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In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atanga-
na–Baleanu–Caputo’s sense. *e modified double Laplace transform decomposition method is used to attain solutions in the
form of series of the proposed model under aforesaid fractional operators. *e suggested method is the composition of the
double Laplace transform and decomposition method. *e convergence of the considered method is demonstrated for the
considered model. It is observed that the obtained solutions converge to the exact solution of the proposed model. For validity,
we consider two particular examples with appropriate initial conditions and derived the series solution in the sense of both
operators for the considered model. From numerical solutions, it is observed that the considered model admits pulse-shaped
solitons. It is also observed that the wave amplitude enhances with variations in time, which infers the coefficient α significantly
increases the wave amplitude and affects the nonlinearity/dispersion effects, therefore may admit monotonic shocks. *e
physical behavior of the considered numerical examples is illustrated explicitly which reveals the evolution of localized
shock excitations.

1. Introduction

In recent years, the fractional-order calculus is extensively
used as a promising tool in numerous areas of physical
sciences [1–3] due to its extensive applications to study a
diversity of real world phenomena in bioengineering
[4–6], electronics [7, 8], visco-elasticity [9], robotic
technology [10], signal processing [11], control theory
[12], diffusion model, and relaxation processes [13–15]. In
fractional-order calculus, the order of derivatives and
integrals is arbitrary [16]. *erefore, the fractional-order
nonlinear partial differential equations (FNPDEs) have
established a fundamental interest to generalize an inte-
ger-order nonlinear partial differential equations
(NPDEs) to represent complex problems in engineering,
thermodynamics, optical physics, and fluid dynamics
[17, 18].

*e most significant advantage of using fractional dif-
ferential equations is their nonlocal property with memory

preserving [2, 19]. It is assumed that the integer-order
differential operators are local but fractional are nonlocal
because fractional differential operators are global as they
converge to ordinary differential operator when fractional-
order becomes one [20]. *is implies that not only the
following condition of the system depends on its present
condition but also on all its past states appropriate to
memory and hereditary property [21].

*e nonlinear Klein–Gordon equation considered
herein was first proposed to describe relativistic electrons by
the well-known physicists O. Klein and W. Gordon in 1926,
while Klein–Gordon model was originally studied for
quantum waves by Schrödinger [15, 22]. *e Klein–Gordon
equation has many applications in quantum mechanics,
quantum field theory, relativistic physics, solid-state physics,
plasma physics, nonlinear optics, dispersive wave-phe-
nomena, and condensed type matter physics and also has
soliton type solution [23–28].

Here, we consider the TFKG equation [29, 30]:
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z
αϕ(x, t)

zt
α −

z
2ϕ(x, t)

zx
2 + cϕ + bg(ϕ(x, t)) � h(x, t), 1< α≤ 2,

(1)

with initial conditions

ϕ(x, 0) � f(x),

ϕt(x, t) � g(x),
(2)

where ϕ is a function of spatial and temporal variables x and
t. *e function g(ϕ(x, t)) contains the nonlinearity present
in the model, b and c are real numbers, and h is an analytic/
source function.

*ere are several fractional operators that have been
studied in fractional calculus. For example, Caputo,
Caputo–Fabrizio, and Atangana–Baleanu–Caputo’s sense
[31, 32]. *ese operators are very useful because of the
complexity of fractional nonlinear differential equations
(FNDEs), where classical operators cannot solve such
equations to obtain explicit solutions. Due to this disad-
vantage of the classical operators, one needs a legitimate
numerical method to obtain the coefficients of the series
solutions of FNDEs [33–35]. *e Caputo fractional operator
is used widely in applied sciences, but this operator has some
disadvantages about the singularity. To overcome this
problem, Caputo and Fabrizio introduced a nonsingular
fractional operator, using an exponential decay kernel.
Similarly, another form of nonsingular and nonlocal frac-
tional operator known as Atangana–Baleanu fractional
operator was introduced, which produces efficient results
due to the nonlocal and nonsingular kernel [36].

