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As is well known, the mixed complementarity problem is equivalent to a nonsmooth equation by using a median function. By
investigating the generalized Jacobi of a composite vector-valued maximum function, a nonsmooth Levenberg–Marquardt
algorithm is proposed in this paper. In the present algorithm, we adopt a new LM parameter form and discuss the local
convergence rate under the local error bound condition, which is weaker than nonsingularity. Finally, the numerical experiments
and the application for the real-time pricing in smart grid illustrate the effectiveness of the algorithm.

1. Introduction

1.1. Background and Motivation. Mixed complementarity
problem, MCP for short, is one of the important types of
finite dimensional variational inequality, such that to find a
vector x ∈ Rn as follows:

F(x)
T
(y − x)≥ 0, ∀y ∈ X, (1)

where F(x) � (F1(x), . . . , Fn(x))T is assumed to be con-
tinuously differentiable, X � 􏽑

n
i�1[li, ui], − ∞< li < ui <

+∞, i � 1, . . . , n. While li � 0, ui �∞, the MCP is the
nonlinear complementarity problem (NCP). *e MCP is
extensively used in the field of science and engineering,
where the practical problem is transformed into the MCP
firstly and then is investigated for its solvability and the
stability of the solution [1–7], such as the real-time pricing in
smart grid, which will be the application of our present
algorithm.

Recently, the real-time pricing (RTP) principle, which is
determined before the deal happening through the inter-
communication between the supply and demand of elec-
tricity and can guide and motivate the users in off-peak

electricity by adjusting the real-time price signal so as to
reduce the peak load, achieves the purpose of peak cutting
and has been widely recognized as one of the promising
solutions to adjust the power balance between the supply
and demand in smart grid system. A decade ago, Samadi
et al. proposed a RTP model called social welfare maximi-
zation model (SWMM) to maximize the aggregated welfare
for the users as well as minimizing the cost of the providers
[8–10], based on which some different optimization algo-
rithms have been proposed [11–13]. *ese algorithms are
proved feasible and effective by the numerical results.
However, these are most smoothing methods, where the
gaps exist between the approximate smoothing system and
the original nonsmooth system so that the solution may be
not as accurate as nonsmooth algorithms. Considering that,
may be transforming the practical model to the mixed
complementarity problem and investigating its nonsmooth
algorithm are meaningful and valuable.

1.2. Related Work and Challenge. In the last years, many
results on the theories and algorithms for the MCP have
been developed [14–16]. One of the most popular
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approaches for the MCP is to reformulate it as an equivalent
equation such that

H(x) � 0, (2)

where

Hi(x) � xi − mid li, ui, xi − Fi(x)( 􏼁, (3)

and mid(a, b, c) represents the median of the three scalar
a, b, c. Obviously, the system of equation (2) is nonsmooth.
Since the subdifferential of vector-valued median function is
not easy to obtain, smoothing methods have received much
attentions based on some smoothing functions with good
property for MCP. Gabriel and Moré proposed a class of
smoothing functions for the median function [14]. By far, the
threemost often used functions are the networks function, the
Chen–Harker–Kanzow–Smale (CHKS) smoothing function
and the uniform smoothing function. Zhou and Peng pro-
posed new class smoothing functions, called the locally
Chen–Harker–Kanzow–Smale (LCHKS) smoothing func-
tions for the MCP [15]. Chen et al. studied the Jacobian
smoothing Newton method and established superlinear
convergence of a smoothing Newton method [16]. Qi et al.
proposed a modified smoothing Newton method based on a
2n-dimensional semismooth equation reformulation [17].
*ese algorithms are proved feasible and effective by the
numerical results. However, the nonsmooth algorithms for
(2), which may be more accurate and more suitable for the
practical problem, are few discussed by our knowledge.
Considering that, if the algorithm for the subdifferential of
vector-valued median function is obtained, the nonsmooth
algorithms for MCP are more effective. Hence, we focus on a
nonsmooth Levenberg–Marquardt method, namely, a
modified Newton method, with a new parameter form by
investigating a maximum-valued composition function’s
subdifferential in this paper. Also, the numerical experiments
and the application for the real-time pricing in smart grid
were given to illustrate the effectiveness of the algorithm.

