
Research Article
A Multiple-Fault Localization Method for Embedded
Software with Applications in Engineering

Lu Kong , JinBo Wang, Shan Zhou, and MengRu Wang

Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China

Correspondence should be addressed to Lu Kong; konglu@csu.ac.cn

Received 6 July 2020; Revised 2 February 2021; Accepted 5 February 2021; Published 24 February 2021

Academic Editor: Francisco Chicano

Copyright © 2021 LuKong et al.'is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Embedded software is increasingly being used with high reliability. However, the fault localization of embedded software is still
largely dependent on the experience of engineers. Besides, faults in embedded software programs are not independent individuals;
they are related to each other and affect each other, which may lead to more complex interaction behavior. 'ese uncertainties
render the traditional methods for single-fault localization with limited practical value. 'is paper has proposed a multiple-fault
localization method to be applied to the embedded software, with emphasis on the cache-based program spectra-acquiring
method and the hybrid clustering-based fault partition method.'rough case studies on 108 groups of the subject program, it has
been proved that the hybrid clustering-based fault partition method has significantly improved the effectiveness of multiple-fault
localization in comparison with the traditional fault localization methods. Experiments on three embedded software programs in
engineering have revealed that the cache-based program spectra-acquiring method saves nearly half of the running-time cost
compared with the traditional spectrum-acquiring method based on real-time transmission. 'erefore, the multiple-fault lo-
calization method proposed in this paper can be applied in embedded software debugging and testing in engineering.

1. Introduction

With the rapid development of the modern society, com-
puter software has been integrated into all walks of human
life, including embedded systems, operating systems, data-
bases, games, etc. Among them, the embedded system is
widely used in key fields, such as daily electronics, home
applications, vehicle equipment, transportation systems,
military equipment, and aerospace applications, due to its
small size, high reliability, flexibility, and convenience [1].
'e main functions in the embedded system designs are
customized through the embedded software. With the
strong support of hardware technology, embedded software
is constantly developing toward complexity, openness, and
large-scale. Compared with nonembedded software, em-
bedded software has such outstanding characteristics as
strong real-time performance, tight hardware coupling, and
complicated interaction environment, and is more prone to
errors during the development process. 'is is why stricter
requirements are placed on the reliability of embedded

software [2]. Once the undetected faults or potential faults
occur, the embedded system can no longer perform the right
functions, resulting in data loss, system crash, and even
threat to the safety of human life [3–6].

Like most software, faults in embedded software come
from the code programming. 'ey can be divided into
several categories, such as memory-related faults, initiali-
zation faults, calculation faults, input and output faults,
control flow faults, data processing faults, etc. Among the
kinds of faults, some tools can detect and locate memory-
related faults and initialization faults, which are easier to
avoid and solve. However, it is arduous to detect such
failures as control flow faults, calculation faults, input and
output faults, and data processing faults with tools due to the
complexity of logical semantics.

In the past decades, researchers have made valuable
achievements to explore fault localization methods. 'e
general idea of fault localization is analyzing the program
statement and its execution result; therefore, the testing data
such as execution information is an intensely important

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 7038979, 17 pages
https://doi.org/10.1155/2021/7038979

mailto:konglu@csu.ac.cn
https://orcid.org/0000-0003-4870-0711
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7038979

basis during fault localization. In embedded software, due to
the expansion caused by code instrumentation, the memory
space usage may be tighter, and the real-time performance is
greatly affected. Besides, the embedded software runs in-
dependently of the development environment, making it
more arduous to get the coverage data compared with the
general software. In the traditional embedded software
development, developers mostly debugged by assertions [7],
setting breakpoints [8], and program logging [9]. However,
these debugging methods need a high level of understanding
of the logic, structure, and function of the software, making
it time-consuming and with low efficiency. Besides, the effect
of fault localization also depends on the mastery of prior
knowledge, assumptions, debugging experience, and the
construction of the test case set. 'erefore, a more effective
method is needed to solve the problem of fault localization in
embedded software.

In this paper, we have put forward a fault localization
method applied to embedded software, and this paper
contributes to the following.

First, the negative impacts of multiple-faults in the
software are analyzed. As is known, faults in programs are
often not independent. 'ey are related to each other and
affect each other, which may lead to more complex behavior.
For instance, faults in subroutines may infect callers through
subroutine calls and may infect more through communi-
cations between processes. 'ere are many mature methods
in the existing literature to solve the problem of single-fault
localization, but through the empirical analysis in Section 3,
they are found to be not fully applicable to multi-fault
software.

Second, a fault localization method for embedded
software is proposed. Different from the fault localization
methods for general software, the particularity of the em-
bedded software application program is satisfied through the
following: (1) An embedded software spectrum-acquiring
method based on data caching is adopted to consume
minimal resources and minimize the interference to the
software itself. (2) A clustering combination based fault
localization method is designed to improve the traditional
fault localization method to be suitable for multiple fault
localization.

'ird, engineering practice has been carried out in
embedded software with the proposed method. In most
literature, only typical programs in the SIR (Software In-
frastructure Repository) [10] are employed for experiment

evaluation. However, the code size of these programs is
relatively small, and the correlation between faults is rela-
tively single; therefore, the verification of the fault locali-
zation method is not sufficient enough. 'is paper uses both
open source software and real engineering software to verify
the proposed methods, confirming the applicability and
effectiveness of the method in practical applications.

'e remaining part of the paper proceeds as follows.
Section 2 gives the background of the software fault local-
ization methods. Section 3 discusses some negative effects of
traditional fault localization methods when locating the
programs with multiple faults. Section 4 presents the
multiple-fault localization method based on the clustering
combination. Some empirical studies are carried out on both
open-source software and real engineering software in
Section 5. Finally, we also discuss the threats to validity and
consider our future work.

2. Related Work

Researchers have proposed many fault localization methods
that have excellent performance. Most of them come from
different fields of computer science, such as neural networks,
graphics theory, artificial intelligence, information theory,
and automation theory. Wong et al. has classified fault lo-
calization methods into eight categories, including slice-
based, spectrum-based, statistics-based, program-state-
based, machine-learning-based, data-mining-based, model-
based, and miscellaneous methods [11–13]. Among them,
the program-spectrum-based fault localization (SFL) [14] is
an effective method for software fault localization and has
been widely studied and applied in engineering. A program
spectrum is defined as the execution information about a
program from certain perspectives, such as the execution
information for conditional branches or loop-free intra-
procedural paths [15]. Code coverage [16], or Executable
Statement Hit Spectrum (ESHS) [17], is used to present the
program entity, which has been covered during the testing.
Using this information, the program entity related to the
failure is easily identified, thus narrowing the searching
scope for the fault code. Among most SFL methods, Ta-
rantula, Jaccard, and Ochiai methods have achieved out-
standing results, and they use a statistical method to
calculate the suspiciousness score of the program entities
and rank them in sequence [18, 19].

Tarantula(s) �
Nef(s)/ Nef(s) + Nnf(s)􏼐 􏼑􏼐 􏼑

Nef(s)/ Nef(s) + Nnf(s)􏼐 􏼑􏼐 􏼑 + Nep(s)/ Nep(s) + Nnp(s)􏼐 􏼑􏼐 􏼑
, (1)

Ochiai(s) �
Nef(s)

�����������������������
Nf(s)∗ Nef(s) + Nep(s)􏼐 􏼑

􏽱 , (2)

2 Mathematical Problems in Engineering

Jaccard(s) �
Nef(s)

Nf(s) + Nep(s)
. (3)

'e term Nf(s) represents the total number of the failed
test cases. 'e term Nnp(s) represents the number of times
when the statement S is not covered and the test case passes.
'e term Nep(s) represents the number of times when the
statement S is covered and the test case passes. 'e term
Nnf(s) represents the number of times when the statement S
is not covered and the test case fails. 'e term Nef(s)

represents the number of times when the statement S is
covered and the test case fails. 'e value range of equation
(1) is between 0 (the lowest suspicion value) and 1 (the
highest suspicion value). Program entities can be sorted
according to the suspicion value in descending order and
debugged until the fault is located.