*ere are numerous methods that have been used to find
numerical as well as analytical solutions to FNDEs, for
example, Laplace transforms method [37], Adomian de-
composition method (ADM) [38, 39], multistep approach
[40], double Laplace transform [41, 42], integral transform
[43], iterative reproducing kernel method [44], homotopy
perturbation method (HPM) [45, 46], Sumudu transform
method (STM) [47], and variational iteration method (VIM)
[48, 49].

Similarly, the integer-order Klein–Gordon equation has
been widely investigated by applying the inverse scattering
method, variation iteration method [50, 51], B€acklund
transformation method, modified decomposition method
and modified Adomain decomposition method [52], aux-
iliary equation method [53], homotopy perturbation
transformmethod [54], radial basis function [55], homotopy
analysis technique [56], sine-cosine and tanh-sech methods
[57], pseudospectral method [58], and Hirota bilinear forms
[59] together with the Jacobian elliptical function [60]. We
will use a modified double Laplace transform to find the
approximate solutions of the proposed model in CF and
ABC sense. It should be noted that numerous numerical and
analytical approaches have also been applied to study TFKG
equations with Caputo and Riemann–Liouville (RL) oper-
ators [61, 62]. *e advantage of the proposed technique is
that it converges to an exact solution of a problem after some
iterations and does not involve any perturbation or
discretization.

*e remainder of this article is organized as follows: In
Section 2, some basic definitions are given associated with
the fractional calculus. In Section 3, we present the solution
to the nonlinear Klein–Gordon equation in CF and ABC by
using the proposed method (MDLDM). In Section 4, con-
vergence of the proposed method for the considered model
is discussed. In Section 5, we present two numerical ex-
amples related to equation (1). In Section 6, we accomplish
the article.

2. Preliminaries

Here, we provide some basic definitions, which will be used
throughout the article.

Definition 1. Let ϕ ∈ H1(a, b) and α ∈ (0, 1], then the
Caputo–Fabrizio operator of fractional order can be written
as [31]

CF
D

α
ϕ(t) �

M(α)

1 − α


t

a
ϕ′(t)exp

− α(t − s)

1 − s
 ds, (3)

such that M(0) � M(1) � 1. It should be noted thatM(α) is
the normalized function. When ϕ(t) ∉ H1(a, b), then the
above definition can be formulated for ϕϵL− 1(− ∞, b) for
any α ϵ [0, 1] as

CF
D

α
ϕ(t) �

αM(α)

1 − α


t

− ∞
ϕ′(t) − ϕ(s)(  − exp

− α(t − s)

1 − s
 ds.

(4)

Definition 2. Let ϕ ∈ H1(a, b), with b> a and α ∈ [0, 1], then
the fractional-order operator in Atanga-
na–Baleanu–Caputo’s sense is defined as [32]

ABC
D

α
ϕ(t) �

B(α)

(1 − α)


t

a
ϕ′(s)Eα

− α(t − s)
α

(1 − α)
 ds, (5)

where ABCD
αϕ(t) is a fractional operator withMittag–Leffler

kernel in Caputo’s sense. B(α) is called normalization
function having properties B(0) � B(1) � 1.

Remark 1. For Definitions 1 and 2, n � [α] + 1, [α] is the
greatest integer not greater than α and Γ is the well-known
gamma function which is defined as

Γ(α) � 
∞

0
e

− s
s
α− 1ds. (6)

Definition 3. Consider a function ϕ(x, t) for x, t> 0 in x, t-
plane; the double Laplace transform of the function ϕ(x, t)

as given by [63] is defined by

LxLt[ϕ(x, t)] � 
∞

0
e

− px

∞

0
e

− stϕ(x, t)dtdx, (7)

where p and s are the complex numbers.