*e outline of the paper is as follows. In Section 2, we
recall some preliminaries in nonsmooth analysis and
propositions necessary. In Section 3, a nonsmooth Lev-
enberg–Marquardt method is present based on the com-
putation of a maximum-valued composition function’s
subdifferential, also its local convergence rate under the local
error bound, which is weaker than nonsingularity is shown.
In Section 4, the numerical experiments illustrate the ef-
fectiveness of the algorithm. In Section 5, we apply the
present algorithm to the real-time pricing in smart grid,
which also illustrates the present algorithm’s effectiveness
when compared with the traditional fixed price method.

2. Preliminaries

In what follows, we recall some basic concepts and prop-
ositions necessary in this paper.

In nonsmooth analysis, there are three common forms of
differential, such as B-differential denoted as zB(·), Clarke
generalized Jacobian denoted as zCl(·), and C-subdifferential
denoted as zCl(·), where zBH(x)⊆ zClH(x)⊆ zCH(x).

Let H: Rn⟶ Rm be locally Lipschitzian; ΩH denotes a
set, where H is not differential; B-differential of H at x ∈ Rn

is defined by

zBH(x) � lim JH xi( 􏼁: xi⟶ x, xi ∉ ΩH􏼈 􏼉. (4)

Clarke generalized Jacobian of H at x ∈ Rn is defined as
the convex hull of zBH(x) such that

zClH(x) � convzBH xk( 􏼁. (5)

C-subdifferential of H at x ∈ Rn is defined by

zCH(x) � zClH1(x) × · · · × zClHm(x), (6)

where Hi(x) is the ith component of the function H(x).
Subdifferentially regular function is a subclass of Lip-

schitzian functions. For function H: Rn⟶ R, if it is locally
Lipschitz continuous at x and its classical directional de-
rivative H′(x; d) exists and there is

H′(x; d) � H
o
(x; d), (7)

for all d ∈ Rn, we say it is subdifferentially regular at x. *e
subdifferentially regular function is broad and includes
many types, such as smooth functions and convex functions,
if f � 􏽐

m
i�1(x)λifi, where λi > 0 and fi is subdifferentially

regular at x for each i � 1, . . . , m.
Subdifferentially regular functions have some special

properties such that

(i) If fi: R
n⟶ Rm is subdifferentially regular at x,

there is zf(x) � λizfi(x).
(ii) Let f: Rn⟶ R be such that f � g°h, where

h: Rn⟶ Rm, g: Rm⟶ R. If the function g is
subdifferentially regular at h(x), each hi is sub-
differentially regular at x, there is zf(x) � conv
zh (x)Tzg(h(x))􏽮 􏽯.

Subdifferentially regular functions are always semi-
smooth, which includes many types of functions, such as
smooth functions, maximum functions, and so on.*ere are
some properties for semismooth functions such that

(i) Vd − H′(x; d) � o(d), ∀V ∈ zClH(x + d).
(ii) H(y) − H(x) − VT(y − x) � o(‖y − x‖), ∀V ∈ zCl

H(x).

Obviously, since zBH(x)⊆ zClH(x), the properties also
exist when ∀V ∈ zBH(x).

3. The Algorithm and Its Local
Convergence Rate

In this section, we give a modified nonsmooth Lev-
enberg–Marquardt method based on the calculation of an
element in Clarke Jacobi of a composite vector-valued
maximum function firstly and then the local convergence
rate under the local error bound condition was investigated.

