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In this paper, we consider a class of fractional-order differential equations and investigate two aspects of these equations. First, we
consider the existence of a unique solution, and then, using a new class of control functions, we investigate the Gauss
hypergeometric stability. We use Chebyshev and Bielecki norms in order to prove these aspects by the Picard method. Finally, we
give some examples to illustrate our results.

1. Introduction

'e topic of fractional calculus and its significant appli-
cations have appeared to be an appropriate tool in study
widespread fields of engineering and science. In fact, there
are a lot of phenomena in which highly accurate modeling
is very important to study them. Fluid mechanics, bio-
logical models, electochemistry, viscoelasticity, and elec-
tromagnetics are some examples of these fields. Also,
research on fractional calculus (FC) and its applications is
an important part of mathematical analysis (see [1–6] and
references therein). Its importance can also be explored in
other fields such as fluid dynamics traffic models, oscil-
lation due to earthquakes, and flow in porous media due to
seepage.

Researchers have always tried to create the conditions
for the existence and uniqueness of the solution for frac-
tional differential equations. Since most problems cannot
be solved for exact solutions, we need powerful analytical
techniques. For good results, one needs stable algorithms
and methods. For such needs, the stability theory was
founded [7, 8]. It has been found that the notion of
fractional-order differential equations can well describe

these models in science and engendering. Recently, the
study of fractional differential equations has been increased
among researchers.

Our article is organized as follows. In Section 2, we
explain the definitions and some important results that we
use in the proofs of this article. In Section 3, we consider the
following fractional-order differential equation:

c
D

α
Jρ(J) � k(J, ρ(J), ρ(h(J))), j ∈ J ⊂ R, α ∈ (0, 1). (1)

We investigate the existence of a unique solution and the
Gauss hypergeometric stability of this fractional-order dif-
ferential equation.

In the above equation, cDα
J for a function ρ given on the

interval J � (0, q], q ∈ R+ is the Caputo fractional derivative
of order α and the functions k ∈ C(J × R2,R), h ∈ C(J, J) (J
is the colure of J ) with h(J)≤J. In the first theorem, we
investigate the Gauss hypergeometric stability of the frac-
tional-order differential equation using the Chebyshev
norm, and in the second theorem, we have proved the Gauss
hypergeometric stability of the equation by using Bielecki
norm. At the end of each theorem, we provide examples that
demonstrate our results well.

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 7074694, 9 pages
https://doi.org/10.1155/2021/7074694

mailto:rsaadati@eml.cc
https://orcid.org/0000-0003-2517-3365
https://orcid.org/0000-0002-6770-6951
https://orcid.org/0000-0001-9320-9433
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7074694


2. Preliminaries

Discontinuous control strategy is a method that is used in
various issues. Among its applications, we can mention the
study of the dynamic behavior of the computer worm system
(see [9, 10], for more information). In this paper, we con-
sider the Gauss hypergeometric function as a control
function and use this function to investigate the stability of
Gauss hypergeometric. In this section, we present the def-
initions of the fractional integral, the Riemann–Liouville
fractional derivative, and the Caputo fractional derivative of
order τ, which we utilize in this paper, for more detail, we
refer to [11–14]. In the continuation, by introducing the
Gauss hypergeometric series, we define the Gauss hyper-
geometric stability of equation (1) [15–17]. Also, we consider
the Picard operator and Henry–Gronwall inequality, which
we use in the next section [18, 19].

Definition 1. Let τ > 0 and k ∈ C(J × R2,R), and Γ(τ) is the
Gamma function. On an interval [0,J], the Rie-
mann–Liouville fractional integral of order τ is defined by

I
τ
Jk(J) �

1
Γ(τ)


J

0

k(ℓ)
(J − ℓ)1− τ dℓ, J> 0, τ > 0. (2)

Definition 2. Assume that n − 1< τ < n, k: [0,∞)⟶ R.
'e Riemann–Liouville derivative of order τ and the Caputo
derivative of order τ, respectively, are defined by

L
D

τ
Jk(J) �

1
Γ(n − τ)

dn

dJn 
J

0

k(ℓ)
(J − ℓ)τ + 1 − n

dℓ, J> 0,

c
D

τ
Jk(J) �

L
D

τ
J k(J) − 

n− 1

k�0

J
k

k!
k

(k)
(0)⎛⎝ ⎞⎠, J> 0.

