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In this paper, we study the blow-up of solutions for wave equation involving the fractional Laplacian with nonlinear source.

1. Introduction and Brief History of
Fractional Integrodifferentiation

Let Ω ⊂ Rn, n≥ 1 be an open domain with Lipschitz
boundary zΩ. In this article, we consider the hyperbolic
initial-boundary value problem involving the fractional
Laplacian; for w � w(x, t), we consider the wave equation
with power nonlinearity:

z
2
t w +(− Δ)r

w +(− Δ)r
ztw � w|w|

p− 2
, x ∈ Ω, t> 0,

w � 0, x ∈ zΩ, t> 0,

w(x, 0) � w0(x), ztw(x, 0) � w1(x), x ∈ Ω,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where (− Δ)r is the fractional Laplacian such that r ∈ (0, 1).
*e exponent p satisfies

2<p≤
2n

n − 2r
� 2∗r, n> 2r. (2)

*e fractional integrodifferentiation operation is a
generalization of the differentiation operations. *e idea of
fractional differentiation as a generalization of the concept of
the derivative to the noninteger value of a arose almost
simultaneously with the very concept of differentiation. *e
first mention of this idea occurs in the correspondence of

G. W. Leibniz and Marquis de l’Hospital in 1695 (see [1]).
*e idea of fractional integrodifferentiation was further
developed in the works of L. Euler, who in 1738 noticed that
an expression can be given meaning even for noninteger
values (see [2]). An explicit calculation formula was given in
the treatise by S. Lacroix in 1820 (see [3]). Also in 1812, P.S.
Laplace put forward the idea of the possibility of differen-
tiating noninteger order for some functions. *e first def-
inition of the derivative of noninteger order was given by
J. Fourier in 1822. In its modern form, fractional inte-
grodifferentiation was formed in the works of N.H. Abel and
J. Liouville. In 1823, in connection with the problem of
tautochrone—a curve, when sliding along which, under the
influence of gravitational forces, a body reaches its lowest
point in the same time, regardless of its initial position. *e
idea of considering fractional differentiation as an operation
inverse to fractional integration was first proposed by
Holmgren in 1865 (see [4–6]). A year later, Grunwald, who
was not familiar with Holmgren’s work, came to the same
idea of Letnikov in 1868 (see [7–13]).

In [14], an efficient novel technique, namely, the
q-homotopy analysis transform method (q-HATM), is ap-
plied to find the solution for the time-fractional
Kaup–Kupershmidt (KK) equation and the study of frac-
tional Emden–Fowler (FEF) equations by utilizing a new
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adequate procedure; specifically, the q-homotopy analysis
transform method (q-HATM) is considered in [15].

Fractional wave systems with continuous nonlinearities
are possessed by a large number of researchers. In [16], the
authors considered initial-boundary value problem of de-
generate Kirchhoff-type

z
2
t w +[w]

2(θ− 1)
r (− Δ)r

w � |w|
p− 1

w, inΩ × R+, (3)

where Ω ⊂ Rn, n≥ 1 is a bounded domain with Lipschitz
boundary, θ ∈ [1, 2∗], and [w]r is the Gagliardo seminorm
of w defined by

[w]r � 
Ω


Ω

|w(x) − w(z)|2

|x − z|n+2r
dxdz 

1/2

. (4)

*e authors obtained, under appropriate conditions, the
global existence in time and finite blow-up of solutions for
(3) owing to the Galerkin method combined with the po-
tential wells. *ey also showed the global existence of so-
lutions under critical initial conditions. In [17], the authors
studied the following damped degenerate Kirchhoff
equation:

z
2
t w +[w]

2(θ− 1)
r (− Δ)r

w + ztw



α− 1

ztw

+ w � |w|
p− 2

w, inΩ × R+,
(5)

where 2< α< 2θ<p< 2∗ < r. *e global existence, behavior
of solutions, and blow-up in time for (4) are obtained, under
appropriate assumptions. In [18], the IBVP of Kirchhoff
wave equation is considered. Under some sufficient con-
ditions, the blow-up in finite time is shown by using a
modified concavity method; for more details, see [19–27].