*e Levenberg–Marquardt method (LM) algorithm is a
classical and popular approach for solving nonlinear
equations, which is also called an inexacted Newton method.
It is used to solve the nonsmooth equations as follows:
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xk+1 � xk − ξT
k ξk + λkI􏼐 􏼑

− 1
ξT

k H xk( 􏼁, (8)

where ξk ≔ ξ(xk) ∈ zBH(xk), λk > 0, is called LM parame-
ter. In general, it is not easy to calculate one element in
zBH(xk), which is necessary to ensure the Newton-types
algorithms operation. In the LMmethods, the LM parameter
is important, different forms of the parameters may cause
different convergent rate. In [18], Fan showed the LM pa-
rameter λk � μk‖Hk‖δ with δ ∈ (0, 2], where μk is updated by
trust region techniques to make the algorithm still have good
results when the sequence is far away from the solution.
However, Amini and Rostami [19] thought the LM method
with λk � μk‖Hk‖δ and δ � 1 may reverse outcome on the
result of initial steps which are far from the solution set.*ey
thought ‖Hk‖ may be so large that the LM step is small,
which can reduce the efficiency of the algorithm. *ey
proposed a new LM parameter as follows:

λk �
μk Hk

����
����

1 + Hk

����
����
. (9)

Inspired by this and considering the above algorithms
are all for the equations, where H(x) is continuously dif-
ferentiable, we adopted the LM parameter in the nonsmooth
LM algorithm such that

λk �
μk Hk

����
����
δ

1 + Hk

����
����
δ, (10)

where δ ∈ (0, 2]. We next give the modified nonsmooth LM
algorithm.

Remark 1. It is noticeable that one element of the function
H′s B-differential, namely, the Clarke Jacobi is necessary in
Algorithm 1. Hence, a subalgorithm is the basis to run
Algorithm 1.

In what follows, we investigate the calculation of one
element of the H′s Clarke Jacobi.

Since Hi(x) � mid(li, ui, xi − Fi(x)) in (2), and there is

Hi(x) � Fi(x) − li − ui + min li, ui, xi − Fi(x)􏼈 􏼉

+ max li, ui, xi − Fi(x)􏼈 􏼉,
(11)

namely,

Hi(x) � Fi(x) − li − ui − max − li, Fi(x) − xi􏼈 􏼉

+ max ui, xi − Fi(x)􏼈 􏼉.
(12)

*e function H is actually a composite vector-valued
maximum function. We focus on the B-differential of a
composite vector-valued maximum function for general
form such that

G(x) �

g1 max
j∈J(1)

1

f
(1)
1j (x), . . . ,max

j∈J(1)
m

f
(1)
mj (x)⎛⎝ ⎞⎠

⋮

gn max
j∈J(n)

1

f
(n)
1j (x), . . . ,max

j∈J(n)
m

f
(n)
mj (x)⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where gs: R
m⟶ R for s � 1, . . . , n, f

(s)
kj : Rn⟶ R for

j ∈ J
(s)
k , k � 1, . . . , m, is continuously differentiable, and J

(s)
k

for k � 1, . . . , m are finite index sets. Let hi � (max
j∈J(i)

i

f
(i)
ij (x), . . . ,max

j∈J(i)
m

f
(i)
mj(x)); the function G(x) can be

denoted as

G(x) � g1 h1(x)( 􏼁, . . . , gn hn(x)( 􏼁
T

􏼐 􏼑. (14)

Denote

S
(i)
t (x) � k: f

(i)
tk (x) � max

s∈J(i)
t

f
(i)
ts (x)

⎧⎨

⎩

⎫⎬

⎭,

i � 1, . . . , n, t � 1, . . . , m,

(15)

and S
(i)

t (x) as a subset of S
(i)
t (x) satisfying some properties

such that

(i) For any k ∈ S
(i)
t (x), there always exists s ∈ S

(i)

t (x)

such that

∇f(i)
ts (x) � ∇f(i)

tk (x). (16)

(ii) For any k, t ∈ S
(i)

t (x), k≠ t, there is

∇f(i)
ts (x)≠∇f(i)

ts (x). (17)

Lemma 1. Suppose S
(i)

t (x) is a singleton or there exists a
nonnegative constant aqti

for ki such that

∇f(i)
tki

(x) − ∇f(i)
ts (x) � 0, . . . , aqti

, . . . , an􏼒 􏼓
T

,

∀s ∈ S
(i)

t (x), t � 1, . . . , m,

(18)

then (V1, . . . , Vn)T ∈ zBhi(x), where Vi � (f
(i)
1k1

(x), . . . ,

f
(i)
mkm

(x)), kj ∈ S
(i)

j (x), j � 1, . . . , m.

