melanoma regions as listed in Table 4.

3.4.1. Impact of the Features Extracted from Different Net-
work Depths. In this experiment, we explored the recog-
nition capability of region-extreme convolutional neural
network using different deep features extracted from the
various CNN networks from segmented melanoma lesion.

*e best network was chosen as a feature extractor of the
region-extreme convolutional neural network’s recognition
stage. *e deep features extracted from segmented mela-
noma lesion were used to feed the ELM classifier for model
learning.*e generated ELMmodel was able to discriminate
benign and malignant melanoma. *e performance of
proposed recognition model is reported in Table 4 which
illustrates the optimal CNN model and layer for the deep
features extraction.

*e receptive fields generated from the deep features at
different layers of convolutional neural networks represent
contextual and semantic variations of dermoscopy images.
*erefore, receptive fields at different level of convolutional
network perform differently. On inspecting the behavior of
melanoma malignancy model at different CNN layer, a
common pattern is observed among all kinds of CNN
models. *e receptive field obtained from initial layers of
CNN models was not decisive and is inferior as lower layers
of CNN models collect low-level description and these
patterns lack in-variance attribute. A similar characteristic
was observed from the CNN middle layers, while the re-
ceptive fields obtained from the penultimate layers of CNN
networks perform better than other layers because the
penultimate layers receptive fields hold high level semantics
and contextual information of melanoma malignancy.

It is notable that AlexNet fully connected layer Fc6
achieved the highest average precision, because Fc6 holds
the higher dimensional (4096) deep features to represent the
benign and malignant melanoma for ISIC-2016 and ISIC-
2017 dataset, whereas the AlexNet pool 5 layer captured 9216
features but pool 5 feature’s recognition capability is lower
than fully connected layer Fc6, because higher-dimensional
features of pool 5 become repeatable in both benign and
malignant classes. *is experiment supported us to identify
the optimal backbone CNNmodel with penultimate layer to

Figure 5: *e resultant ISIC samples obtained after melanoma localization step.
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extract the deep features for generation of melanoma ma-
lignancy model. *e performance of deep features extracted
from the ResNet50 was comparable with AlexNet for ISIC-
2016. However, the performance of deep features extracted
from the ResNet50 was observed to be lower than AlexNet
for ISIC-2017. *e observed prediction accuracy and pre-
cision using AlexNet and ResNet50 features for ISIC-2016
are 0.86 and 0.83, while AlexNet performed better in pre-
diction accuracy (0.93) and precision (0.91) to recognize
benign and malignant melanoma.

Another observation that can be derived from Table 4
is that the penultimate layers of shallower sequential CNN
model (e.g., AlexNet) performed better than the other
deeper sequential and deeper directed acyclic CNN

models, e.g., Resent50. *erefore, we have utilized AlexNet
as the backbone model for features extraction and fed these
extracted deep features from AlexNet to ELM for feed-
forward model generation. Here, it is important to
highlight the essence of feed-forward ELM model that
learned the model using deep features without back-
propagation and weight optimization like CNN networks.
*is attribute improves the learning and reduces the
computational time as compared to the state-of-the-art
CNN models.

*is experiment concluded that sequential shallower
CNN network (e.g. AlexNet) penultimate layers deep features
established the stronger ELM decision boundaries to predict
the melanoma malignancy. On the basis of this experiment,

(a) (b) (c) (d)

Figure 6: (a) Input images with artefacts. (b) Ground truth melanoma lesion images. (c) Localization of melanoma lesion. (d) Blue overlay
of fuzzy segmentation of melanoma boundary and red overlay of ground truth melanoma lesion.

Table 3: *e achieved mean average precision (mAP) and processing time in milliseconds (ms) for melanoma localization through the
region-extreme convolutional neural network using ISIC-2016 and ISIC-2017 dataset.