(3)

Now, we consider the Gauss hypergeometric series (see
[17, 20]) F by

F(ℵ, β;℘; z) � 
∞

k�0

(ℵ)k(β)k

(℘)k

z
k

k!

�
Γ(℘)
Γ(ℵ)Γ(β)



∞

k�0

Γ(ℵ + k)Γ(β + k)

Γ(℘ + k)

z
k

k!
,

(4)

where in ℵ, β,℘ ∈ R+ and z ∈ R.

Remark 1. We consider fractional-order differential equa-
tion (1) that is controlled by Gauss hypergeometric F. If w is
a differential function, satisfying

c
D

α
Jw(t) − k(J, w(J), w(h(J)))



≤ εF ℵ, β;℘;Jα
( ,

(5)
for k ∈ C(J × R2,R) and ε> 0, then w also satisfies the
following integral inequality:

w(J) − w(0) −
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, w(ℓ), w(h(ℓ)))dℓ




≤
ε
Γ(α)


J

0
(J − ℓ)α− 1

F ℵ, β;℘, ℓα( dℓ

≤
ε
Γ(α)


J

0
(J − ℓ)α− 1 Γ(c)

Γ(ℵ)Γ(β)


∞

k�0

Γ(ℵ + k)Γ(β + k)

Γ(℘ + k)

ℓαk

k!
dℓ

�
ε
Γ(α)

Γ(℘)
Γ(ℵ)Γ(β)



∞

k�0

Γ(ℵ + k)Γ(β + k)

Γ(℘ + k)

1
k!


J

0
(J − ℓ)α− 1ℓαkdℓ

�
ε
Γ(α)

Γ(c)

Γ(a)Γ(b)


∞

k�0

Γ(ℵ + k)Γ(β + k)

Γ(℘ + k)

J
(k+1)αΓ(kα + 1)Γ(α)

Γ((k + 1)α + 1)k!

≤ ε
Γ(℘)
Γ(ℵ)Γ(β)



∞

n�0

Γ(ℵ + k)Γ(β + k)

Γ(℘ + k)

J
nαΓ(nα + 1)

Γ((n + 1)α + 1)n!

≤ ε
Γ(℘)
Γ(ℵ)Γ(β)



∞

n�0

Γ(ℵ + k)Γ(β + k)

Γ(℘ + k)

1
n!

J
nαΓ(nα + 1)

Γ(nα + 1)

� εF ℵ, β;℘,Jα
( .

(6)

Remark 2. Assume that w is a function such that
w ∈ C(J,R). 'en, w is a solution of inequality (5) if and
only if we can find a function fw ∈ C(J,R) such that

(i) |f(J)|≤ εF(ℵ, β;℘;Jα), for all J ∈ J

(ii) cDα
Jw(J) � k(J, w(J), w(h(J))) + f(J), for all

J ∈ J
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Definition 3. We say that equation (1) is Gauss hyper-
geometric stable w.r.t F(ℵ, β;℘;Jα) if, for each ε> 0, there
exists a constant value cF > 0, such that, for a differentiable
function w satisfying (5), we can find ρ such that the fol-
lowing holds:

c
D

α
Jρ(J) � k(J, ρ(J), ρ(h(J))), J ∈ J ⊂ R, α ∈ (0, 1).

(7)

'en, we have

|w(J) − ρ(J)|≤ cFεF ℵ, β;℘;Jα
( , J ∈ J. (8)

Definition 4. Consider the metric space (Y, δ) and the
operator T on Y. Now, T is a Picard operator if there exists
y∗ ∈ Y such that

(i) ET � y∗ wherever ET � y ∈ Y: T(y) � y  is the
fixed point set of T

(ii) 'e sequence (Tn(y0))n∈N converges to y∗, for all
y0 ∈ Y.

Lemma 1. If we consider an increasing Picard operator
T: Y⟶ Y, then (Y, δ, ≤ ) is an ordered metric space.
2erefore, for each y ∈ Y, y≤T(y), we have y≤y∗T.

In the sequel, we express the Gronwall lemma (see
Lemma 7.1.1 in [21]).

Lemma 2. We consider the continuous functions
μ, ]: J⟶ [0,∞). For the nondecreasing function ], there
are positive constants κ and 0< α< 1 such that

μ(J)≤ ](J) + κ
J

0
(J − ℓ)α− 1μ(ℓ)dℓ, J ∈ J. (9)

'erefore,

μ(J)≤ ](J) + 
J

0


∞

n�1

(κΓ(α))
n

Γ(nα)
(J − ℓ)nα− 1](ℓ)⎛⎝ ⎞⎠dℓ, J ∈ J.