Proof. *e statement is obvious by the virtue of *eorem 1
in [20]; we omit the proof. □

Theorem 1. Let (V1, . . . , Vn)T ∈ zBhi(x), gi: R
m⟶ R for

i � 1, . . . , n be continuously differentiable, then (∇g1, . . . ,

∇gn)T ∈ zBGi(x)), where ∇gi � (V1, . . . , Vn)T∇gi(hi(x)).

Proof. By the properties of the subdifferentially regular
function and Lemma 1, we have

zhi(x)
T
zgi hi(x)( 􏼁 ∈ zBGi(x) ⊂ ∇G1, (19)

we imply the statement. □

We next study the local convergence properties of the
present algorithm. Give some necessary assumptions firstly.

Assumption 1

(i) *e solution set X of MCP is nonempty, and the
sequence xk􏼈 􏼉 converges to X, where some neigh-
bourhoods of x∗ ∈ X lie in.
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(ii) ‖H‖ provides a local error bound on some neigh-
borhood of x ∈ X. Namely, there exists constants
c1 > 0 such that

c1 · dist(x, X)≤ ‖H(x)‖, ∀x ∈ N(x, r), (20)

where dist(x, X) � infy∈X‖y − x‖ and N(x, r) is a
neighborhood of x.

(iii) *ere exists a positive constant L1 such that

‖H(y) − H(x)‖≤L1‖y − x‖, ∀x, y ∈ N(x, r). (21)

Lemma 2. Let dist(xk, X) � ‖xk − xk‖, where xk ∈ X, under
the conditions of Assumption 1, there is

dk

����
����≤O xk − xk

����
����
α

􏼐 􏼑, (22)

where α � min 1 + p − δ/2, 1􏼈 􏼉.

Proof. By virtue of the prosperities of the semismooth
function H(x), there is

H(y) − H(x) − V
T
(y − x)

����
����≤L‖y − x‖

1+p
, (23)

where L and p are positive constants, respectively. Especially
when H is strongly semismooth, we have p≥ 1. Denote
q(d) � ‖Hk + Vkd‖2 + λk‖d‖2. Similar to the proof of
Lemma 4.1 in [20], it is obvious that

dk

����
����
2 ≤

1
λk

q dk( 􏼁

≤
L
2

xk − xk

����
����
2(1+p)

λk

+ xk − xk

����
����
2

�
L
2 1 +‖H(x)‖

δ
􏼐 􏼑 xk − xk

����
����
2(1+p)

‖H(x)‖
δ + xk − xk

����
����
2

�
L
2 1 + L1 xk − xk

����
����
δ

􏼒 􏼓 xk − xk

����
����
2(1+p)

L1 xk − xk

����
����
δ + xk − xk

����
����
2
,

(24)

which means that ‖dk‖≤O(‖xk − xk‖α), where α � min 1+{

p − δ/2, 1}. □

Theorem 2. Suppose the initial point x0 is chosen sufficiently
close to the solution set X, and xk􏼈 􏼉 is generated by Algo-
rithm 1, then xk􏼈 􏼉 converges to some solution x∗ of the
nonsmooth equation (2) with the convergence rate c under
Assumption 1, where αβ≤ c≤ β, and α � min 1 + p − δ/􏼈

2, 1}, β � min 1 + p, 1 + δ/2􏼈 􏼉.