'e number of faults contained in the tested program is
arduous to know in advance, and mostly there is more than
one; therefore, a growing number of research studies are
focusing on exploring effective multiple-fault localization
methods in recent years [18, 20–26]. Jones et al. divide the
program into several parts based on the execution of the
testing cases and then assign different developers to locate
the faults in parallel [27]. Abreu et al. proposed the BAR-
INEL method, which uses the Bayesian model to sort
candidate sets representing multiple-faults [28]. 'is
method has a good performance both in single-fault and
multiple-fault localizations. However, it needs developers to
keep real-time interaction in code debugging to ensure that
candidate set sorting can be modified continuously. Stei-
mann et al. tried to use probability distribution to estimate
the number of internal defects [29] and found that using an
integer linear programming algorithm can significantly
improve the parallelism of fault localization [30]. Ruizhi and
Wong proposed an advanced fault localization method
Mseer for multiple bugs in parallel, based on revised Kendall
tau and K-medoids clustering methods.'eMseer proved to
have more efficiency and accuracy compared to the other
two methods by experimental results [31].

However, neither single-fault localization methods nor
multiple-fault localization methods in literature have
practical applications due to the higher performance costs or
lower efficiency. Besides, because of the difference in re-
search focus and experimental subjects, it is arduous to
compare the above methods using a uniform evaluation.

3. Negative Impacts of Multiple-
Faults in Software

'e relationship between the software code and the fault is
intensely complex. When a software program is divided into
several modules, the relationships exist not only among
modules but also among program slices or statements within
a module. From the perspective of control flow and data flow
analysis, the root of the associated faults is that the current
state of the software is affected by the previous state. Al-
though most of the software programs are developed based

on high cohesion and low coupling, they still cannot achieve
complete independence of modules. 'is is especially true in
object-oriented software development [32]. Inheritance
determines that there will be an inheritance or derivation
among classes, which leads to the same inheritance and
transitivity of faults. Faults at the bottom modules will be
passed to the upper modules through interface calls, etc.,
affecting other related objects or modules. 'erefore, the
environment of software with multiple-faults is more
complex, leading to some unexpected situations in tradi-
tional spectrum-based fault localization methods.

In the following section, the negative impacts the tra-
ditional spectrum-based fault localization methods have on
software with multiple-faults will be discussed according to
the empirical analysis.

3.1. e Sample Program with Multiple-Faults. 'e sample
program with multiple-faults [21] to illustrate the negative
impacts the traditional spectrum-based fault localization
methods have on software with multiple-faults is demon-
strated in Figure 1, which has two faults on s7 and s20.'ere
are ten test cases from t1 to t10 in the test suite. 'e exe-
cution trace of each test case is represented by the black dots.
'e testing results are given at the bottom of each test case,
and the term F or P points out whether the test case is failed
or passed executed. 'e suspiciousness score calculated by
the Tarantula method is listed in the last column of the table.

3.2. InspiringOurWork. 'e process of locating the first bug
is as follows. As statements s14, s16, s18, s21, and s24 have
the highest suspiciousness score, they are examined first in a
logical order. But, there is no bug existing in any statement.
Similarly, statements s11 and s13 have the second-highest
suspiciousness score and they are examined next, but there is
no bug existing either. Next, statements s1 to s6 and s15 are
examined after s11 and s13. Finally, when statements s7 and
s8 are examined, a bug is found in statement s7.

As seen from the above localization process, 15 nonfaulty
statements were examined before locating the first fault,
proving that the fault localization efficiency will be greatly
reduced when using the traditional Tarantula method to
solve the multiple-faults problems.

Besides, it is amazing that the nonfaulty code s24 has a
higher suspiciousness score than the faulty code s20.
According to the code analysis, the fault on s20 propagates to
s24 along with the control flow of the true branch. However,
the Tarantula method ignores the fault propagation with the
control flow and the data flow among program blocks,
making the suspiciousness score of s24 higher than that of
s20.

We have also found that the suspiciousness score of s1 to
s4 is higher than the s7 statement because they are executed
in each test case. It can be inferred that in programs with

Mathematical Problems in Engineering 3

multiple-faults, the value of shared program entities such as
the program entry will be greater than that of the faulty
program entity, which makes the fault localization effect
worse. We can also get the same conclusion through the
equation of Tarantula. In a program with multiple-faults, the
Nef(s) value of nonfaulty code may be greater than that of
the faulty code, which reduces the suspiciousness score of
the faulty code and makes the accuracy of fault localization
worse.

Furthermore, we have observed that the faulty code s7
has been executed by test cases t2, t3, t5, t8, and t10, but all
of the execution results do not fail. 'us, the suspi-
ciousness score of the faulty code s7 is ranked in the third
last place by the Tarantula method. Test cases t2, t3, t5, t8,
and t10 are named coincidental correctness test cases [33].
According to the equation of the Tarantula method, there

is an inverse relationship between Nep(s) and the final
result of the equation. If there are a large number of
coincidental correctness test cases, the value Nep(s) of the
faulty code will increase whileNnp(s), Nnf(s), and Nef(s)

remain unchanged. In this condition, the denominator
value of the equation increases, and the suspiciousness
score of faulty code is reduced, affecting the ranking of the
faulty code. It is inferred that with a greater increase of
coincidental correctness test cases in software with
multiple-faults, the traditional Tarantula method suffers a
larger impact.

Overall, it is well supported from the fault localization
process of the sample program that the traditional spectrum-
based fault localization method is not fully applicable in
software with multiple-faults, which is consistent with the
research conclusions in [34].'erefore, a more effective fault

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(0
,0

,0
)

(–
2,

–2
,0

)

(–
8,

–8
,0

)

(2
,1

,3
)

(–
1,

–1
,0

)

(4
,2

,9
)

(2
,2

,1
)

(–
5,

–5
,0

)

(3
,1

,5
)

(–
4,

–4
,0

)

string buf[0x0f]; s1 0.5
read ("Input 3 numbers:", x, y, z); s2 0.5
incove mid (x, y, z, buf); s3 0.5
write (buf); s4 0.5

function mid (int x, int y, int z, string msg) {
msg="mid: z"; s5 0.5
if (y<z) s6 0.5

if (x>=y) // bug1:x<y s7 0.47
msg = "mid : y"; s8 0.47

else if (x<z) s9
msg = "mid : x"; s10

else if (x>y) s11 0.6
msg = "mid : y"; s12

else if (x>z) s13 0.6
msg = "mid : x"; s14 1

if (x!=y) s15 0.5
if (y==z) s16 1

msg = "mid : y or z"; s17
else if (x==z) s18 1

msg = "mid : x or z"; s19
else if (y+=z) //bug2:y==z s20 0.2

if (x==0) s21 1
msg = "warning:uninitalized"; s22

else s23
msg = "mid : x, y or z"; s24 1

else s25
msg = "mid: x or y"; s26 0

}

P P P F P F F P F P

Testcase

�e suspicious
value

Figure 1: A motivating example: multiple-fault localization process using the Tarantula method.

4 Mathematical Problems in Engineering

localization method is required to solve the problem in
software with multiple-faults.

4. The Proposed Approach

In this section, we propose a multiple-fault localization
method applied to the embedded software. Similar to most
studies, the proposed approach also rests on the following
assumptions raised by [34]:

(i) 'e faulty code can be covered by both failing and
passing test cases

(ii) At least one bug can be triggered by each failed test
case, which leads to the fault

(iii) 'e prior probability distribution of faultiness is
unknown

(iv) Developers can accurately judge whether the sus-
pect statement is a defective statement during code
review, and then effectively remove the defect

'e framework of the proposed method is displayed in
Figure 2, which can be divided into four phases: (1) cache-
based spectrum acquiring; (2) spectrum matrix constructing
and preprocessing; (3) hybrid clustering-based fault parti-
tion; (4) faults locating.

4.1. Cache-Based Spectrum Acquiring. Suppose the embed-
ded software program P � (s1, s2, . . . , sn) contains n pro-
gram entities and Pi(1≤ i≤ n) refers to the i th(1≤ i≤ n)

program entity of the program P. 'e test suite
T � (t1, t2, . . . , tm) corresponding to program P contains m
test cases and tj(1≤ j≤m) is the j th(1≤ j≤m) test case in
test suite T.