z
2
t w +[w]

2(θ− 1)
r (− Δ)r

w � |w|
p− 2

w, inΩ × R+. (6)

We highlight here the novelty of the problem:

(1) It is interesting to note that simultaneously with the
theoretical developments of classical nonlinear wave
operation, practical applications of fractional inte-
grodifferentiation operation can also be found

(2) It is shown that when the nonlinear source domi-
nates the fractional Laplacian in (2), this ensures the
global nonexistence in time (blow-up) of solutions

(3) Our results extend many recent results in the
literature

2. Auxiliary Results and Function Spaces

*e fractional Laplacian (− Δ)rw of the function w is given
by

(− Δ)r
w(x) � C

Rn

w(x) − w(z)

|x − z|
n+2r

dz , ∀x ∈ Rn
, (7)

where

C
− 1

� 
Rn

1 − cos ζ1( 

|ζ|
n+2r

dζ. (8)

We define the fractional-order Sobolev space by

W
r,2

(Ω) � v ∈ L
2
(Ω): 

Ω

Ω

|v(x) − v(z)|
2

|x − z|
n+2r

dxdz<∞ ,

(9)

equipped with the norm

‖w‖Wr,2(Ω) � 
Ω

|w|
2dx + 

Ω

Ω

|v(x) − v(z)|2

|x − z|n+2r
dxdz 

1/2

.

(10)

Let

W
r,2
0 (Ω) � w ∈W

r,2
(Ω): w � 0, x ∈ zΩ , (11)

be a closed linear subspace of Wr,2(Ω), and its norm is given
by

‖w‖Wr,2
0 (Ω) � 

Ω

Ω

|v(x) − v(z)|2

|x − z|n+2r
dxdz 

1/2

. (12)

*e space Wr,2
0 (Ω) is a Hilbert space with inner product

〈w, u〉Wr,2
0 (Ω) � 

Ω

Ω

(w(x) − w(z))(u(x) − u(z))

|x − z|
n+2r

dxdz.

(13)

3. The Potential Wells

For simplicity, in this section, we consider problem (1) in
stationary case. In fact, if we replace w in this section by w(t)

for any t ∈ [0, T), all the facts are still valid. We define

J(w) �
1
2
‖w‖

2
Wr,2

0 (Ω) −
1
p

‖w‖
p
p. (14)

We denote

I(w) � ‖w‖
2
Wr,2

0 (Ω) − ‖w‖
p
p. (15)

We introduce now the stable set as follows:

W � w ∈W
r,2
0 (Ω): I(w)> 0, J(w)<d ∪ 0{ }, (16)

where the mountain pass level d is defined as

d � inf
w∈Wr,2

0 (Ω)∖ 0{ }

sup
μ≥0

J(μw)
⎧⎨

⎩

⎫⎬

⎭. (17)

We introduce the so-called Nehari manifold:

N � w ∈W
r,2
0 (Ω)∖ 0{ }: I(w) � 0 . (18)

*en potential depth d is characterized by

d � inf
w∈N

J(w), (19)

which implies that

dist(0,N) � min
w∈N

‖w‖Wr,2
0 (Ω). (20)

We will prove the invariance of the set W.
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For the reader’s convenience, we recall the main em-
bedding results for the fractional Sobolev spaces; see [28] for
details.

Lemma 1. Let Ω be bounded domain. 8en

(1) 8e embedding Wr,2
0 (Ω)↪Lp(Ω) is compact for any

p ∈ [1, 2∗r )

(2) 8e embedding Wr,2
0 (Ω)↪L2∗r (Ω) is continuous

Lemma 2

(1) For any s ∈ [1, 2∗r ], there exists a positive constant
C0 � C0(n, s, r) such that for any u ∈Wr,2

0 (Ω)

‖w‖Ls(Ω) ≤C0
Ω


Ω

|u(x) − u(z)|
2

|x − y|
n+2r

dxdy. (21)

(2) For any s ∈ [1, 2∗r ] and any bounded sequence (uj)j

in Wr,2
0 (Ω), there exists u in Ls(Rn), with u � 0 a.e.