Proof. *e proof is similar to the proof of *eorem 4.1 in
[20]. Combining (21) with (22) and (23), it is obvious that

Hk + Vkdk

����
����
2 ≤ q dk( 􏼁

≤ Hk + Vk xk − xk( 􏼁
����

����
2

+ λk xk − xk

����
����
2

� H xk( 􏼁 − H xk( 􏼁 − Vk xk − xk( 􏼁
����

����
2

+
μk Hk

����
����
δ

1 + Hk

����
����
δ xk − xk

����
����
2

� H xk( 􏼁 − H xk( 􏼁 − Vk xk − xk( 􏼁
����

����
2

+ μk Hk

����
����
δ

xk − xk

����
����
2

≤L
2

xk − xk

����
����
2(1+p)

+ MLδ1 xk − xk

����
����
2+δ

,

(25)

Step 0. Give an initial point x0 ∈ Rn and parameters ε> 0, 0<m< 1, 0<M<∞, 0<
p1 <p2 < 1, η1 ∈ (0, 1/2), η2 ∈ (η1, 1], η3 ∈ [0, 1/4), μ0 > 0.
Step 1. Compute Hk, Vk. If ‖VT

k Hk‖≤ ε, stop. Otherwise, go to step 2.
Step 2. Set
λk � μk‖Hk‖δ/1 + ‖Hk‖δ,
where δ ∈ (0, 2].
Step 3. Solve the following nonlinear equations to obtain dk,
(VT

k Vk + λkI)dk � − VT
k Hk,

where Vk ∈ zBHk.
Step 4. Compute rk � Aredk/Predk, where
Aredk: � φ(xk + dk) − φ(xk)

Predk: � H
T
k Vkdk + 1/2d

T
k V

T
k Vkdk

Step 5. If rk > η3, set xk+1 � xk + dk, else xk+1 � xk.
Step 6. Update the parameter μk as follows

μk+1 �

min 4μk, M􏼈 􏼉 if rk <p1
μk if rk ∈ [p1, p2]

max 0.25μk, m􏼈 􏼉 if rk >p2

⎧⎪⎨

⎪⎩

*en, go to step 1.

ALGORITHM 1: Algorithm NLM.
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which implies

Hk + Vkdk

����
����≤O xk − xk

����􏼐 􏼑
β
􏼓, (26)

where β � min 1 + p, 1 + δ/2􏼈 􏼉􏼈 . Furthermore, since

H xk + dk( 􏼁
����

����≤ H xk( 􏼁 + Vkdk

����
���� + L1 dk

����
����
1+p

, (27)

holds by virtue of the property of the semismooth function
H, we have

H xk + dk( 􏼁
����

����≤O xk − xk

����
����
β

􏼒 􏼓, (28)

that is to say, there exists a positive constant c2 such that

H xk + dk( 􏼁
����

����≤ c2dist xk, X( 􏼁
β
. (29)

Hence, combining (20) with (26), we have

dist xk + dk, X( 􏼁≤
1
c1

H xk + dk( 􏼁
����

����≤
c2

c1
dist xk, X( 􏼁

β
.

(30)

*us, combining (30) with the following inequality such
that

dist xk, X( 􏼁≤ dist xk + dk, X( 􏼁 + dk

����
����, (31)

which implies

dist xk, X( 􏼁≤ 2 dk

����
����, (32)

for k large enough and δ ∈ (0, 2], we have

dist xk, X( 􏼁≤O dk

����
����
α

􏼐 􏼑. (33)

Furthermore, from (22), (30), and (32), there is

dk+1
����

���� � O dk

����
����

c
􏼐 􏼑, (34)

where αβ≤ c≤ β. □

4. Numerical Experiments

In this section, we compare the present algorithm (NLM)
with one-step smoothing method (OSN) with global con-
vergence proposed by Tang et al. in [21] at different initial
points. Here, we set ε � 1.0e − 6, μ0 � 1, m � 1.0e − 6, M �

1.0e + 8, η1 � 0.001, η2 � 1, η3 � 0 in NLM. *e numerical
results are listed in Tables 1–3, respectively. “—” denotes that
the algorithm fails the solution.

Problem 1. Let

F(x) �

x
3
1 − 8

x2 − x3 + x
3
2 + 3

x2 + x3 + 2x
3
3 − 3

x4 + 2x
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

(1) Set [l, u] � [0, 5]4; the MCP has the solution x∗ �

(2, 0, 1, 0)T, F(x∗) � (0, 2, 0, 0)T; (2) set [l, u] � [− 1, 1]4; the

MCP has the solution x∗ � (1, − 1, 1, 0)T, F(x) � (− 7, 0,

− 1, 0)T.