(10)

Remark 3. For continuous and nondecreasing functions
](j) and μ(J) on J, we have

μ(J)≤ ](J)F ℵ, β;℘; κΓ(α)J
α

( . (11)

Remark 4. We propose the Picard method for the
uniqueness and stability of this problem, in which case both
its conditions will be weaker and it will be easier to prove it.

Remark 5 (see [22]). 'ere are some slight mistakes and
typos in [13]. In Definition 2.4 and Remark 2.6 in [13], the
space C[− h, d] should be C[− h, 0]∩C1− α;ψ[0, d]. For the
precise definition needed in [13], we note that the statement
(some typos) and proof of 'eorem 1 in [13] is fine once
X � C[− h, d] in [13] is replaced by C[− h, 0]∩C1− α;ψ[0, d]

with the norm (there was accidently a typo in relation to the
norm in [13]) max ‖.‖C[− h, 0], ‖.‖C1− α;ψ[0,d] .

3. Main Results

As mentioned in Section 1, we use stability algorithms and
methods to get good results. As we know, there are different
types of stability such as exponential, Mittag-Leffler and
Lyapunov type (see [9, 23], for more details). Here, we prove
the Gauss hypergeometric stability of equation (1). Before
proving the Gauss hypergeometric stability, we first inves-
tigate the existence of a unique solution to the fractional-
order differential equation. We prove the first theorem
utilizing Chebyshev norm ‖.‖C (‖ρ‖C � maxJ∈J|ρ(J)|).

Theorem 1. We assume that the functions k ∈ C(J × R2,R)

and h ∈ C(J, J) exist, such that h(J)≤J. Assume the fol-
lowing are satisfied:

(i) 2ere exists Lk > 0 such that |k(J, u1, u2) −

k(J, v1, v2)|≤ Lk 
2
i�1 |ui − vi|, for all J ∈ J, ui, vi ∈

R, i � 1, 2
(ii) (2Lkqα/Γ(α + 1))< 1

2erefore, (1) has a unique solution in C(J,R) and is
Gauss hypergeometric stable.

Proof. According to equation (1), we have

ρ(J) � φ(0) +
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, ρ(ℓ), ρ(h(ℓ)))dℓ, J ∈ J.

(12)

It is easy to see that (1) is equivalent to (12).
We first prove the existence of solution for equation (12).

We define the mapping Λk in Y: � C(J,R) as

Λkρ(J) � φ(0) +
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, ρ(ℓ), ρ(h(ℓ)))dℓ, J ∈ J.

(13)

Now, we need to demonstrate thatΛk determined in (13)
is a contraction mapping on Y: � C(J,R).
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According (i), we have

Λkρ(J) − Λkw(J)




≤
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, ρ(ℓ), ρ(h(ℓ)))

− k(ℓ, w(ℓ), w(h(ℓ)))




dℓ

≤
Lk

Γ(α)

J

0
(J − ℓ)α− 1 max

0≤ℓ≤q
|ρ(ℓ) − w(ℓ)| + max

0≤ℓ≤q
|ρ(h(ℓ)) − w(h(ℓ))| dℓ

≤
2Lk

Γ(α)
‖ρ − w‖c 

J

0
(J − ℓ)α− 1dℓ

≤
2Lkq

α

Γ(α + 1)
‖ρ − w‖c,

(14)

for all J ∈ J, which implies that

Λk(ρ) − Λk(w)
����

����C
≤

2Lkq
α

Γ(α + 1)
‖ρ − w‖C, ρ, w ∈ C(J,R).

(15)

'us, Λk is a contraction mapping w.r.t. the Chebyshev
norm ‖.‖C on Y. Now, to continue the proof, we utilize the
Banach contraction principle.

Now, we prove Gauss hypergeometric stability. We
assume that ρ is a unique solution to equation (1). 'en, for
w ∈ C(J,R) that is a given differentiable function, satisfying
(5), we have

ρ(J) � w(0) +
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, ρ(ℓ), ρ(h(ℓ)))dℓ, J ∈ J.