Definition 4. Application of the double Laplace on frac-
tional-order operator in Caputo–Fabrizio sense is given by
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LxLt
CF

D
α+n

x ϕ(x, t)  �
M(α)

p +(1 − p)α
p

n+1ϕ(p, s) − 
n

k�0
p

n− k
Lt

z
kϕ(0, t)

zx
k

 ⎡⎣ ⎤⎦,

LxLt
CF

D
β+m

t ϕ(x, t)  �
M(β)

s +(1 − s)β
s

m+1ϕ(p, s) − 
m

k�0
s

m− k
Lx

z
kϕ(x, 0)

zt
k

 ⎡⎣ ⎤⎦,

(8)

where m& n � 0, 1, 2, . . . and ϕ(p, s) � LxLt ϕ(x, t) . Definition 5. Application of double Laplace transform on
fractional-order operator in Atangana–Baleanu–Caputo’s
sense is given by

LxLt
ABC

D
α
xϕ(x, t)  �

B(α)

(1 − α) p
α

+(α/(1 − α))( 
p
αϕ(p, s) − 

n− 1

k�0
p
α− 1− k

Lt

z
kϕ(0, t)

zx
k

 ⎡⎣ ⎤⎦,

LxLt
ABC

D
β
t ϕ(x, t)  �

B(β)

(1 − β) s
β

+(β/(1 − β)) 
s
βϕ(p, s) − 

m− 1

k�0
s
β− 1− k

Lx

z
kϕ(x, 0)

zt
k

 ⎡⎣ ⎤⎦,

(9)

where n � [α] + 1, m � [β] + 1.

From the above definitions, we conclude that

LxLtϕ(x)ϕ(t) � u(p)ϕ(s) � Lxϕ(x)Ltϕ(t). (10)

*e inverse double Laplace transform
L− 1

x L− 1
t ϕ(x, t)  � ϕ(x, t) is represented by a complex

double integral formula

L
− 1
x L

− 1
t ϕ(x, t)  �

1
2πi


c+i∞

c− i∞
e

st


d+i∞

d− i∞
e

pxϕ(p, s)dpds,

(11)

where ϕ(p, s) is an analytic function ∀p and s is defined in
the region by the inequalities Re(p)≥ c and Re(s)≥d, where
c, d ∈ R is to be considered accordingly.

3. Modified Double Laplace Transform
Decomposition Method

In this section, we briefly present the proposed method
MDLDM. It is the composition of double Laplace and the
Adomian decompositionmethod used to obtain the solution
in the series form of nonlinear partial differential equations
(NPDEs) and nonlinear ordinary differential equations
(NODEs). It is the most effective scheme to find the ap-
proximate solution of dynamic problems. Here, first, we
briefly discuss the proposed approach and then apply to

equation (1). Let us suppose the general nonlinear problem
of the form

Lϕ + Rϕ + Nϕ � h(x, t), ∀ t ∈ R, (12)

where ϕ � ϕ(x, t) in the above system, L is a linear operator,
R is an operator containing the linear terms, N is a nonlinear
operator, and h(x, t) is an external function.

3.1. .e Proposed Model with Exponential Decay Kernel.
In this subsection, we consider equation (1) in CF sense and
use the proposed method to obtain series solution to
equation (1), by using the technique defined in Section 3.

CF
D

α+m

t ϕ −
z
2ϕ

zx
2 + cϕ + bg(ϕ) � h(x, t), 0< α≤ 1, m � 1,

(13)

together with the subsidiary conditions

ϕ(x, 0) � f(x),

ϕt(x, 0) � g(x).
(14)

Comparing equations (13) with (12), we observe that
L � z2/zx2, N � bg(ϕ) contain nonlinear term, and CFD

α+m

t

is the fractional-order operator in Caputo–Fabrizio’s sense.
Applying the double Laplace transform and using the def-
initions given in Section 2, we obtain

LxLt
CF

D
α
t + mϕ  − LxLt

z
2

zx
2 ϕ  + cLxLt ϕ  + bLxLt gϕ  � LxLth(x, t). (15)

Using double Laplace on the fractional-order operator in
Caputo–Fabrizio’s sense, we obtain
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LxLt ϕ(x, t)  �
1
s

 Lx ϕ(x, 0)  +
1
s
2 Lx ϕt(x, 0)  +

s +(1 − α)s

s
2 LxLt

z
2

zx
2 ϕ(x, t) 

+ c
s +(1 − α)s

s
2 LxLt ϕ(x, t)  + b

s +(1 − α)s

s
2 LxLt gϕ(x, t) 

+
s +(1 − α)s

s
2 LxLth(x, t).