Problem 2. Let F(x) � Mx + q, where

M �

4 2 2 1

2 4 0 1

2 0 2 2

− 1 − 1 − 2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, q �

− 8

− 6

− 4

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (36)

Set [l, u] � [− 1, 1]4; the MCP has the solution x∗ �

(1, 8/9, 5/9, 4/9)T, F(x∗) � (− 2/3, 0, 0, 0)T; (2) set [l, u] �

[− 5, 5]4; the MCP has the solution x∗ � (4/3, 7/9, 4/9,

2/9)T, F(x) � (0, 0, 0, 0)T.

Problem 3 (Kojima–Shindo problem). Let [l, u] � [0, 105]4,

F(x) �

3x
2
1 + 2x1x2 + 2x

2
2 + x3 + 3x4 − 6,

2x
2
1 + x1 + x

2
2 + 10x3 + 2x4 − 2,

3x
2
1 + x1x2 + 2x

2
2 + 2x3 + 9x4 − 9,

x
2
1 + 2x

2
2 + 2x3 + 3x4 − 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

*ere exists solutions x∗ � (
�
6

√
/2, 0, 0, 1/2)T, x∗∗ �

(1, 0, 3, 0)T in this problem.

5. Application for Real-Time Pricing in
Smart Grid

Normally, suppose an electric power distribution system
that consists of a single energy provider and N load sub-
scribers or users. An energy provider and all users are
connected with each other through an information com-
munication infrastructure. Divide a whole cycle into K

periods. Let xi(k) be the power consumption demand at
time slot k of the customer i.

*e social welfare maximization model proposed by
Samadi et al. [8] is as follows:

max 􏽘
K

k�1
􏽘

N

i�1
U xi(k),ωi(k) − Ck Lk( 􏼁( 􏼁⎛⎝ ,

s.t. 􏽘
i∈N

xi(k)≤Lk, k � 1, 2, . . . , K,

xi(k)≥ 0, k � 1, 2, . . . , K,

(38)

where Lk means the production capacity of the energy
provider at the time slot k, Ck is the cost function of the
energy provider, and the utility function U(xi(k),ωi(k)) is
such that

Ui xi(k),ωi(k)( 􏼁 �

ωi(k)xi(k) −
αixi(k)

2

2
, if 0≤ xi(k)<

wi(k)

αi

,

wi(k)
2

2αi

, if xi(k)≥
wi(k)

αi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)
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Mathematically, for each period k ∈ 1, 2, . . . , K, the
model RTP can be expressed as an optimization problem as
follows:

max 􏽘
N

i�1
U xi(k),ωi(k)( 􏼁 − Ck Lk( 􏼁,

s.t. 􏽘
N

i�1
xi(k)≤Lk, k � 1, 2, . . . , K,

xi(k)≥ 0, k � 1, 2, . . . , K.

(40)

Considering a more general form of (40) such that

minf(x),

s.t. g(x)≤ b,

x≥ 0.

(41)

If x is the optimization solution, it satisfies the Kar-
ush–Kuhn–Tucker (KKT) condition such that

∇f(x) + λ∇g(x) � 0,

λ(g(x) − b) � 0,

λ≥ 0, g(x) − b≤ 0,

⎧⎪⎪⎨

⎪⎪⎩
(42)

where λ is the shadow price in economics, namely, the real-
time pricing [22, 23]. Denoting G(x, λ) � ∇f(x) + λ∇g(x),

H(x, λ) � − g(x) + b, we obtain the equivalent mixed
complementarity problem of (42) as follows:

G(x, λ) � 0,

H(x, λ)≥ 0,

λT
H(x, λ) � 0.