(16)

Obviously, Remark 1 implies that

w(J) − w(0) −
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, w(ℓ), w(h(ℓ)))dℓ



≤ εF ℵ; β;℘;Jα

( , (17)

for J ∈ J. Also according to (i), we have

|w(J) − ρ(J)|≤ w(J) − w(0) −
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, w(ℓ), w(h(ℓ)))dℓ




+
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, w(ℓ), w(h(ℓ)))dℓ


−
1
Γ(α)


J

0
(J − ℓ)α− 1

k(ℓ, ρ(ℓ), ρ(h(ℓ)))dℓ

≤ εF ℵ, β;℘;Jα
(  +

Lk

Γ(α)

J

0
(J − ℓ)α− 1

[|w(ℓ) − ρ(ℓ)|dℓ + |w(h(ℓ)) − ρ(h(ℓ))|]dℓ ,

(18)

for all J ∈ J. Now, we consider the operator
T: C(J,R+)⟶ C(J,R+), for each σ ∈ C(J,R+), as follows:

Tσ(J) � εF ℵ, β;℘;Jα
(  +

Lk

Γ(α)

J

0
(J − ℓ)α− 1σ(ℓ)dℓ + 

J

0
(J − ℓ)α− 1σ(h(ℓ))dℓ , J ∈ J. (19)
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In the continuation, we show that T is a Picard operator.
By (ii), we have

|Tσ(J) − Tϑ(J)|

≤
Lk

Γ(α)

J

0
(J − ℓ)α− 1

[|σ(ℓ) − ϑ(ℓ)|dℓ + |σ(h(ℓ)) − ϑ(h(ℓ))|]dℓ 

≤
2Lkq

α

Γ(α + 1)
‖σ − ϑ‖C,

(20)

for all J ∈ J and for every σ, ϑ ∈ C(J,R+), which implies
that

‖T(σ) − T(ϑ)‖C ≤
2Lkq

α

Γ(α + 1)
‖σ − ϑ‖C. (21)

Consequently, T w.r.t. the Chebyshev norm ‖.‖C is a
contraction mapping on C(J,R+). 'us, utilizing the
Banach contraction principle, we obtain that T is a Picard
operator and ET � σ∗{ }. Now, for,

σ∗(J) � εF ℵ, β;℘;Jα
(  +

Lk

Γ(α)

J

0
(J − ℓ)α− 1σ∗(ℓ)dℓ + 

J

0
(J − ℓ)α− 1σ∗(h(ℓ))dℓ . (22)

In the sequel, we show that the solution σ∗ is increasing.
Suppose that and denote m: � minℓ∈J[σ∗(ℓ)+ σ∗(h(ℓ))]
∈ R+, and we have

σ∗ J2(  − σ∗ J1(  � ε F ℵ, β;℘;Jα
2(  − F ℵ, β,℘;Jα

1(  

Lk

Γ(α)

J1

0
J2 − ℓ( 

α− 1
− J1 − ℓ( 

α− 1
  σ∗(ℓ) + σ∗(h(ℓ)) dℓ

+
Lk

Γ(α)

J2

J1

J2 − ℓ( 
α− 1 σ∗(ℓ) + σ∗(h(ℓ)) dℓ ≥ ε F ℵ, β;℘;Jα

2(  − F ℵ, β;℘;Jα
1(  

+
mLk

Γ(α)

J1

0
J2 − ℓ( 

α− 1
− J1 − ℓ( 

α− 1
 dℓ +

mLk

Γ(α)

J2

J1

J2 − ℓ( 
α− 1dℓ

� ε F ℵ, β;℘;Jα
2(  − F ℵ, β;℘;Jα

1(   +
mLk

Γ(α + 1)
J

α
2 − J

α
1( > 0.

(23)

'en, σ∗ is increasing. From h(J)≤J, we obtain

σ∗(h(J))≤ σ∗(J),

σ∗(J)≤ εF ℵ, β;℘;Jα
(  +

2Lk

Γ(α)

J

0
(J − ℓ)α− 1σ∗(ℓ)dℓ.