(16)

Now, applying the single Laplace transform on initial
conditions given in equation (14), we obtain

Lx ϕ(x, 0)  � f(p),

Lx ϕt(x, 0)  � tg(p).
(17)

Consider the series solution of the form

ϕ(x, t) � 
∞

n�0
ϕn(x, t), (18)

and the nonlinear terms are decomposed as

g(ϕ(x, t)) � 

∞

i�0
An, (19)

where An is a well-known polynomial called Adomian
polynomial [64] of the functions ϕ0, ϕ1, ϕ2, . . ., described by
the formula

An �
1
n!

dn

dλn 

n

k�0
λkϕk(x, t)⎡⎣ ⎤⎦

λ�0

. (20)

Solving equation (12) with the help of equations (16) and
(20), we obtain the following series solution:

ϕ0 � L
− 1
x L

− 1
t

1
s
ϕ(p, 0)  + tL

− 1
x L

− 1
t

1
s
2 ϕ(p, 0)  � ϕ(x, 0),

ϕ1 � L
− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt ϕ0xx   − cL

− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt ϕ0  

− bL
− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt A0   + L

− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt h(x, t){ } ,

ϕ2 � L
− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt ϕ1xx   − cL

− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt ϕ1  

− bL
− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt A1  ,

ϕ3 � L
− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt ϕ2xx   − cL

− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt ϕ2  

− bL
− 1
x L

− 1
t

s +(1 − s)α
s
2 LxLt A2  .

(21)

*e other terms can be calculated in a similar way. *e
final solution can be written as

ϕ(x, t) � 
∞

n�0
ϕn(x, t). (22)

3.2..eProposedModelwithMittag–LefflerKernel. Here, we
consider equation (1) in ABC sense and applying the pro-
posed method with definitions discussed in Section 2,

ABC
D

α
t ϕ(x, t) −

z
2ϕ

zx
2 + cϕ + bg(ϕ) � h(x, t), ∀ t ∈ R, 1< α≤ 2,

(23)

with subsidiary conditions

ϕ(x, 0) � f(x),

ϕt(x, 0) � g(x).
(24)

Solving equation (23) with the techniques used in Sec-
tion 3, we obtain the following series solution:

4 Mathematical Problems in Engineering



ϕ0 � L
− 1
x L

− 1
t

1
s
ϕ(p, 0)  + tL

− 1
x L

− 1
t

1
s
2 ϕ(p, 0)  � ϕ(x, 0),

ϕ1 � L
− 1
x L

− 1
t 1 − α +

α
s
α LxLt ϕ0xx   − cL

− 1
x L

− 1
t 1 − α +

α
s
α LxLt ϕ0  

− bL
− 1
x L

− 1
t 1 − α +

α
s
α LxLt A0   + L

− 1
x L

− 1
t 1 − α +

α
s
α LxLt h(x, t){ } ,

ϕ2 � L
− 1
x L

− 1
t 1 − α +

α
s
α LxLt ϕ1xx   − cL

− 1
x L

− 1
t 1 − α +

α
s
α LxLt ϕ1  

− bL
− 1
x L

− 1
t 1 − α +

α
s
α LxLt A1  ,

ϕ3 � L
− 1
x L

− 1
t 1 − α +

α
s
α LxLt ϕ2xx   − cL

− 1
x L

− 1
t 1 − α +

α
s
α LxLt ϕ2  

− bL
− 1
x L

− 1
t 1 − α +

α
s
α LxLt A2  .

(25)

*e final solution can be written as

ϕ(x, t) � 
∞

n�0
ϕn(x, t). (26)

Equations (22) and (26) are the general series solutions
of equation (1) in both CF and ABC sense.