⎧⎪⎪⎨

⎪⎪⎩
(43)

Considering a smart grid system in a small area with
N � 5, namely, 5 users, we next show numerical simulation
results within a 24-hour time pattern as an evaluation of
daily operations. *e electricity demand of the five busi-
nesses xk,0 is chosen randomly from [1, 20]; the utility
function of the user is chosen as follows:

U(x,ω) �

ωx −
αx

2

2
, if 0≤x<

w

α
,

w
2

2α
, if x≥

w

α
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(44)

with α � 0.5, wi(k) ∈ [1, 5], and ak � 0.5, bk � ck � 0 in the
cost function of the energy provider such that

C Lk( 􏼁 � aL
2
k + bLk + ck. (45)

*e initial power supply Lk,0 � Σ5i�1x
k,0
i . To illustrate the

effectiveness, we compared the price and the social benefit at

Table 1: Numerical results of Problem 1.

[l, u] Initial point
OSN NLM

Iter ‖H(x)‖ Iter ‖H(x)‖

[0, 5]
(1, 3, 2, 4)T 17 2.6893e − 08 10 1.9829e − 05
(4, 3, 1, 4)T 18 1.9489e − 07 9 4.2584e − 12
(5, 5, 5, 5)T 24 1.9168e − 07 14 1.4399e − 06

[− 1, 1]
(1, 1, 1, 1)T 8 3.6500e − 04 8 9.6985e − 06

(1, − 1, 1, 1)T 8 3.6500e − 04 7 8.3019e − 07
(1/2, − 1/2, 1, 1)T 8 2.1316e − 04 6 8.0830e − 06

Table 2: Numerical results of Problem 2.

[l, u] Initial point
OSN NLM

Iter ‖H(x)‖ Iter ‖H(x)‖

[− 1, 1]
(1, 1, 1, 0)T 8 1.7666e − 04 5 2.9456e − 05
(1, 3, 2, 4)T 6 4.5967e − 07 7 9.8310e − 05
(4, 3, 1, 4)T 9 3.2626e − 08 12 1.0820e − 09

[− 5, 5]
(− 1, − 1, − 1, − 1)T 6 1.3938e − 08 7 5.7825e − 05

(2, 4, 3, 5)T 6 1.3938e − 08 8 5.2440e − 07
(5, − 5, − 5, 5)T 8 1.0340e − 08 10 6.2649e − 07

Table 3: Numerical results of Problem 3.

[l, u] Initial point
OSN NLM

Iter ‖H(x)‖ Iter ‖H(x)‖

[0, 105]

(1, 2, 3, 1)T 17∗ 8.3645e − 05 17∗ 2.5678e − 09
(3, 4, 5, 6)T 17∗ 5.5006e − 08 16∗∗ 7.9148e − 07

(10, 10, 10, 10)T — — 21∗ 3.3521e − 08
(100, 100, 100, 100)T 48∗∗ 1.6079e − 04 19∗∗ 1.8672e − 07

(1000, 1000, 1000, 1000)T — — 21∗ 2.6109e − 07
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different time based on the present method (NLM) with
those based on the traditional fixed method [16] with
λk � max(wk) − (aLk)/N. *e results are shown in Figures 1
and 2.

6. Conclusions

By using a median function, the mixed complementarity
problem is equivalent to a nonsmooth equation. More
general, we investigated the generalized Jacobi of a com-
posite vector-valued maximum function, based on which, a
modified nonsmooth Levenberg–Marquardt algorithm with
a new form LM parameter was proposed. Meanwhile, we
discussed the local convergence order of the present algo-
rithm under the local error bound. Compared with the OSN,
the present algorithm is more robust while the initial point is
far from the solution, it always needs less iterations. While
the initial point is near the solution, the present algorithm is
also effective, as seen from Tables 1–3. We also discuss the
application of the present algorithm for the real-time pricing
in this paper. From Figures 1 and 2, we obtain that the
electricity price calculated by the present method is sig-
nificantly lower, and the social benefit is not less than the

fixed electricity price method when compared with the
traditional fixed price method, which is beneficial to the
demand side while not affecting the overall social benefits.
Hence, the present algorithm is effective for the real-time
price in smart grid. However, the algorithm for the com-
posite vector-valued maximum function is limited, and the
subdifferentially regular is a little strong. *e calculation of
the Clarke Jacobi for other functions and the applications of
the present algorithm are our future topics to research.
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