Harrold et al. generalize the spectrum and propose
various types of spectrum, such as the Complete-Path
Spectra (CPS), Path-Count Spectra (PCS), and Branch-
Count Spectra (BCS) [15], which is acquired by implanting
probe functions at appropriate locations of the software
program under test. 'e CPS spectra and the PCS spectra
have played an important role in helping developers analyze
information about the execution of the program and localize
faults in general software programs. However, the memory
resources in the embedded software are extremely limited; it
would not be cost-effective to collect the traces required for
the CPS spectra and the PCS spectra. 'e traditional way of
instrumentation used in general software would inevitably
bring a certain amount of code expansion and greatly affect
the function and performance of the embedded software
itself. Besides, quite a few embedded software has no extra
output channels, making it arduous to transmit the spectrum
data in real-time during running. To solve the above
problem, we propose an embedded software spectrum-ac-
quiring method based on data caching with the following
steps:

Step 1 Add the start and end braces of each logic block,
and generate the correspondence of line numbers be-
fore and after the above execution.

Step 2 Count the number of statements of the program
and establish a statement array to record the number of
times each statement is executed. Initialize the corre-
sponding elements in the info array according to the
analysis of the program.
Step 3 Perform lexical analysis of the program, and
implant the instrumentation function.
Step 4 Run test cases on the program after instru-
mentation, and update the number of times the cor-
responding instance is executed in the array according
to the result of the instrumentation function.
Step 5 Obtain the spectrum data of the original pro-
gram before instrumentation according to the data in
the array.
Step 6 After executing each test case, transmit the
spectrum data to the host computer using the idle
output channels.

'e architecture of the embedded software program
spectrum acquisition is demonstrated in Figure 3. 'e
embedded software after instrumentation runs on the target
board. During the execution of the test cases, the target
board puts the instrumentation information to the message
queue in real-time, and then sends the information to the
host computer at the appropriate time.

4.2. Spectrum Matrix Constructing and Preprocessing. 'e
instrumentation of program P is implemented and the ex-
ecutable file is generated after compilation.'e test suite T is
then loaded and executed, and the execution data of the
program has to construct the program spectrum matrix
demonstrated in Figure 4.

Matrix M is used to represent the coverage information
of test suite T, where Mij(Mij ≥ 0)represents the number of
times the i th(1≤ i≤ n) program entity in program P is
executed by the j th(1≤ j≤m) test case. 'e testing results
of the program P are represented by the matrix RE, where
REj � 1 indicates that the testing result of thej th(1≤ j≤m)

test case in T is passed, and REj � 0 indicates that the ex-
ecution result of the j th(1≤ j≤m) test case in T is failed.
Nf(s), Nep(s), Nnp(s), Nnf(s), and Nef(s) have the same
meanings as illustrated in equations (1)–(3).

However, the values in matrixM of program P vary due
to the influence of the test suite and the fault codes. To
eliminate the influence on the accuracy of data processing
introduced by the magnitude difference of data values, it is
indispensable to carry out the data standardization to keep
the values in uniform measures. 'e Z-score standardized
method defined in (4) is used. 'e data in matrix M are
converted into scores without units. In Equation (4), the
data xi equals Nef(s), μ points out the average value of the
code coverage data on Si(1≤ i≤ n) by the failed test case and
σ points out the standard deviation of the code coverage
data.

x
∗

�
xi − μ
σ

. (4)

Mathematical Problems in Engineering 5

We present an example of a program spectrum,
explaining the method of data standardization. Assuming
the coverage data of the failed test case tx is
tx � (x1, x2, . . . , xn), where xi represents the number of
times the statement Si(1≤ i≤ n) is covered by the test case tx.

'e spectrum of the first failed test case t1 is as given in
Table 1.

'e number in the first column represents the test case
number. 'e number in the first line represents the state-
ment line number.'e number at the intersection of the line

Design under test

Run the program

Program instrumentation

Expected
results

Testing
results

Failed
test cases

Passed
test cases

Comparison

Code coverage
data

Test suite

Data preprocessing on code coverage
information of failed test cases Spectrum matrix

constructing and
preprocessing

Spectrum
acquiring

Cluster failed test cases and construct
a cluster of failed test cases

Subset 1 of failed
test cases

Locating in parallel according to the suspicion ranking

Subset k of
failed test cases ...

Hybrid
clustering-based

fault partition

Faults locating

Passed test
cases

Subset 1 of
test cases

Subset k of test
cases

Passed test
cases

...

Fixing the bug

ß ß

Done!
All passed

Figure 2: 'e framework of the proposed approach.

Program under
test

Spectrum data
caching

Output channel

The target board

Reture
control

Spectrum data
storage

Input channel

The host computer

Figure 3: System architecture of the embedded software program spectrum acquisition.

...

s1

s2

P: s3

sn

...

...

...

...

...

...

...

M11 M12 M13 M1m

M21 M22 M23 M2m

M: M31 M32 M33 M3m

Mn1 Mn2 Mn3 Mnm

...

Nep(s1) Nnp(s1) Nnf(s1) Nep(s1)

Nep(s2) Nnp(s2) Nnf(s2) Nep(s2)

Nep(s3) Nnp(s3) Nnf(s3) Nep(s3)

Nep(sn) Nnp(sn) Nnf(sn) Nep(sn)

N:

T:

RE:

tm)t3t2 (t1

REm)RE3RE2(RE1

Figure 4: 'e proposed spectrum matrix.

6 Mathematical Problems in Engineering

and column represents the number of times the statement
was executed by the test case. As seen from the example, the
number of times the statement was executed by the test case
varies greatly. As an example, statement s6 was covered by
test case t1 10 times, while statement s7 was covered by test
case t1 9 times. After the calculation, the average value μ of
the coverage data on Si(1≤ i≤ 15) by the failed test case t1 is
2, and the standard deviation of the coverage data σ is 3.2071.
Due to equation 4, the program spectrum data calculated
after standardization is demonstrated in Table 2.

4.3. Hybrid Clustering-Based Fault Partition. Due to the
previous research, the execution paths of the failed test cases
have high similarity [35]. Failed test cases can be partitioned
based on the similarity of execution paths, converting the
multiple-fault localization into multiple single fault locali-
zation processes. Data clustering, which aims to group
objects into subsets that have the meaning of the context, is
an effective method to deal with the problems of multiple-
faults [36]. 'e K-means method is one of the simple and
commonly used clustering methods that group the given
dataset into k clusters. 'e benefit of this method is simple
and fast, which is relatively scalable and efficient for pro-
cessing large datasets. Suppose the term N represents the
number of objects in datasets, and the term K represents the
number of clusters. 'e K-means method often ends with a
local optimum when K<<N in most datasets. 'erefore, the
clustering effect is remarkable when the difference among
the clusters is obvious. However, the traditional K-means
method is sensitive to the first value, and the selection of the
first clustering center has a great influence on the clustering
results.

In this work, a hybrid clustering-based fault locali-
zation (HCFL) method is employed to reduce the influ-
ence of the traditional K-means method and improve the
clustering efficiency and accuracy of the traditional K-
means method. 'e HCFL method improves the K-means
method in the selection of the first clustering center by
incorporating the distance-based clustering methods and
density-based clustering methods [37, 38]. 'e HCFL
method is resolved in two stages. 'e first k cluster centers
are decided in Step 1 to Step 6 and the traditional K-means
method is executed based on the first k cluster centers in
Step 7 to Step 9.

Input: 1. 'e failed test case set Ta � (a1, a2, . . . , an) and
Tb � (b1, b2, . . . , bn), where an and bn represent the

poststandardization code coverage data of the same program
entity Si(1≤ i≤ n) under the two test case sets, respectively.
Ta and Tb, respectively; Input 2. 'e number of k clusters.

Output: k clusters of failed test cases.

Step 1 Calculate distances between any data on the
same program entity Si(1≤ i≤ n) in the set Ta and Tb:

d Ta, Tb(􏼁 �

����������

􏽘

n

i�1
ai − bi(􏼁

2

􏽶
􏽴

. (5)

Step 2 Calculate the average distance AVE d(Ta, Tb)

between data objects in the set Ta and Tb.