4. Convergence of MDLDM for the
Proposed Model

Here, we discuss the convergence of the proposed method
for the considered model equation (1). For this, we consider
equation (1) in the operator form:

T(ϕ) �
z
2ϕ

zt
2 �

z
2ϕ

zx
2 − cϕ − bg(ϕ) + h(x, t). (27)

Let H ∈ L2(T) ∀ϕ ∈ H, where H � L2
ϕ[(m, n) × [0, T]]

[65], such that

ϕ ≔ [(m, n) ×[0, T]]⟶ R
2
, (28)

with m≪ 0 and B � [(m, n) × [0, T]] where
‖ϕ‖2H � 

B
ϕ2dxdt, then

L
− 1
x L

− 1
t LxLt ϕ(x, t)  <∞. (29)

For the operator T to be hemicontinuous [65], we
consider the hypothesis as follows.

Hypothesis 1

H1: 〈T(ϕ) − T(ψ), ϕ − ψ〉≥ κ1‖ϕ − ψ‖2, ϕ,ψ ∈ H and
κ1 > 0.
H2: for q> 0, there exists a constant C(q)> 0, and
∀ϕ,ψ ∈ H, with ‖ϕ + ψ‖2 ≤ q, we obtain
〈T(ϕ) − T(ψ)〉≤ c(m)‖ϕ − ψ‖, ∀ϕ,ψ ∈ H.

Theorem 1 (sufficient conditions of convergence). .e
proposed method is applied to equation (1) without initial and
boundary conditions, converging to a particular solution.

Here, we use hypothesis 1 for operatorT(ϕ) in equation
(1), such that

T(ϕ) − T(ψ) �
z
2ϕ

zx
2 −

z
2ψ

zx
2 − cϕ + cψ − bg(ϕ) + − bg(ψ) + h − h,

�
z
2

zx
2 (ϕ − ψ) − c(ϕ − ψ) − bg(ϕ − ψ).

(30)

On taking the inner product, we obtain

〈T(ϕ) − T(ψ), ϕ − ψ〉 �〈
z
2

zx
2 (ϕ − ψ), ϕ − ψ〉 − c〈ϕ − ψ,ϕ − ψ〉 − bg〈ϕ − ψ, ϕ − ψ〉, (31)

when g(ϕ) � ϕ2, then the above equation can be written as
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〈T(ϕ) − T(ψ), ϕ − ψ〉 �〈
z
2

zx
2 (ϕ − ψ), ϕ − ψ〉 − c〈ϕ − ψ, ϕ − ψ〉 − b〈(ϕ − ψ)

2
, (ϕ − ψ)

2〉, (32)

and we can put conditions on the operator z2/zx2 in H, such
that for η> 0, we can define

z
2

z
2
x

(ϕ − ψ)≤ η‖ϕ − ψ‖
2
,

〈T(ϕ) − T(ψ), ϕ − ψ〉

≤ η‖ϕ − ψ‖
2

− c‖ϕ − ψ‖
2

− b (ϕ − ψ)
2����
����
2

� η‖ϕ − ψ‖
2

− c‖ϕ − ψ‖
2

− b‖ϕ + ψ‖
2
‖ϕ − ψ‖

2

〈T(ϕ) − T(ψ), ϕ − ψ〉≤ (η − c − bσ)‖ϕ − ψ‖
2
.

(33)

Taking κ1 � (η − c − bσ)> 0, we can write

〈T(ϕ) − T(ψ), ϕ − ψ〉≤ κ1‖u − w‖
2
. (34)

Hence, hypothesis 1 is satisfied.
Next, we verify hypothesis 1 for operator T(ϕ).
For every q> 0, there exists a constant C(q)> 0 such that

for ϕ,ψ ∈ H with ‖ϕ + ψ‖2 ≤ q, we have

〈T(ϕ) − T(ψ)〉≤C(q)‖ϕ − ψ‖, ∀ϕ,ψ ∈ H. (35)

Now, for the proof, considering ϖ1 ∈ H, we have

〈T(ϕ) − T(ψ),ϖ1〉 �〈
z
2

zx
2 (ϕ − ψ),ϖ1〉 − c〈ϕ − ψ,ϖ1〉 − b〈(ϕ − ψ)

2
,ϖ21〉. (36)

By applying Cauchy–Schwartz inequality and since ϕ
and ψ are bounded, we have

z
2

z
2
x

(ϕ − ψ),ϖ1 ≤ η1‖ϕ − ψ‖≤ η1‖ϕ − ψ‖ ϖ1
����

����,

c − (ϕ − ψ),ϖ1(  ≤ c‖ϕ − ψ‖≤ c‖ϕ − ψ‖ ϖ1
����

����,

b − (ϕ − ψ)
2
,ϖ21  ≤ b‖ϕ + ψ‖‖ϕ − ψ‖≤ bq‖ϕ − ψ‖ ϖ1

����
����.