(24)

Now, utilizing Lemma 2, Remark 2, and
cF: � F(ℵ, β;℘; 2Lkqα), we obtain

σ∗(J)≤ cFεF ℵ, β;℘;Jα
( , J ∈ J. (25)

Since T is a Picard operator and increasing, by Lemma 1
and from (18), we conclude that σ ≤ σ∗. If we consider
σ � |w − ρ|, then

|w(J) − ρ(J)|≤ cFεF ℵ, β; wp;J
α

( , J ∈ J. (26)

'erefore, equation (1) is Gauss hypergeometric
stable. □

In the following, we give an example to illustrate the
previous theorem.
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Example 1. Consider a differential equation for α � 1/2 and
for any J ∈ (0, 1] (q � 1) as follows:

c
D

1/2
J ρ(J) � 0.01ρ5/2

��
π

√
(1 + J)

− (3/2)
, J ∈ (0, 1]. (27)

Based on what has been said in the above theorem, we
have

ρ(J) � w(0) +
0.01
Γ(1/2)


J

0
(J − ℓ)− (1/2)ρ(J)

5/2 ��
π

√
(1 + ℓ)− (3/2)dℓ.

(28)

According to equation (5) and using the fractional-order
differential equation, the following inequality is established
for the differentiable function w:

c
D

1/2
J w(J) − k J, w(J), w (1 + J)

− (3/2)
  



≤ εF ℵ, β;℘;J1/2
 .

(29)

'e functions k and h used in the above inequality are
considered as follows:

h(I) � (1 + I)
− (3/2)

,

k(I, ρ(I), ρ(h(I))) � 0.01ρ5/2
��
π

√
(1 + I)

− (3/2)
.

(30)

To be Ulam–Hyers-hypergeometric stable, we need a
positive constant Lk and a coefficient of Lipschitz
2Lkqα/Γ(α + 1). 'en, we consider Lk � 2/5 and as a result
2Lkqα/Γ(α + 1) � 8/5

��
π

√
≈ 0.9< 1.

According to 'eorem 1, all the conditions for the ex-
istence of the solution and the Gauss hypergeometric

stability are established. 'us, the coefficient cF � F(ℵ,

β;℘; (4/5)) exists to us so that

|w(J) − ρ(J)|≤ cFεF ℵ, β;℘;J1/2
 , J ∈ (0, 1]. (31)

Based on equation (28), we have a nonlinear equation
whose diagram for the arbitrary values in the interval (0, 1]

is shown in Figure 1.
In the next theorem, we prove the Gauss hypergeometric

stability utilizing Bielecki’s norm ‖.‖B(‖ρ‖B: �

maxJ∈I|ρ(J)|exp(− ηJ), η> 0, I ⊂ R+).

Theorem 2. Assume that the functions k ∈ C(J× R2,R),

h ∈ C(J, J) exist, such that h(J)≤J. Assume the following
are satisfied:

(i) 2ere exists Lk > 0 such that |k(J, u1, u2) − k(J,

v1, v2)|≤Lk 
2
i�1 |ui − vi| for all J ∈ J, ui, vi ∈ R,

i � 1, 2
(ii) (2Lkqα exp(ηq)/Γ(α)

���������
2(2α − 1)η


)< 1, for some

α ∈ (1/2, 1) and η> 0

2erefore, equation (1) has a unique solution in C(C,R)

and is Gauss hypergeometric stable.

Proof. Here, we prove that Λk: Y⟶ Y is defined in
'eorem 1 with Bielecki’s norm ‖.‖B, which is a contraction
operator. Also, we ignore from saying the similar arguments
that are expressed in'eorem 1.'en, for allJ ∈ J, we have

Λkρ(J) − Λkw(J)




≤
1
Γ(α)


J

0
(J − ℓ)α− 1

|k(ℓ, ρ(ℓ), ρ(h(ℓ))) − k(ℓ, w(ℓ), w(h(ℓ)))|dℓ

≤
Lk

Γ(α)

J

0
(J − ℓ)α− 1 exp(ηℓ)

max0≤ℓ≤q|ρ(ℓ) − w(ℓ)|exp(− ηℓ) + max
0≤ℓ≤q

|ρ(h(ℓ)) − w(h(ℓ))|exp(− ηℓ) dℓ

≤
2Lk

Γ(α)
‖ρ − w‖B 

J

0
(J − ℓ)α− 1 exp(ηℓ)dℓ.

(32)

Now, we utilize Holder’s inequality, for α ∈ (1/2, 1).
'en,


J

0
(J − ℓ)α− 1 exp(ηℓ)≤ 

J

0
(J − ℓ)2(α− 1)dℓ 

1/2


J

0
exp(2ηℓ)dl 

1/2

≤
1
��
2η


q
α

������
2α − 1

√ exp(ηq).