AVE d Ta, Tb(􏼁 �
􏽐 d Ta, Tb(􏼁

C
2
n

. (6)

'e term C2
n is the number of couples of failed test cases

in the set Ta and Tb.
Step 3 Suppose the distance between Ta and Tb is
withinAVE d(Ta, Tb), then Tb is considered as a
neighboring point of Ta. Calculate the set of all
neighboring points Ta.

Den Ta(􏼁 � 􏽘
n

b�1
F AVE d Ta, Tb(􏼁 − d Ta, Tb(􏼁(􏼁. (7)

'e term F (z) is a function according to

f(z) �
1, z< 0,

0, z≥ 0,
􏼨 􏼩 (8)

Step 4 Count and arrange the number of neighboring
points of all failed test cases, and select the one with the
largest number of neighboring points as the first
clustering center. Add the first clustering center TC1 to
collection TC, and delete it from TR.
Step 5 Select the test case with the furthest distance
from TC as the second clustering center TC2. Add it to
collection TC, and delete it from TR.
Step 6 Select the test case with the furthest distance
from both TC1 and TC2 as the third clustering center.
Repeat Step 6 until the first k clustering centers are
contained in the collection TC.

TCk � max min d TC1,Tr(􏼁, d TC2,Tr(􏼁, . . . , d TCk−1,Tr(􏼁(􏼁(􏼁, (Tr ∈ TR). (9)

Table 1: 'e program spectrum before standardization.

Test case s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
t1 1 1 1 1 1 10 9 0 0 0 0 4 1 0 1

Mathematical Problems in Engineering 7

Step 7 Calculate the distances from the remaining test
cases to the first clustering centers, and assign the
remaining n-k test cases to the nearest cluster.
Step 8 Recalculate the clustering centers of each cluster.
Step 9 Repeat Step 7 and Step 8 until the Sum Squared
Error (SEE) value of all clusters are unchanged.

SEE � 􏽘
k

i�1
􏽘

m

j�1
x1ij − x1i􏼐 􏼑

2
+ x2ij − x2i􏼐 􏼑

2
+ · · · + xnij − xni􏼐 􏼑

2
􏼔 􏼕.

(10)

'e terms x1ij, x2ij, . . . , xnij represent the coverage data
of the j th(1≤ j≤m) failed test cases in the i th(1≤ i≤ n)

cluster for program P. x1i, x2i, . . . , xni represent the center of
the i th(1≤ i≤ n) cluster.

We present a running example of the hybrid clustering
method. Suppose Table 3 is a spectrum of a sample program.

According to Step 1, the distance between every two test
cases is calculated using equation (5), which is listed in
Table 4. 'e cross-point of the table is the distance between
the two test cases in the row and the column. As an example,
the distance between t5 and t2 is 2.828, and the distance
between t8 and t2 is 2.646. Based on the distances between
each couple of test cases, the average distance described in
Step 2 can be calculated using equation (6), which is
2.742450.

'en in Step 3, the density of each test case is calculated
according to equation (7). As an example, for test case t1, the
test cases where the distance from t1 is less than the average
distance are t3, t4, and t5, that is, the density value of t1 is 3.
'e density values of all test cases are listed in Table 5.

According to Step 4, the test case t3 is selected as the first
clustering center TC1 because of the highest density. And,
the test case t5 is selected as the second clustering center TC2
because it has the largest distance (3.000) from the test case
t3.

In Step 5 and Step 6, calculate the distance between the
first clustering center t3 and the remaining test case, and the
distances between the second clustering center t5 and the
remaining test case, which are named
d(t3, tx)(x ∈ 1, 2, 4, 5, 6, 7, 8, 9, 10{ }) and
d(t5, tx)(x ∈ 1, 2, 3, 4, 6, 7, 8, 9, 10{ }), respectively. 'e third
clustering center TC3 is selected according to equation (9).
Suppose the clustering number k is 3. All three clustering
centers are demonstrated in Table 6.

Based on the three initial clustering centers, the partition
results calculated according to Step 7 to Step 9 are in Fig-
ure 5. 'e three initial cluster centers, t3, t5, and t8 are
distributed in the final three clusters after one iteration,
which is more convenient for future clustering.

Several studies [39, 40] have revealed that the number of
clusters is an important factor in the K-means method,
which is also applicable to the proposed method. Assume

that the number of clusters is less than the number of faults,
there may be a cluster containing two or more faults. If
engineers stop debugging when locating the first fault, it
needs to be re-executed to debug more faults in the program,
causing too many iterations. Assume that the number of
clusters is more than the actual number of faults, then two or
more clusters may contain the same fault. In the parallel
debugging mode [27], multiple engineers debug a program
simultaneously for multiple faults. After each engineer has
found and fixed a fault, the program is retested. If the
program still exhibits failures, the debug process is repeated.
In this way, the waste of debugging costs caused by the same
fault in two subsets is minimized and the executing and
debugging interactions are reduced greatly. 'erefore, in the
HCFL method, the cluster number is suggested to be greater
than or equal to the fault number.

4.4. Faults Locating. In this phase, each subset of failed test
cases is merged with passed test cases to obtain k test case
subsets. Test cases that may fail due to the same fault code are
partitioned so that the multiple-fault localization process is
decomposed into multiple parallel single-fault localization
processes. For each test group, calculate the program entity
suspicion using equations in Section 2 and check the code in
the descending order of the suspicion value until all faults are
located. After a round of testing is completed, more than one
bug is often discovered and modified. 'en, the fault lo-
calization method is to be executed continually until all
faults are discovered and modified.

5. Case Studies

'is section evaluates the proposed fault localization method,
including effectiveness and performing costs. However, the
application of the fault localization method in embedded
software cannot be queried in the existing literature, so it is
virtually impossible to select a general embedded software for
cross-comparison experiments of different localization
methods. Considering that the embedded software is a special
kind of software, the fault localization method applied to
embedded software should have general applicability except for
the acquisition of the program spectrum. 'erefore, the
evaluation experiments consist of two parts. First, conduct the
cross-comparison experiments on open-source software to
evaluate the effectiveness of the HCFL method. Second, apply
the proposedmethod to the real embedded software to evaluate
the operating cost.

5.1. Experiment 1

5.1.1. Subject Program. 'e subject programs Flex, with
their accompanying test suites obtained from the SIR library,
were adopted for demonstration. Twelve versions of the

Table 2: 'e program spectrum after standardization.

Test case s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
t1 −0.32 −0.32 −0.32 −0.32 −0.32 2.49 2.18 −0.62 −0.62 −0.62 −0.62 0.62 −0.31 −0.62 −0.31

8 Mathematical Problems in Engineering

subject program with different numbers of faults were ob-
tained by artificial fault activation or injection, as demon-
strated in Table 7. 'e following conditions should be met
when injecting a fault.

(i) 'e injected faults must be realistic, which often
occur when programming;

(ii) 'e injected faults must conform to the grammar
rules;

(iii) 'e injected faults can be tested. Otherwise, it may
bring a certain difficulty to the accurate measure-
ment of the fault localization effect.

For each experimental group of the software, the tra-
ditional Jaccard, Ochiai, and Tarantula methods, as well as
the proposed HCFL method, were used to locate the fault,
respectively. 'e program spectrums were collected with the
aid of the GCOV (GNU call-coverage profiler) tool.

5.1.2. Evaluation Criteria for Effectiveness. 'e traditional
way of evaluating fault localization accuracy is by calculating
the percentage of statements in a program that has to be
examined until the first faulty statement is reached [41–43].
'is evaluation criterion has been widely used and verified

Table 3: 'e spectrum of a sample program.

Test case s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
t1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1
t2 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0
t3 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1
t4 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1
t5 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0
t6 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0
t7 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0
t8 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1
t9 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0
t10 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0

Table 4: 'e distances between each pair of test cases.