(37)

*erefore, we can write

〈T(ϕ) − T(ψ),ϖ1〉≤C(q)‖ϕ − ψ‖ ϖ1
����

����, where C(q) � η1 + c + bq( > 0. (38)

*us, hypothesis 1 is satisfied. *is completes the proof.

5. Numerical Examples

Here, we consider numerical examples of the nonlinear
TFKG equation and discuss two cases.

5.1. Example. Here, we consider the time-fractional non-
linear KG equation

D
α
t ϕ − c

z
2ϕ

zx
2 + bϕ3 � 0, 1< α≤ 2,

g(ϕ) � ϕ3,

h(x, t) � 0,

(39)

with b � c � 1. *e subsidiary conditions are given as

ϕ(x, 0) � B tan(Ωx),

ϕt(x, 0) � BεΩsec2(Ωx), 0≤x≤ 2,
(40)

where

B �

�
ζ
c



,

Ω �

��������

− ζ
2 σ + ϵ2 




.

(41)

*e parameters ζ, c, σ, and ϵ are real numbers to be
chosen accordingly. *e exact solution of equation (39) can
be attained [66].

ϕ(x, t) � B tan Ω x + ϵt0(  . (42)
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Case I: consider the TFKG equation (39) in Capu-
to–Fabrizio’s sense as

CF
D

α+m

t ϕ(x, t) −
z
2ϕ

zx
2 + ϕ3(x, t) � 0, 0< α≤ 1, m � 1.

(43)

*e approximate solution of equation (43) by the
techniques discussed in Section 3 is obtained as

ϕ0 � B tan(Ωx) + tBεΩsec2(Ωx),

ϕ1 � (1 − α)t +
αt

2

2!
  2BΩ2sec2(Ωx)tan(Ωx) − B

2tan3(Ωx) 

+ BϵΩ
(1 − α)t

2

2!
+
αt

3

3!
  4Ω2sec2(Ωx)tan2(Ωx) + 2Ω2sec4(Ωx) − 3B

2tan2(Ωx)sec2(Ωx) 

− 6B
3Ω2ϵ2

(1 − α)t
3

3!
+
αt

4

4!
  sec4(Ωx)tan(Ωx) 

− 6B
3Ω3ϵ3

(1 − α)t
4

4!
+
αt

5

5!
  sec h

6
(Ωx) .

(44)

*e final solution in the series form up to O(2) is given
by

ϕ(x, t) � ϕ0 + ϕ1. (45)

Case II: similar to the previous section, the TFKG
equation (39) in Atangana–Baleanu–Caputo’s sense,

ABC
D

α
t ϕ(x, t) −

z
2ϕ

zx
2 + ϕ3(x, t) � 0, 1< α≤ 2. (46)

*e solution of equation (46) is obtained as

ϕ0 � B tan(Ωx) + tBεΩsec2(Ωx),

ϕ1 � (1 − α) +
αt

α

Γ(α + 1)
  2BΩ2sec2(Ωx)tan(Ωx) − B

2tan3(Ωx) 

+ BϵΩ (1 − α)t +
αt

α+1

Γ(α + 2)
  4Ω2sec2(Ωx)tan2(Ωx) + 2Ω2sec4(Ωx) − 3B

2tan2(Ωx)sec2(Ωx) 

− 6B
3Ω2ϵ2

(1 − α)t
2

2!
+

αt
α+2

Γ(α + 3)
  sec4(Ωx)tan(Ωx) 

− 6B
3Ω3c3

(1 − α)t
3

3!
+

αt
α+3

Γ(α + 4)
  sec h

6
(Ωx) .