in Rn − Ω, such that up to a subsequence, still
denoted by (uj)j

uj⟶ u strongly inL
s
(Ω)asj⟶∞. (22)

Definition 1. A function w � w(x, t) is said to be a global
(weak) solution of problem (1), if

w ∈ L
∞ 0,∞, W

r,2
0 (Ω) , wt ∈ L

∞ 0,∞, L
2
(Ω) ,

wo ∈ L
∞ 0,∞, W

r,2
0 (Ω) , wt ∈ L

∞ 0,∞, L
2
(Ω) 

w1 ∈ L
∞ 0,∞, L

2
(Ω) ,

(23)

and for any ϕ ∈ L∞(0,∞, Wr,2
0 (Ω)), t ∈ R∗+,

wt(., t), ϕ(., t)(  +
1
2


t

0
wt(., t), ϕ(., t)Wr,2

0 (Ω) dτ + 
t

0
wt(., t), ϕ(., t)Wr,2

0 (Ω) dτ

� w1, ϕ(., 0)(  + 
t

0
w(., τ)|w(., τ)|

p− 2
,ϕ(., τ) dτ.

(24)

If a (weak) global solution w belongs to C(0,∞;

Wr,2
0 (Ω)), we say that u is a strong global solution of problem

(1).
*e energy E of solution at time t to (1) is given by

E(t) �
1
2

ztw(t)
����

����
2
2 + J(w). (25)

Lemma 3. Let w(x, t) be a weak solution of problem (1). If
w0 ∈W, w1 ∈ L2(Ω), then E(t)≤E(0).

4. Blow-Up Result

In this section, we prove the blow-up result to problem (1)

Lemma 4. Let w(x, t) is the weak solution of problem (1). If
w0 ∈W andw1 ∈ L2(Ω) satisfying that

‖w‖
2 ≥

2p

p − 2
KE(0), (26)

ztw, w( Wr,2
0 (Ω)< 0, (27)

w0 ∈M, (28)


Ω

w0w1dx> 0, (29)

then any solution of (1) belongs to M.

Proof. We claim that w ∈M for t ∈ [0, T); by contradic-
tion, we suppose that t0 ∈ (0, T) is the first time such that

I w t0( (  � 0, (30)

I(w(t)) < 0 for t ∈ 0, t0 . (31)

We first introduce an auxiliary function,

M(t) � ‖w‖
2
, (32)

and directly

M′(t) � ztw, w(  + w, ztw(  � 2 ztw, w( , (33)

M″(t) � 2 z
2
t w, w  + 2 ztw

����
����
2
. (34)

Multiplying (1) 1 by w and then by integration over Rn,
we have

(z)t
2
w, w +(w, w)W

r,20(Ω) +(zt)w, wW
r,20(Ω)

� Ωw
p− 2

wdx,
(35)

so that

zt
2
w, w  � − ‖w‖Wr,2

0 (Ω) − ztw, w( Wr,2
0 (Ω) + 

Ω
w|w|

p− 2
wdx.

(36)

Substituting (27) into (36), we obtain
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M″(t) � 2 ztw
����

����
r,2
W
0(Ω) − 2wWr,20(Ω) − 2ztw, wWr,20(Ω)

+ 2
Ω

w|w
p− 2

wdx.

(37)

By (27), we have

M″(t)≥ 2 ztw
����

����
2

− 2I(w). (38)

By (31), we have M″(t)> 0 for any t ∈ [0, t0); then,
M′(t) is strictly increasing on [0, t0). *us

M′(t)>M′(0)> 0 for t ∈ 0, t0 . (39)

We have M(t) is also strictly increasing on [0, t0).
We have

M(t)>M(0)≥
2p

p − 2
KE(0) for all t ∈ 0, t0 . (40)

From the continuity of w at t � t0, it follows that

M t0(  � w t0( 
����

����
2 > 2

p

p − 2
KE(0). (41)

On the other hand,

E(0)≥E(t) �
1
2

ztw
����

����
2
2 +

1
2
‖w‖

2
Wr,2

0 (Ω) −
1
p

‖w‖
p
p

�
1
2

ztw
����

����
2
2 +

1
2

−
1
p

 ‖w‖
2
Wr,2

0 (Ω) +
1
p
I(w).