Test case t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
t1 0.000 2.828 2.646 2.236 2.449 3.000 2.646 3.000 3.162 3.317
t2 2.828 0.000 2.646 3.000 2.828 3.317 2.236 2.646 2.828 3.000
t3 2.646 2.646 0.000 2.449 3.000 2.449 2.449 2.828 2.646 2.449
t4 2.236 3.000 2.449 0.000 2.646 3.162 3.162 2.000 3.000 2.828
t5 2.449 2.828 3.000 2.646 0.000 3.000 2.236 3.317 2.828 2.646
t6 3.000 3.317 2.449 3.162 3.000 0.000 2.449 3.162 2.236 2.000
t7 2.646 2.236 2.449 3.162 2.236 2.449 0.000 3.464 2.646 2.449
t8 3.000 2.646 2.828 2.000 3.317 3.162 3.464 0.000 2.646 2.828
t9 3.162 2.828 2.646 3.000 2.828 2.236 2.646 2.646 0.000 2.646
t10 3.317 3.000 2.449 2.828 2.646 2.000 2.449 2.828 2.646 0.000

Table 5: 'e density of each test case.

Test case t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Density 4 3 7 4 4 4 7 3 5 5

Table 6: 'e three clustering centers of the sample program.
TC1 (t3) 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1
TC2 (t5) 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0
TC3 (t8) 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1

t2 t3 t6 t9 t10

(a)

t1 t5 t7

(b)

t4 t8

(c)

Figure 5: 'e partition results of the sample program. (a) C1. (b) C2. (c) C3.

Mathematical Problems in Engineering 9

while evaluating the effect of the single-fault localization, but
it is not fully applicable in programs with multiple-faults.
'e multiple-fault localization method usually targets
multiple or all bugs. In our experiments, the following
criteria were adopted to evaluate the effectiveness of the
proposed method.

(1) e Average Number of Statements Examined. 'e term
AVE − S represents the total number of the code lines to be
examined to locate all faults in program P. 'e term Counts
means the total number of statements that are to be ex-
amined according to the list of suspicion values, and the
term N represents the number of testing rounds. If
(AVE − S)x < (AVE − S)y, we define method X to be more
efficient than method Y.

AVE − S �
􏽐

N
i�1 Counts

N
. (11)

Assume that a slice of nonfaulty statements has the same
suspiciousness as the faulty statement. If the statement ex-
amined first is exactly the faulty statement, we define this
condition as the best case. If the bug is not found until the last
statement has been checked, we define this condition as the
worst case. It is inferred that in the worst case, we have to
examine all the nonfaulty statements with the same suspi-
ciousness as the faulty statement. If we examine some nonfaulty
statements but not asmany as the worst case, we define it as the
average case. 'erefore, it is proposed to calculate the average
number of statements examined in all the three cases.

(2) e Average Expense Value. 'e average expense value
means the average number of statements examined AVE − S
as a percentage of the total executable lines of code (LOC).
'e smaller the value of expense is, the better the multiple-
fault localization method performance will be.

expense �
AVE − S
LOC
∗ 100%. (12)

(3) e P Value. In statistics, when the data conform to the
normal distribution and the homogeneity of the variance,
the parameter tests, such as the u-test and the t-test, are
commonly used. However, when the data do not conform to
the normal distribution or the unevenness of the variance,
the nonparametric test, such as the Wilcoxon signed-rank
test method, is required [44]. To prove that the HCFL
method is more effective, the difference between the number
of statements that need to be examined using these methods
is computed. We have proposed a one-tailed assumption
that other methods require more statements to be examined
than HCFL. 'e P value reflects the significance level be-
tween the two groups of results, and P< 0.05 is indicative of
a significant difference between the fault localization ef-
fectiveness of these two strategies.

As a whole, it can be considered that the fault localization
effectiveness of method A is better than that of method B
when the following two conditions are met:

(i) 'e average number of statements examined by
method A is less than method B, or the average
expense value of method A is less than method B

(ii) 'e P value of methods A and method B is less than
0.05

6. Results and Analysis

Tables 8 and 9 demonstrate the AVE − S values that need to
be examined when locating the first bug and all bugs using
the Jaccard, Ochiai, Tarantula, and HCFL methods in the
best, worst, and average cases. For instance, in experiment
Group1, the average number of statements that need to be
examined was 5 when locating the first bug by the Jaccard
and Ochiai methods in the best case, while the AVE-S value
was 1 by the Tarantula method and our HCFL method.

Referring to the data in Table 8, the AVE-S value by the
HCFL method is smaller than that by Jaccard and Ochiai
methods when locating the first bug in the program.
However, we have found that in all the 12 experiment groups
in the best case, the AVE-S values using the Tarantula
method are all 1, which are better than the HCFL method.
'is can be analyzed using the equation of Tarantula. In the
best case, all the faulty statements are covered by failed test
cases and were not covered by passing test cases. 'erefore,
the values of Nep(s) and Nnp(s) are 0, and the suspi-
ciousness scores of all faulty codes are 1 as calculated by the
Tarantula method. In the best conditions, the statement that
is debugged first is the faulty code.

In Table 9, the AVE-S value by the HCFL method is very
much smaller than that by the Jaccard and Ochiai methods
when locating all bugs in the program. However, the AVE-S
values in Group 2, Group 5, Group 8, Group 9, and Group C
by the Tarantula method are 3, which are better than the
HCFL method. 'is is due to the fact that the suspiciousness
scores of the three faulty statements are 1, and are checked in
the first three places. Anyway, in the worst and average cases,
the AVE-S values of the HCFL method are much smaller
than the Tarantula method, proving that the efficiency of the
HCFL method is generally better than that of the Jaccard,
Ochiai, and Tarantula methods.

'e performance comparison among the Jaccard,
Ochiai, Tarantula, and HCFL methods can be revealed in-
tuitively by the expense value in Figures 6 and 7. 'e bar
chart in Figure 6 demonstrates the average value of expense
when locating the first bug, named Expense-first, in the best,
worst, and average cases. Similarly, the bar chart in Figure 7
demonstrates the average value of expense when locating all
the bugs in the three cases, named Expense-All. 'e red bar
represents the expense value when using the HCFL method,

Table 7: Subject programs of experiment 1.

Group 1 2 3 4 5 6 8 9 A B C D
LOC 3453 3453 3453 3453 3453 3453 4008 4008 4035 4034 4035 4035

10 Mathematical Problems in Engineering

Table 8: Comparison of AVE-S value when locating the first bug in three cases.

Methods and cases 1 2 3 4 5 6 8 9 A B C D

Jaccard
Best 5 5 985 5 985 69 1 1 1397 1 1 1397
Worst 363 142 987 363 987 108 130 130 1400 15 15 1400
Average 184 73 986 184 986 88 65 65 1398 8 8 1398

Ochiai
Best 5 5 958 5 958 69 1 1 1336 1 1 1336
Worst 363 142 960 363 960 108 130 130 1339 15 15 1339
Average 184 73 959 184 959 88 65 65 1337 8 8 1337

Tarantula
Best 1 1 1 1 1 1 1 1 1 1 1 1
Worst 652 171 746 651 746 195 196 196 394 549 577 394
Average 326 86 373 326 373 98 98 98 197 275 289 197

HCFL
Best 1 1 8.52 1 8.6 1 1 1 1 1 1 1
Worst 15 69 36 15 36 40 130 130 54.32 15 15 47.4
Average 8 46 22 8 22 20 65.06 65.06 27.16 8 8 24.2

Table 9: Comparison of AVE-S value when locating all bugs in three cases.