(47)

*e final solution in series form up to O(2) is

ϕ(x, t) � ϕ0 + ϕ1. (48)

5.2. Discussion. For numerical illustrations, we have con-
sidered the parameters as ζ � − 1, c � 1, σ � − 8.5, and ϵ
� 0.05. *e numerical solutions, equations (45) and (48),

and exact solution equation (42) associated with the
Caputo–Fabrizio’s (CF) sense and Atanga-
na–Baleanu–Caputo’s (ABC) sense are depicted in
Figure 1(a), with variation in the time-fractional coefficient
(α). One can see that TFKG equation (39) may admit the
excitation of monotonic shocks in an inviscid dynamical
system. *is degree enhancement in α suppresses the wave
amplitude as it affects the nonlinearity/dispersion effects. To
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see the effect of a temporal variable (t) on the wave solutions,
equations (45) and (48) are displayed in Figure 1(b); it
reveals that ϕ(x, t) rises with time. *e three-dimensional
profiles for equations (45) and (48) are shown versus x and t
in Figure 2. Figure 2(a) represents the physical behavior of
equation (45) for α � 1, while Figure 2(b) represents
equation (48) for α � 2. It reveals the evolution of localized
shock excitations. We have depicted the solution equation
(45) versus x when t � 0(solid black curve), 0.4
(circles), 0.6(solid green curve), and 0.8(dotted curve) in
Figure 3(a), with α � 1 and 0.8, respectively. Obviously, the
wave amplitude enhances with variations in t. By choosing
α � 2 and 1.9, we have illustrated equation (48) in
Figure 3(b). It infers that coefficient (α) significantly in-
creases the wave amplitudes.

5.3. Example. Consider a nonlinear TFKG equation

D
α
t ϕ −

z
2ϕ

zx
2 +

3
4
ϕ −

3
2
ϕ3 � 0, 1< α≤ 2, (49)

with c � 3/4, b � 3/2, g(ϕ) � ϕ3, h(x, t) � 0, and

ϕ(x, 0) � − sec h(x),

ϕt(x, 0) �
1
2
sec h(x)tanh(x).

(50)

*e exact solution for α � 2 of the above equation is [30]

ϕ(x, t) � − sec h x +
t

2
 . (51)
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Figure 1: (a)*e comparison between equations (42), (45), and (48) for different values of α; (b) solution profiles of ϕ(x, t) against t (time)
for a variety of α, as mentioned in the plots.
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Figure 2: *e surface plots for CF equation (45) solution and ABC solution equation (48) for the parameters used in Figure 1(a).
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Figure 3: *e solution profiles of |ϕ(x, t)| versus different values of t.
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Case I: consider the TFKG equation (49) in Capu-
to–Fabrizio’s sense as

CF
D

α+m

t ϕ −
z
2

zx
2 ϕ +

3
4
ϕ −

3
2
ϕ3 � 0, 0< α≤ 1, m � 1.

(52)

*e approximate solution of equation (51) together
with initial conditions (50) by the techniques discussed
in Section 3 is obtained as

ϕ0 �
t

2
sec h(x)tanh(x) − sec h(x),

ϕ1 � (1 − α + αt) sec h
3
(x) − tanh2(x)sec h(x) +

3
4
sec h(x) −

3
2
sec h

3
(x) 

+ (1 − α)t +
αt

2

2!
  tanh3(x)sec h(x) − 5sec h

3
(x)tanh(x) +

3
8
sec h(x)tanh(x) +

9
4
sec h

3
(x)tanh(x) 

−
(1 − α)t

2

2!
+
αt

3

3!
 

9
8
sec h

3
(x)tanh2(x)  +

(1 − α)t
3

3!
+
αt

4

4!
 

3
16

sec h
3
(x)tanh3(x) .