(42)

Together with (30) and Lemma 2, we get

Ε(0)≥
1
2

ztw ., t0( 
����

����
2
2 +

1
2

−
1
p

  w ., t0( 
����

����
2
Wr,2

0 (Ω)

≥
1
2

ztw ., t0( 
����

����
2
2 +

p − 2
2p

K
− 1

w ., t0( 
����

����
2
2

≥
p − 2
2p

K
− 1

w ., t0( 
����

����
2
2,

(43)

which contradicts (41). *is completes the proof. □

We are now ready to prove the finite time blow-up of
solution to (1) when E(0)> 0.

Definition 2. We say that the function w(x, t) blows up in
finite time if there exists t∗ ∈ (0,∞) such that

‖w(x, t)‖L2(Ω)⟶∞ as t⟶ t
∗
. (44)

Theorem 1. Let w0 ∈Wr,2
0 (Ω) and w1 ∈ L2(Ω). Assume

that w0 ∈M,E(0)> 0, and Ωw0w1dx > 0, then any solution
of (1) blows-up in finite time.

Proof. We have w ∈M; arguing by contradiction, we
suppose that w is weak global solution , for any t ∈ [0,∞).
From (34) and Cauchy–Schwarts inequality, we get

M′
2
(t) � 4 w, zt( 

2 ≤ ‖w‖
2

ztw
����

����
2
, t ∈ [0,∞), (45)

which together with (36) implies that

M″(t)M(t) − (1 + α) M′(t)( 
2

≥ 2 ztw
����

����
2

− 2‖w‖
2
r,2
0 (Ω) + 2

Ω
w|w|

p− 2
wdx M(t) − 4(1 + α) w, ztw( 

2

≥ 2 ztw
����

����
2

− 2‖w‖
2
r,2
0 (Ω) + 2

Ω
w|w|

p− 2
wdx M(t) − 4(1 + α)‖w‖

2
ztw

����
����
2

� − 2‖w‖
2
r,2
0 (Ω) + 2

Ω
w|w|

p− 2
wdx − 2(1 + 2α) ztw

����
����
2

 M(t) � A(t)M(t),

(46)

where α> 0. We notice that

A(t) ≔ − 2‖w‖
2
Wr,2

0 (Ω) + 2‖w‖
p
p − 2(1 + 2α) ztw

����
����
2

≥ − 2(1 + 2α) ztw
����

����
2

− 2‖w‖
2
Wr,2

0 (Ω) + p ztw
����

����
2

+ p‖w‖
2
Wr,2

0 (Ω) − 2pΕ(0)

� − (4α − p + 2) ztw
����

����
2

+(p − 2)‖w‖
2
Wr,2

0 (Ω) − 2pΕ(0)

≥ − (4α − p + 2) ztw
����

����
2

+(p − 2)K
− 1

‖w‖
2
2 − 2pΕ(0),

(47)
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for t ∈ [t,∞). Set α � (p − 2)/4> 0, and then (4α − p+

2)‖ztw‖2 � 0. So from (47), we get

A(t)≥K
− 1

(p − 2)‖w‖
2

− 2pE(0)≥ 0. (48)

At this point, by (33)–(48), we obtain

M″(t)M(t) − (1 + α) M′(t)( 
2 > 0, t ∈ [0,∞), (49)

where α> 0. *is implies that

M
− α

( ′ � − αM
− α− 1

M′(t)< 0, (50)

M
− α

( ″ � − αM
− α− 2

M″(t)M(t) − (1 + α) M′(t)( 
2

 < 0,

(51)

for all t ∈ [0,∞), which means that the function M− α is
concave. Obviously, M(0)> 0; then, there must exist a T> 0
such that

lim
t⟶TM− a

(t) � 0, (52)

so that

lim
t⟶T−

M(t) �∞ i.e., lim
t⟶T−

‖w‖
2

�∞. (53)

*us, the proof is completed. □
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