ISIC-2016 artefacts mAP Time (ms) ISIC-2017 artefacts mAP Time (ms)
*ick hair 0.97 40.1 *ick hair 0.95 40.2
*ink hair 0.96 42.1 *ink hair 0.98 43.4
Rule marks 0.90 43.3 Rule marks 0.92 54.6
Color charts 0.91 39.4 Color charts 0.85 40.8
Black frame 0.96 41.6 Black frame 0.88 52.4
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we opted for AlexNet as feature extraction model for rec-
ognition block and examined the rest of our experiments
using AlexNet as feature extractor for recognition block.

3.4.2. Impact of PCA on Classification Task. To further
improve the recognition model, we examined the dimen-
sionality reduction of receptive fields obtained from Alexnet
fc6 layer and applied PCA on it. As PCA reduces the co-
variant features and discovers compact, there is meaningful
representation of deep features to recognize intraclass
melanoma test samples. It can be noticed in Table 5 that the
deep features generated a goodmodel to discriminate benign
and malignant melanoma, when represented by PCA.
*erefore, using PCA at the top of deep features is beneficial
for classification task.

3.4.3. Classification with and without Melanoma Segmen-
tation Phase. To evaluate the performance of our region-
extreme convolutional network, we evaluated the perfor-
mance of classification with and without the segmentation of
melanoma region. All the parameters and network archi-
tectures remained the same in both experiments. All the
recorded experimental results are listed in Table 6. *e
segmented melanoma ROIs produced a better model in
discriminating benign and malignant melanoma as com-
pared to complete dermoscopic images because segmented
lesion contains only benign and malignant feature

Figure 7: *e localization and segmentation block fails to identify the melanoma benign cases, due to visual similarity with normal skin
attributes.

Table 4: Comparison of different network layers on the classifi-
cation of benign and malignant melanoma.

Network Layer Features
ISIC-2016 ISIC-2017
AC AP AC AP

AlexNet

pool5 9216 0.84 0.81 0.78 0.77
Fc6 4096 0.85 0.83 0.93 0.91
Fc7 4096 0.84 0.80 0.88 0.87
Fc8 1000 0.84 0.77 0.87 0.86

VGG16
Fc6 4096 0.82 0.73 0.86 0.88
FC7 4096 0.82 0.74 0.82 0.81
FC8 1000 0.82 0.73 0.82 0.81

VGG19
Fc6 4096 0.84 0.83 0.88 0.87
Fc7 4096 0.81 0.72 0.85 0.84
Fc8 1000 0.81 0.70 0.80 0.80

GoogleNet Pred 1000 0.81 0.56 0.85 0.84
DenseNet201 Fc1000 1000 0.82 0.77 0.87 0.86
ResNet50 Fc1000 1000 0.86 0.83 0.92 0.90
ResNet101 Fc1000 1000 0.81 0.68 0.86 0.88
Bold values indicate the best results.
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representation despite having feature representation from
normal skin or the artefacts.*e AP of segmented image was
relatively 5% higher than non-segmented dermoscopic
images. Defining the melanoma area as a region of interest
and the extraction of deep features to generate model is a
smart way to train ELM, and to classify precisely without
being distracted from the clinical artefacts or healthy skin
region. We conclude from this experiment that the seg-
mented melanoma lesion when fed to recognition block for
extraction of receptive fields is more decisive in building
accurate melanoma malignancy recognition model.

3.4.4. Impact of Classification Model in Melanoma Subclass
Recognition. *e performance of recognition block is fur-
ther investigated through the impact of ELM as a classifier
against traditional classifiers including support vector ma-
chine (SVM) and K-nearest neighbor (KNN). To observe the
impact, the entire recognition block remained the same
while the classifier layer was changed with ELM, support
vector machine (SVM), and K-nearest neighbor (KNN).*e
region-extreme convolutional neural network segmented
the melanoma lesion and extracted the deep features from
backbone models such as Alexnet, VGG16, and VGG19 and
trained different types of classifiers including ELM, SVM,
and KNN as a separate model. It is evident from Table 7 that
the ELM classifier outperformed all the classifiers, where
K-nearest neighbor performed better that SVM classifier.