Methods and cases 1 2 3 4 5 6 8 9 A B C D

Jaccard
Best 1762 327 1647 1762 1819 1116 1881 1881 1844 1761 1754 1837
Worst 1889 343 1686 1888 1946 1137 1929 1929 1849 1764 1757 1842
Average 1825 335 1666 1825 1882 1126 1905 1905 1846 1762 1755 1839

Ochiai
Best 1745 723 1617 1745 1781 1018 1866 1866 1718 1634 1627 1711
Worst 1872 744 1656 1871 1908 1039 1914 1914 1723 1637 1630 1716
Average 1808 733 1636 1808 1844 1028 1890 1890 1720 1635 1628 1713

Tarantula
Best 1007 502 3 1006 3 840 3 3 497 1133 3 497
Worst 1365 518 746 1364 746 856 588 588 502 1506 577 502
Average 1186 510 373 1185 373 848 588 588 499 1319 289 499

HCFL
Best 205 176 83.83 204 87.55 197 545.81 545.74 336.97 253.07 166.22 328.75
Worst 597 320 154 596 258.4 261 723.06 723.06 352.83 654.99 178.36 346.16
Average 401 243 117.93 400 172.45 228 634.06 634.06 344.38 453.22 204.91 337.33

BEST

10–4

10–2

100

Ex
pe

ns
e-

fir
st

Jaccard

HCFL

1 2 3 4 5 6 8 9 A B C D

(a)

10–4

10–2

100

Ex
pe

ns
e-

fir
st

WORST

1 2 3 4 5 6 8 9 A B C D

Jaccard

HCFL

(b)

10–4

10–2

100

Ex
pe

ns
e-

fir
st

AVERAGE

1 2 3 4 5 6 8 9 A B C D

Jaccard

HCFL

(c)

10–4

10–2

100

Ex
pe

ns
e-

fir
st

Ochiai

HCFL

BEST

1 2 3 4 5 6 8 9 A B C D

(d)

10–4

10–2

100

Ex
pe

ns
e-

fir
st

WORST

1 2 3 4 5 6 8 9 A B C D

Ochiai

HCFL

(e)

10–4

10–2

100

Ex
pe

ns
e-

fir
st

AVERAGE

1 2 3 4 5 6 8 9 A B C D

Ochiai

HCFL

(f)

Figure 6: Continued.

Mathematical Problems in Engineering 11

while the blue bar in each line represents the expense value
when using the Jaccard, Ochiai, and Tarantula methods. It
appears that the shorter the bar chart, the better the fault
localization efficiency. 'e comparison results have inferred
that the fault localization efficiency of the HCFL method is

better than that of the Jaccard and Ochiai methods, but
slightly lower than that of the Tarantula method when lo-
cating the first bug; however, when locating all the bugs, the
efficiency of the HCFL method is higher than that of the
Jaccard, Ochiai, and Tarantula methods in most of the

0

1

2

3

Ex
pe

ns
e-

fir
st

Tarantula

HCFL

BEST

×10–4

1 2 3 4 5 6 8 9 A B C D

(g)

Tarantula

HCFL

10–4

10–2

100

Ex
pe

ns
e-

fir
st

WORST

1 2 3 4 5 6 8 9 A B C D

(h)

Tarantula

HCFL

10–4

10–2

100

Ex
pe

ns
e-

fir
st

1 2 3 4 5 6 8 9 A B C D

AVERAGE

(i)

Figure 6: Comparison of the expense value when locating the first bug.

BEST

Jaccard

HCFL

0

0.2

0.4

0.6

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(a)

Jaccard

HCFL

WORST

0

0.2

0.4

0.6

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(b)

Jaccard

HCFL

AVERAGE

0

0.2

0.4

0.6

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(c)

Ochiai

HCFL

BEST

0

0.2

0.4

0.6

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(d)

Ochiai

HCFL

WORST

0

0.2

0.4

0.6

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(e)

Ochiai

HCFL

AVERAGE

0

0.2

0.4

0.6
Ex

pe
ns

e-
A

ll

1 2 3 4 5 6 8 9 A B C D

(f)

Tarantula

HCFL

BEST

0

0.1

0.2

0.3

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(g)

Tarantula

HCFL

WORST

0

0.1

0.2

0.3

0.4

Ex
pe

ns
e-

A
ll

1 2 3 4 5 6 8 9 A B C D

(h)

Tarantula

HCFL

1 2 3 4 5 6 8 9 A B C D

AVERAGE

0

0.1

0.2

0.3

0.4

Ex
pe

ns
e-

A
ll

(i)

Figure 7: Comparison of the expense value when locating all bugs.

12 Mathematical Problems in Engineering

groups, especially in the worst and average cases. Compared
with the data in the best cases, the comparison results in the
worst and the average cases can better reflect the process of
software fault localization. 'erefore, from the compre-
hensive comparison results of Figures 6 and 7, the superi-
ority of HCFL in fault localization efficiency is
demonstrated.

Tables 10 and 11 revealed the P value of HCFL versus
Jaccard, HCFL versus Ochiai, and HCFL versus Tarantula
when locating the first bug and locating all the bugs, respec-
tively. We could see in Table 10 that the P value is 1 in some
groups, such as Group 8 andGroup 9 in the best case, Group B,
and Group C in all the three cases. Recalling the values in
Table 8, this is because when locating for the first bug, the
average number of statements examined by the three methods
is the same, that is, the first bug had been located when
debugging the first statement. In other groups, the P value is
less than 0.05. In Table 11, the P values in all experimental
groups are less than 0.001, revealing that the fault localization
effectiveness of the HCFL method is extremely different from
the Jaccard, Ochiai, and Tarantula methods.

Overall, the results of Experiment 1 indicate that the av-
erage number of statements examined by the HCFLmethod as
well as the average expense value of the HCFL method when
locating all the bugs is much less than the Jaccard, Ochiai, and
Tarantula methods in most of the cases. 'e P values of HCFL
versus Jaccard, HCFL versus Ochiai, and HCFL versus Ta-
rantula are much less than 0.05 inmost of the cases.We believe
that the fault localization effectiveness of the HCFL method is
much better than that of the Jaccard, Ochiai, and Tarantula
methods when locating the multiple faults.

6.1. Experiment 2

6.1.1. Subject Program. In this experiment, three embedded
software programs with different scales and different op-
erating platforms in engineering projects were selected as
demonstrated in Table 12. 'e Main_control program was
used to carry out the central control function of an appli-
cation system. 'erefore, the logic of the program was
relatively complex, with many branches and judgment
statements. 'e Main_control was implemented in C++
language and executed on TMS320C6000, and the number
of instrumentation points of the Main_control was 2489.
Data_commu was a program of an application payload
implementing the data interaction function, which was also
written in C++ language and worked on TMS320F2812. 'e
number of instrumentation points of Data_commu was 737.
'e program Data_process was the software part of a SoPC
(System on Program Chip), which cooperated with the
programmable logic part to complete the function of
command receiving and command parsing. Data_process
was implemented in C language and executed on Pow-
erPC405 core of Xilinx FPGA, with 237 instrumentation
points.

6.1.2. Evaluation Criteria for the Operating Cost. 'e soft-
ware instrumentation to obtain the program spectrum may

result in a decrease in software performance. In this ex-
periment, the running time of each software program under
the following three testing scenarios is statistically
compared:

(i) 'e run-time of the software program before
instrumentation

(ii) 'e run-time of the software program using the
spectrum-acquiring method is based on real-time
transmission

(iii) 'e run-time of the software program using the
cache-based spectrum-acquiring method

In the second testing scenario, output channels are
needed for transmitting the spectrum data in real-time.
According to the characteristics of each software program,
we used the SPI (Serial Peripheral Interface) port to transmit
the program spectrum of the Main_control program, and
the serial port for spectrum data transmission for the
Data_commu and Data_process program.

Taking program Main_control as an example, the sta-
tistical method of the program run-time was as follows. 'e
counter value of the timer Timer0 of the DSP was used to
calculate the program run-time, with a timing accuracy of
0.02 microseconds. 'e register value of Timer0 was set to
the upper limit at the beginning of the program to ensure
that no overflow occurred during the statistical period. 'e
control register was set to start the timing at the beginning of
the program, and the register value of Timer 0 was read at the
end of the program. 'e run-time of the program Truntime
was calculated as follows:

Truntime � Timer 0upper − Timer 0end􏼐 􏼑∗Taccuracy, (13)

Timer 0upper means the upper limit value of the Timer 0
register, and Timer 0end means the register value of Timer 0
read at the end of the program.

6.1.3. Results and Analysis. 'e maximum, the minimum,
and the mean run-time were recorded as in Table 13 when,
respectively, carrying out all the test cases in each test suite
for program Main_control, Data_commu, and
Data_process.

From the data in Table 13 and Figure 8, it can be
concluded that no matter which program-spectrum acqui-
sition method is used, the code instrumentation for ac-
quiring the program-spectrum increases the run-time of the
program. Among them, the average run-time when using the
method based on the real-time transmission is more than
twice that of run-time without instrumentation, while using
the cache-based program spectrum acquisition method
proposed in this paper, the run-time of the program is
slightly more than twice that of without instrumentation.