(53)

*e final solution in series form up to O(2) is given by

ϕ(x, t) � ϕ0 + ϕ1. (54)

Case II: consider the TFKG equation (49) in Atanga-
na–Baleanu–Caputo’s sense

ABC
D

α
t ϕ −

z
2

zx
2 ϕ +

3
4
ϕ −

3
2
ϕ3 � 0, 1< α≤ 2. (55)

We obtain the approximate solution in equation (52)
together with initial condition (50) and using the techniques
discussed in Section 3:

ϕ0 �
t

2
sec h(x)tanh(x) − sec h(x),

ϕ1 � (1 − α + αt) sec h
3
(x) − tanh2(x)sec h(x) +

3
4
sec h(x) −

3
2
sec h

3
(x) 

+ (1 − α)t +
αt

α+1

Γ(α + 2)
  tanh3(x)sec h(x) − 5sec h

3
(x)tanh(x) +

3
8
sec h(x)tanh(x) +

9
4
sec h

3
(x)tanh(x) 

−
(1 − α)t

2

2!
+

αt
α+2

Γ(α + 3)
 

9
8
sec h

3
(x)tanh2(x)  +

(1 − α)t
3

3!
+

αt
α+3

Γ(α + 4)
 

3
16

sec h
3
(x)tanh3(x) ,

(56)

*e final solution in series form up to O(2) is given by

ϕ(x, t) � ϕ0 + ϕ1. (57)

5.4. Discussion. Figure 4(a) displays the absolute of wave
solution equations (54) and (57), having variations in (α)

with t� 0.3 and t� 1, respectively, with exact solution given
in equation (51). Notice that the numerical solutions, CF
equation (54), and ABC equation (57) exactly match to the
exact solution equation (51). We observe that TFKG admits
pulse-shaped solitons. We also know that the solution
equations (54) and (57) in Figure 4(b) reveal that the

amplitude of the solitary potentials goes up as t rises. *e
three-dimensional profiles for equations (54) and (57) are
shown versus x and t in Figure 5. Figure 5(a) represents the
physical behavior of equation (54) for α � 1, while
Figure 5(b) l represents equation (57) for α � 2. It reveals the
evolution of localized shock excitations. We have depicted
the solution equation (54) versus x with
t � 0.6(dashed line), 0.4(solid curve), and 0.2(dotted curve)
in Figure 6(a), when α � 1 and 0.7, respectively. Obviously,
the wave amplitude enhances with variations in t. By
choosing α � 2 and 1.7, we have illustrated equation (57) in
Figure 6(b). It infers that coefficient (α) significantly in-
creases the wave amplitudes.
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Figure 4: (a)*e comparison between equations (50), (52), and (54) for different values of alpha; (b) solution profiles of ϕ(x, t) vs time t for
different values of α.
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Figure 5: *e surface plots of solution of TFKG with CF and ABC operators for the parameters used in Figure 4(a).
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6. Conclusion

We have studied the time-fractional Klein–Gordon
equation using the MDLD method. *e approximate
solutions of nonlinear Klein–Gordon equation are ob-
tained in the form of the series. It is very important to
notice that even after some iterations, more accurate
results are obtained. It is perceived that our proposed
method provides accurate numerical results without
perturbation and discretization for nonlinear differential
equations with fractional operators. *e numerical re-
sults obtained for particular examples are compared with
the exact solutions at the classical order. *e effect of the
altered fractional orders of the considered numerical

illustrations is shown explicitly, where good agreements
are obtained. *e Klein–Gordon equation is evidently a
nonlinear PDE and thus a perfect model for under-
standing the nonlinearity/dispersion effects and the
evolution of localized shock excitations. It is inferred in
this manuscript that fractional order significantly in-
creases the wave amplitudes. Similar to the Klein–Gordon
equation, the Sine-Gordon equation bears kink-anti-kink
phenomena. *e Sine-Gordon potential has unbounded
minimum points; however, two of them are assumed in
the kink solutions of the system. By considering u≃ sin u,
the considered system becomes the Sine-Gordon equa-
tion. In future work, it will be interesting to investigate
the Sine-Gordon model with nonlinear AC/DC drives
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Figure 6: Solution profiles of |ϕ(x, t)| for different values of α with different values of time t.
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with different fractional operators to study the solitonic
behavior, localized modes in single and in stacked long
Josephson junctions with a variety of potentials, parity
time symmetry, the nonlinearity/dispersion effects, and
evolution of the localized monotonic shocks [67–73].
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