*e ELM classifier trains the learning model in a two-
step process; first it randomizes the deep feature mapping
and then it identifies the solution for linear parameters. In
the first step, the ELM hidden layer randomly initializes to
map the deep features on ELM feature space using nonlinear
piece-wise function. *e second step of ELM separates it
from traditional classifiers including SVM which utilizes the
kernel function for feature projection, while the deep
learning models require autoencoder or restricted Boltz-
mann machines to map input features and form the similar
deep representation.

Essentially, the ELM generates hidden nodes randomly
without explicitly being trained that makes ELM learning

generalized and invariant from input training data. *e
ELM’s hidden nodes are assigned using continuous prob-
ability distribution. *erefore, ELM models are stronger
than traditional classifiers (SVM, KNN) or back-propaga-
tion neural networks. Moreover, the regularization function
within the ELM also supports it to avoid the problems of
overfitting and underfitting without any computational
overhead.

We found that the ELM enhances the performance of the
system to predict intraclass label of melanoma, with 83%
average precision for ISIC-2016 and 91% for ISIC-2017
dataset. *e performance of different classifiers is listed in
Table 7. All the performance metrics indicate the effec-
tiveness of ELM within the recognition block of region-
extreme convolutional neural network. *erefore, this ex-
periment concludes that ELM is the optimal choice to learn
the feed-forward melanoma malignancy model using der-
moscopy images.

4. Discussion and Comparison with State-of-
the-Art Methods

4.1.MelanomaSegmentation. At ISIC-2016 challenge of skin
lesion segmentation task, 28 contestants participated and the
results of top scorers are presented in Figure 8. *e final
positions were marked based on highest Ja index. Almost all
the top scorers utilized the benefit of deep learning methods
to segment the melanoma region due to the performance
gain of deep learning algorithms.*emajority of researchers
explored Alexnet, VGG-16, or deep residual network for the
segmentation task and performed better than traditional
handcrafted features-based segmentation techniques,
whereas we have used RCNN [1] with shallower network for
the same task and our results validated the good perfor-
mance of our method as compared to other state-of-the-art
traditional handcrafted feature segmentation and deep
learning methods. From Figure 8, it can be observed that Ja
of ourmethod improved by 0.11 points as compared to ISIC-
2016 segmentation task top-scorer ExB. *e reason behind
this significant improvement of our method is due to precise

Table 5: Results of classification with and without PCA.

Dataset PM
With PCA Without PCA

AlexNet VGG16 VGG19 ResNet50 AlexNet VGG16 VGG19 ResNet50

ISIC-2016 AC 0.86 0.82 0.84 0.86 0.83 0.82 0.84 0.85
AP 0.83 0.74 0.83 0.83 0.78 0.73 0.79 0.82

ISIC-2017 AC 0.93 0.86 0.88 0.91 0.92 0.85 0.86 0.89
AP 0.91 0.85 0.86 0.89 0.89 0.84 0.85 0.88

Table 6: Performance of classification task with and without segmentation.

Dataset PM
Segmented Without segmentation

AlexNet VGG16 VGG19 ResNet50 AlexNet VGG16 VGG19 ResNet50

ISIC-2016 AC 0.86 0.82 0.84 0.86 0.84 0.81 0.83 0.84
AP 0.83 0.74 0.83 0.83 0.77 0.70 0.73 0.80

ISIC-2017 AC 0.93 0.86 0.88 0.92 0.91 0.84 0.85 0.88
AP 0.91 0.85 0.86 0.90 0.89 0.83 0.83 0.85
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localization step before segmentation. Region-extreme
convolutional neural network precisely reduced the search
space for melanoma lesion and produced the effective
melanoma segmentation through considering the artefacts
and normal skin as background region.