As the basis of the fault localization method, the ac-
quisition of program-spectrum is the bottleneck that affects
the performance of the whole fault localization method for
software, especially for embedded software. Using the cache-
based program-spectrum acquisition method, the acquisi-
tion time of the program-spectrum for each test case is

Mathematical Problems in Engineering 13

shortened by half, which improves the efficiency of the fault
localization method.

7. Threats to Validity

7.1. reats to Internal Validity. 'e internal validity threat
involves the causal relationship between the independent
and dependent variables provided by the experiment. 'e
specific implementation of the clustering method and test
script code in Section 4 may have some defects, which may
affect the experimental results. To ensure the correctness of
the specific implementation, the manually written code was
strictly reviewed and sufficiently tested.

7.2. reats to External Validity. 'e primary external threat
of the experiment results lies in the selection of the object
program, which has limits in software scale and number of
faults. 'erefore, we carried out empirical experiments on
the application of embedded software and strengthened the
confidence of the actual engineering application.

Besides, the quality of the test cases also has a certain
impact on the software fault localization. A positive test case
can expose as many faults as possible in the software. Ef-
ficient test cases should cover as many statements, condi-
tions, decision conditions, and combinations of conditions
as possible.'e objects and test cases in Experiment 1 are the
open-source widely used in related research and have certain

Table 10: 'e P value when locating the first bug.

Methods and cases 1 2 3 4 5 6 8 9 A B C D

HCFL versus Jaccard
Best <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1 <0.001 1 1 <0.001
Worst <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.013 0.013 <0.001 1 1 <0.001
Average <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.013 0.013 <0.001 1 1 <0.001

HCFL versus Ochiai
Best <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1 <0.001 1 1 <0.001
Worst <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.013 0.013 <0.001 1 1 <0.001
Average <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.013 0.013 <0.001 1 1 <0.001

HCFL versus Tarantula
Best 1 1 <0.001 1 <0.001 1 1 1 1 1 1 1
Worst <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Average <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 11: 'e P value when locating all bugs.

Methods and cases 1 2 3 4 5 6 8 9 A B C D

HCFL versus Jaccard
Best <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Worst <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Average <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

HCFL versus Ochiai
Best <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Worst <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Average <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

HCFL versus Tarantula
Best <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Worst <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Average <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 12: Subject programs of experiment 2.

Program Executing platform LOC Number of instrumentation points Test suite
Main_control TMS320C6000 19547 2489 584
Data_commu TMS320F2812 9230 737 486
Data_process PowerPC405 1686 237 372

Table 13: Comparison of run-time by the three methods.

Program
Before instrumentation (sec) Real-time transmission (sec) Cache-based transmission (sec)

Max Mean Min Max Mean Min Max Mean Min
Main_control 2.886431 2.0999285 1.313426 4.820339 3.394385 1.968431 3.175074 2.387156 1.599238
Data_commu 2.105153 1.345316 0.585479 5.473399 3.439275 1.405151 2.294617 1.590078 0.885538
Data_process 1.280055 0.965821 0.127602 2.606832 1.956633 0.268435 1.327394 1.001160 0.130907

14 Mathematical Problems in Engineering

representativeness [45–48]. In Experiment 2, the Equiva-
lence Partitioning analysis, Boundary Value analysis, De-
cision Table analysis, and other methods were used in test
case design to ensure the sufficiency of test cases. 'e final
versions of the three programs in Experiment 2 had gone
through multiple rounds of testing and were successfully
applied to products. 'erefore, the sufficiency of the test
suite set can be guaranteed, and software bugs can be
covered by the test suite.

8. Conclusion and Future Work

With the increase in the size and complexity of embedded
software, the traditional human-based fault localization
method is no longer applicable; thus, an efficient fault lo-
calization method is urgently needed to help engineers for
debugging. 'is paper proposes a special fault localization
method, especially for embedded software, and improve-
ments have been made in the following two aspects com-
pared with previous researches. Firstly, adaptive
modification has been made in acquiring program-spectrum
schemes according to the characteristics of embedded
software, which greatly promotes the efficiency of the

acquisition of program-spectrum. Secondly, the traditional
K-means clustering method is improved by using a hybrid
clustering method based on density and distance to find out
the initial clustering center, which improves the efficiency of
clustering. Several experimental results demonstrate that the
proposed fault localization method can accurately locate
multiple-bugs in embedded software, which saves the
debugging time for engineers.

In future work, more experiments on large-scale soft-
ware programs with much more faults will be performed,
strengthening the accuracy of the clustering method to lo-
calize multiple-faults at a lower expense. Besides the study of
fault localization methods in these specific testing fields,
applications of fault localization methods on other execution
platforms of embedded software should also be concerned.
'e scene features of these new platforms will be analyzed to
make full use of the existing research results of fault lo-
calization, proposing high-quality solutions.

Data Availability

'e data that support the findings of this study are available
from the corresponding author upon reasonable request.

MAX MEAN MIN

Main_control

0

1

2

3

4

5
RU

N
_T

IM
E

(s
ec

)

Before instrumentation

Real-time transmission

Cache-based transmission

(a)

Before instrumentation

Real-time transmission

Cache-based transmission

MAX MEAN MIN

Data_commu

0

1

2

3

4

5

6

RU
N

_T
IM

E
(s

ec
)

(b)

Before instrumentation

Real-time transmission

Cache-based transmission

MAX MEAN MIN

Data_process

0

0.5

1

1.5

2

2.5

3

RU
N

_T
IM

E
(s

ec
)

(c)

Figure 8: Run-time comparison between real-time transmission and cache-based transmission.

Mathematical Problems in Engineering 15

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'anks are due to Dr. HanYu Pei and LinZhi Huang of
Beihang University for their help with the experiments and
their useful suggestions.'is work was financially supported
by a National Pre-Research Program of China (No.
61400020404).

References

[1] T. Henzinger, C. Kirsch, and J. Rushby, “Embedded software,”
in Proceedings of the First International Workshop, EMSOFT
2001, Tahoe City, CA, USA, October 2001.

[2] V. Narayanan and Y. Xie, “Reliability concerns in embedded
system designs,” Computer, vol. 39, no. 1, pp. 118–120, 2006.

[3] J. C. Munson and T. M. Khoshgoftaar, “'e detection of fault-
prone programs,” IEEE Transactions on Software Engineering,
vol. 18, no. 5, pp. 423–433, 1992.

[4] G. J. Pai and J. B. Dugan, “Empirical analysis of software fault
content and fault proneness using bayesian methods,” IEEE
Transactions on Software Engineering, vol. 33, no. 10,
pp. 675–686, 2007.

[5] C. S. Wright and T. A. Zia, “A quantitative analysis into the
economics of correcting software bugs,” Computational In-
telligence in Security for Information Systems, vol. 6694,
pp. 198–205, 2011.

[6] W. E. Wong, V. Debroy, A. Surampudi, H. J. Kim, and
M. F. Siok, “Recent catastrophic accidents: investigating how
software was responsible,” in Proceedings of the 2010 Fourth
International Conference on Secure Software Integration and
Reliability Improvement, SSIRI 2010, Singapore, June 2010.

[7] D. S. Rosenblum, “A practical approach to programming with
assertions,” IEEE Transactions on Software Engineering,
vol. 21, no. 1, pp. 19–31, 1995.

[8] J. Hennessy, “Symbolic debugging of optimized code,” ACM
Transactions on Programming Languages and Systems, vol. 4,
no. 3, pp. 323–344, 1982.

[9] J. C. Edwards, “Method, system, and program for logging
statements to monitor the execution of a program,” 2003.

[10] 'e software infrastructure repository, [Online]. Available:
http://sir.unl.edu/portal/index.html, Accessed on Aug. 2016.

[11] W. E. Wong, R. Gao, Y. Li, A. Rui, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, 2016.

[12] R. Gupta, M. J. Harrold, and M. L. Soffa, “Program slicing-
based regression testing techniques,” Software Testing, Veri-
fication, and Reliability, vol. 6, no. 2, pp. 83–111, 1996.