(33)
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'erefore,

Λk(ρ) − Λk(w)
����

����B
≤

2Lkq
α exp(ηq)

Γ(α)
���������
2(2α − 1)η

 ‖ρ − w‖B. (34)

Consequently, we have

Λk(ρ) − Λk(w)
����

����B
≤

2Lkq
α exp(ηq)

Γ(α)
���������
2(2α − 1)η

 ‖ρ − w‖B, ρ, w ∈ C(J,R).

(35)

'erefore, Λk on Y is a contraction mapping w.r.t.
Bielecki’s norm ‖.‖B. Now, we apply the Banach contraction
principle to prove (ii). To prove that T in 'eorem 1 is a
Picard operator, we show that T is a contraction. For all
J ∈ J and α ∈ (1/2, 1) and for every σ, ϑ ∈ C(J,R+), we
have

|Tσ(J) − Tϑ(J)|≤
2Lkq

α exp(ηq)

Γ(α)
���������
2(2α − 1)η

 ‖ρ − w‖B. (36)

'en,

‖T(σ) − T(ϑ)‖B ≤
2Lkq

α exp(ηq)

Γ(α)
���������
2(2α − 1)η

 ‖ρ − w‖B. (37)

Consequently, T is a contraction mapping on C(J,R+)

with Bielecki’s norm ‖.‖B. 'e Gauss hypergeometric sta-
bility proof is exactly the same as 'eorem 1. □

Example 2. Consider a fractional-order differential equation
as

c
D

2/3
J ρ(J) �

1
27
Γ

2
3

 (J − h), J ∈ 0,
1
4

 , (38)

for α � 2/3 and for anyJ ∈ (0, 1/4]. Based on what has been
said in 'eorem 2, we have

ρ(J) � w(0) +
1

27Γ(2/3)

J

0
(J − ℓ)− (9/10)Γ

2
3

 (J − 0.01)dℓ.

(39)

Let Lk � 1/2 and η � 1/2. Consequently,

2Lkq
α exp(ηq)

Γ(α)
���������
2(2α − 1)η

 �
(1/4)

2/3 exp(1/8)

Γ(2/3)
���
1/3

√ < 0.58< 1. (40)

According to equation (5) and using the fractional-order
differential equation, for the differentiable function w, we
have

c
D

2/3
J w(J) − k(J, w(J), w(J − h))



≤ εF ℵ, β;℘;J2/3
 .

(41)

All the conditions for the existence of the solution and
the Gauss hypergeometric stability are established by 'e-
orem 2. 'erefore, the coefficient cF � F(ℵ, β;℘; (1/4)2/3)

exists, and we have

|w(J) − ρ(J)|≤ cFεF ℵ, β;℘;J2/3
 , J ∈ 0,

1
4

 . (42)

According to equation (39) for the function ρ, we have
Figure 2 for every J ∈ (0, 1/4).

Remark 6. In 'eorem 2, we examined our problem for
α ∈ (1/2, 1) by utilizing Holder’s inequality. At present, we
re-examine the problem for α ∈ (0, 1).

Let ; therefore, we have

Λkρ(J) − Λkw(J)


≤
2Lk

Γ(α)
‖ρ − w‖B 

J

0
(J − ℓ)α− 1 exp(ηℓ)dℓ

≤
2Lkq

α exp(ηq)

Γ(α + 1)
‖ρ − w‖B.

(43)

j = 0.0526
j = 0.1053
j = 0.1579
j = 0.2105
j = 0.2632
j = 0.3158
j = 0.3684

j = 0.4211
j = 0.4737
j = 0.5263
j = 0.5789
j = 0.6316
j = 0.6842

j = 0.7368
j = 0.7895
j = 0.8421
j = 0.8947
j = 0.9474
j = 1.0000

0.2

0.1

0

–0.1

–0.4

–0.5

–0.6
0

–0.3

–0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ρ (j)

F

Figure 1: Fraction integral equation diagram. F is the nonlinear equation obtained from equation (28).

Mathematical Problems in Engineering 7



For some α ∈ (0, 1) and η> 0, we have
2Lkqα exp(ηq)/Γ(α + 1)< 1. Now, we be able demonstrate
that Λk is a contraction via Bielecki’s norm ‖.‖B on Y as well.

4. Conclusion

In this paper, we applied the Picard method to investigate
existence, uniqueness, and Gauss hypergeometric stability of
fractional-order differential equations.
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