To further evaluate the performance of our proposed
approach for melanoma segmentation, we compared our
method with state-of-the art segmentation techniques, as
represented in Table 8. Traditional approaches for mela-
noma segmentation, e.g., active contour, bootstrapping [9],
contextual hypergraph [10], clustering [54], region split and
merge, region growing [55], sparse coding [48], and
thresholding techniques [11] produce lower value of average
Ja score than our method. *is is due to the fact that these
approaches segmented the melanoma lesion based on spatial
context information in unsupervised fashion, while our
proposed approach initially builds a model based on the

high-level color, texture, and spatial representation of
melanoma. *erefore, the trained model localized mela-
noma lesion with high mAP at test time and only the de-
tected region was considered for segmentation.

Besides the traditional techniques for melanoma seg-
mentation, deep learning-based approaches including FCN
[14] and Segnet [50] performed melanoma segmentation
with Ja score of 0.86. *e FCN [14] and Segnet [50] were
designed as a deeper network for segmentation of melanoma
lesion, therefore training the model requires tuning of
thousands of hyperparameters which makes the melanoma
segmentation task computationally expensive for real-time
application. It is evident from Table 8 that our method
exhibits lower computational time with precise melanoma
segmentation as compared to state-of-the-art methods. Our
Jaccard score is 13% higher than Segnet [50], due to the
training of region-extreme convolutional neural network
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Figure 8: Comparison of the proposed segmentation technique with ISIC-2016 challenge participants results of skin lesion segmentation task.

Table 7: Comparison of different classifiers for recognition of benign and malignant melanoma class.

Dataset PM
ELM KNN SVM

AlexNet VGG16 VGG19 ResNet50 AlexNet VGG16 VGG19 ResNet50 AlexNet VGG16 VGG19 ResNet50

ISIC-2016 AC 0.86 0.82 0.84 0.86 0.80 0.77 0.78 0.78 0.75 0.76 0.75 0.73
AP 0.83 0.74 0.83 0.83 0.58 0.56 0.58 0.57 0.62 0.63 0.60 0.59

ISIC-2017 AC 0.93 0.86 0.88 0.88 0.83 0.83 0.84 0.80 0.86 0.80 0.81 0.85
AP 0.91 0.88 0.87 0.86 0.81 0.81 0.81 0.80 0.84 0.80 0.80 0.83

14 Mathematical Problems in Engineering



considering the clinical and natural artefacts as background
region and only detecting the melanoma lesions.

4.2. Melanoma Malignancy Recognition. In ISIC-2016
challenge, 25 teams participated at melanoma malignancy
recognition task and submitted their results. *e results of
classification task were evaluated based on average precision
(AP). In Table 9, top ten results of ten participants are listed.
It can be observed that our system’s AP value 0.831 is higher
than all the participants, validating the effectiveness of the
proposed scheme for the classification of melanoma into
benign and malignant.

Moreover, our region-extreme convolutional neural net-
work also performed better that existing state-of-the-art
melanoma malignancy models, as illustrated in Table 10. To
compare the melanoma malignancy recognition performance
of region-extreme convolutional neural network against other
CNN based methods, we have included a comparative study as
illustrated in Table 10. Our region-extreme convolutional
neural network first identified the melanoma lesion and seg-
mented it to extract the deep features from penultimate layers
of backbone model and further used these deep features to
generate feed-forward extreme learning model for melanoma
malignancy recognition. *e method proposed by [34, 51] also
used CNN models to extract the deep features and used fisher
encoding scheme to train the SVM for melanoma malignancy
recognition. *e performance of [34] is comparable to our

method, while our method performed 3% higher than [51] due
to the difference inmapping function of classifier.*emapping
function of the SVM [51] cannot define the decision bound-
aries accurately among the benign and malignant melanoma.
Our region-extreme convolutional neural network improved
the recognition performance without adapting transfer
learning across domains and effectively generalized the rec-
ognition model through the ELM.