[13] L. Guo, A. Roychoudhury, and T. Wang, “Accurately
choosing execution runs for software fault localization,” in
Proceedings of the 15th International Conference, Compiler
Construction, Vienna, Austria, March 2006.

[14] R. Abreu, P. Zoeteweij, and A. J. C. V. Gemund, “On the
accuracy of spectrum-based fault localization,” in Proceedings
of the Testing: Academic and Industrial Conference Practice
and Research Techniques-Mutation, 2007, Windsor, UK,
September 2007.

[15] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra
differences and regression faults,” Software Testing, Verifi-
cation and Reliability, vol. 10, no. 3, pp. 171–194, 2000.

[16] W. E. Wong, Yu Qi, L. Zhao, and K. Y. Cai, “Effective fault
localization using code coverage,” in Proceedings of the 2007
31st Annual International Computer Software and Applica-
tions Conference, Beijing, China, July 2007.

[17] M. Renieres and S. P. Reiss, “Fault localization with nearest
neighbor queries,” in Proceedings of the 2003 18th IEEE In-
ternational Conference on Automated Software Engineering,
Montreal, Que, Canada, October 2003.

[18] X. Xue and A. S. Namin, “How significant is the effect of fault
interactions on coverage-based fault localizations?” in Pro-
ceedings of the 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, Baltimore,
MD, USA, October 2013.

[19] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
Tarantula automatic fault-localization technique,” in Pro-
ceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, Long Beach, CA, USA,
November 2005.

[20] Z. Wei and B. Han, “Multiple-bug oriented fault localization: a
parameter-based combination approach,” in Proceedings of the
2013 IEEE Seventh International Conference on Software Security
& Reliability-companion, Gaithersburg, MD, USA, June 2013.

[21] G. Cheng, Z. Zheng, Y. Zhang, Z. Zhang, and Y. Xue,
“Factorising the multiple fault localization problem: adapting
single-fault localizer to multiple-fault programs,” in Pro-
ceedings of the 2012 19th Asia-Pacific Software Engineering
Conference, December 2012.

[22] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using
value replacement,” in Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis,
ISSTA 2008, pp. 167–178, Seattle, WA, USA, July 2008.

[23] D. Jeffrey, N. Gupta, and R. Gupta, “Effective and efficient
localization of multiple faults using value replacement,” in
Proceedings of the 2009 IEEE International Conference on
Software Maintenance, pp. 221–230, Edmonton, Canada,
September 2009.

[24] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken,
“Statistical debugging: simultaneous identification of multiple
bugs,” in Proceedings of the Twenty- ird International
Conference (ICML 2006), pp. 26–29, Pittsburgh, PA, USA,
June 2006.

[25] V. Debroy andW. E. Wong, “Insights on fault interference for
programs with multiple bugs,” in Proceedings of the 2009 20th
International Symposium on Software Reliability Engineering,
pp. 165–174, Mysuru, Karnataka, India, November 2009.

[26] N. DiGiuseppe and J. A. Jones, “On the Influence of Multiple
faults on coverage-based fault localization,” in Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA), pp. 210–220, Toronto, Canada, July 2011.

[27] J. A. Jones, J. Bowring, and M. J. Harrold, “Debugging in
parallel,” in Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2007,
pp. 16–26, London, UK, July 2007.

[28] R. Abreu, P. Zoeteweij, and A. J. C. V. Gemund, “Spectrum-
based multiple fault localization,” in Proceedings of the 2009
IEEE/ACM International Conference on Ase ACM, Auckland,
New Zealand, November 2009.

[29] S. Friedrich and M. Frenkel, “Improving coverage-based lo-
calization of multiple faults using algorithms from integer
linear programming,” in Proceedings of thehttps://ieeexplore.
ieee.org/xpl/conhome/6403947/proceeding, Dallas, TX, USA,
November 2012.

[30] S. Friedrich and M. Frenkel, “More debugging in parallel,” in
Proceedings of the 2014 IEEE 25th International Symposium on

16 Mathematical Problems in Engineering

http://sir.unl.edu/portal/index.html
https://ieeexplore.ieee.org/xpl/conhome/6403947/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6403947/proceeding

Software Reliability Engineering, Naples, Italy, November
2014.

[31] R. Gao and W. E. Wong, “MSeer-an advanced technique for
locating multiple bugs in parallel,” IEEE Transactions on
Software Engineering, vol. 45, no. 3, pp. 301–318, 2019.

[32] T. Nejmeddine, “Object-oriented system decomposition
quality,” in Proceedings of the 2002 7th IEEE International
Symposium on High Assurance Systems Engineering, Tokyo,
Japan, October 2002.

[33] W. Masri and R. A. Assi, “Prevalence of coincidental cor-
rectness and mitigation of its impact on fault localization,”
ACM Transactions on Software Engineering and Methodology,
vol. 23, no. 1, pp. 1–28, 2014.

[34] F. Steinmann, M. Frenkel, and R. Abreu, “'reats to the
validity and value of empirical assessments of the accuracy of
coverage-based fault locators,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis,
pp. 314–324, Lugano, Switzerland, July 2013.

[35] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An
evaluation of similarity coefficients for software fault locali-
zation,” in Proceedings of the 2006 12th Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC’06),
pp. 39–46, Riverside, CA, USA, December 2006.

[36] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” Acm Computing Surveys, vol. 31, no. 3, pp. 264–323,
1999.

[37] A. Rodriguez and A. Laio, “Clustering by fast search and find
of density peaks,” Science, vol. 344, no. 6191, pp. 1492–1496,
2014.

[38] C. Xiong, H. Zhen, L. Ke, and L. Xuan, “An improved
K-means text clustering algorithm by optimizing initial
cluster centers,” in Proceedings of the 2016 7th International
Conference on Cloud Computing and Big Data (CCBD),
November 2016.

[39] M. R. Rezaee, B. P. F. Lelieveldt, and J. H. C. Reiber, “A new
cluster validity index for the fuzzy c-mean,” Pattern Recog-
nition Letters, vol. 19, no. 3-4, pp. 237–246, 1998.

[40] S. S. Khan and A. Ahmad, “Cluster center initialization al-
gorithm for K -means clustering,” Pattern Recognition Letters,
vol. 25, no. 11, pp. 1293–1302, 2004.

[41] X. Ju, S. Jiang, X. Chen, X. Wang, Y. Zhang, and H. Cao,
“HSFal: effective fault localization using hybrid spectrum of
full slices and execution slices,” Journal of Systems and
Software, vol. 90, pp. 3–17, 2014.

[42] W. E. Wong, V. Debroy, and B. Choi, “A family of code
coverage-based heuristics for effective fault localization,”
Journal of Systems & Software, vol. 83, no. 2, pp. 188–208,
2010.

[43] N. Digiuseppe and J. A. Jones, “Fault density, fault types, and
spectra-based fault localization,” Empirical Software Engi-
neering, vol. 20, no. 4, pp. 928–967, 2015.

[44] S. M. Taheri and G. Hesamian, “A generalization of the
Wilcoxon signed-rank test and its applications,” Statistical
Papers, vol. 54, no. 2, pp. 457–470, 2013.

[45] Y. Gao, Z. Zhang, Z. Long, G. Cheng, and Z. Zheng, “A
theoretical study: the impact of cloning failed test cases on the
effectiveness of fault localization,” in Proceedings of the 2013
13th International Conference on Quality Software, September
2013.

[46] M. Khatibsyarbini, M. A. Isa, H. N. A. Hamed,
H. N. A. Hamed, and M. D. Mohamed Suffian, “Test case
prioritization using firefly algorithm for software testing,”
IEEE Access, vol. 7, pp. 132360–132373, 2019.

[47] G. Liang, D. Lo, L. Jiang, and H. Zhang, “Diversity maxi-
mization speedup for fault localization,” in Proceedings of the
27th IEEE/ACM International Conference on Automated
Software Engineering, Essen, Germany, September 2012.

[48] F. Keller, L. Grunske, H. Simon, A. Filieri, A. Van Hoorn, and
D. Lo, “A critical evaluation of spectrum-based fault locali-
zation techniques on a large-scale software system,” in Pro-
ceedings of the 2017 IEEE International Conference on Software
Quality, Reliability, and Security, July 2017.

Mathematical Problems in Engineering 17