Comparing the recognition performance with
[33, 52, 53] our region-extreme convolutional neural net-
work outperformed these methods by 1%, 4%, and 1% on
ISIC-2016 dataset and 2%, 10%, and 6% on ISIC-2017
dataset, because [33, 52, 53] built the melanoma malignancy
model using entire dermoscopic image which also includes
the artefacts and more than 50% of normal skin pixels.
However, our region-extreme convolutional neural network
only considered the melanoma lesion to establish the
melanoma malignancy model.

4.3. Computational Time Complexity. *e average compu-
tational time to recognize the melanoma malignancy using
single dermoscopic image is reported in milliseconds (ms) in
Table 10. *e state-of-the-art methods have higher com-
putational cost as [33] utilized very deep residual con-
volutional neural network that requires fine-tuning of
millions of hyperparameters, while [53] aggregated the
handcrafted features, combined three CNN pretrained

Table 8: Performance comparison of region-extreme convolutional neural network’s melanoma segmentation with state-of-the-art
methods.

Technique Ac Di Ja Time (ms)
Adaptive thresholding [11] 0.72 0.56 0.45 2
Bootstrap learning [9] 0.78 0.72 0.57 —
Contextual hypergraph [10] 0.83 0.75 0.6 0.3
ISO [47] 0.82 0.68 0.56 —
Level set [12] 0.7 0.58 0.46 0.84
Sparse coding [48] 0.91 0.8 0.67 0.1
Statistical region growing [13] 0.73 0.55 0.43 0.4
Yen’s thresholding [49] 0.81 0.67 0.58 —
FCN [14] 0.82 0.82 0.86 0.05
Segnet [50] 0.91 0.92 0.86 0.06
Region-extreme convolutional neural network 0.94 0.94 0.93 0.05
Bold values indicate the best results.

Table 9: Performance comparison of region-extreme convolutional neural network with ISIC-2016 challenge results for skin lesion
classification task.

Method AC AP
CUMED 0.855 0.637
GTDL 0.813 0.619
BF-TB 0.834 0.598
*runLab 0.786 0.563
Jordan Yap 0.844 0.559
Haebeom Lee 0.821 0.555
GT-DL1 0.815 0.552
GT-DL2 0.681 0.545
Sebastien PARIS 0.731 0.542
USYD-BMIT 0.599 0.537
Region-extreme convolutional neural network (our) 0.86 0.831
Bold values indicate the best results.
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networks, and used sparse coding scheme to ensemble fully
convolutional U-Net for melanomamalignancy recognition.
Our proposed method requires 0.05milliseconds to recog-
nize the malignancy of melanoma. *is is due to the feed-
forward model learning of ELM that generated melanoma
malignancy model without back-propagation of the loss for
weight optimization. *erefore, our region-extreme con-
volutional neural network is more efficient and can be easily
employed to other applications as well.

5. Conclusion

In this paper, we presented a novel region-extreme con-
volutional neural network model to predict the malignancy
of melanoma from dermoscopic images. *e novel region-
extreme convolutional neural network is capable of mela-
noma localization with precise melanoma boundary seg-
mentation along with malignancy recognition of benign and
malignant melanoma. Our demonstrated results on ISIC-
2016 and ISIC-2017 showed that the localization of mela-
noma lesion is fruitful to learn accurate model for melanoma
recognition as compared to using an entire dermoscopic
image. We achieved higher performance gain as compared
to state-of-the-art methods for melanoma segmentation and
recognition task. We also revealed that the deep features
extracted from inner layers of CNN model hold high-level
representation of melanoma malignancy information and
established stronger model as compared to the features
extracted from the last layer of CNN model. Furthermore,
our region-extreme convolutional neural network also
validates that the deep features with ELM classifier generate
accurate model for melanoma recognition. Our region-ex-
treme convolutional neural network highlighted the effective
procedure for training and can be utilized in other bio-
medical image analysis applications. In the future, we will
investigate the comprehensive clinical decision support
system for medical images and explore our system on other
applications.
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