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In this paper, the containment control of heterogeneous MASs with multi-interactional leaders is addressed. (e objective of the
containment control is of two layers. (e leaders converge to an expected form; subsequently, the followers enter the convex hull
spanned by the leader’s final position. To achieve the goal, the dynamics of the leaders and the followers are modeled by a single
integrator and a double integrator, respectively. A reduced-order transformation is employed to obtain the sufficient conditions
for realizing the follower agents’ control. In this manner, the maximum allowed time delay is given. Moreover, based on the
topological structure and matrix, it confirms that the followers are able to enter the expected convex hull. Finally, the numerical
simulation reveals the effectiveness of the control strategy.

1. Introduction

Over the past years, inspired by the work in [1–3], a lot of
researchers began the research on multiagent systems
(MASs) with cooperative control. (e reasons lie on its
widespread application in different disciplines [4–6]. In
those works, the cooperative control in networks for MAS
has been studied in the group behaviors. As one of the
cooperative control, the containment control law, inspired
from numerous natural and social phenomena, has attracted
lots of researchers to continue developing it with the agents’
neighbor information. Considering that the double-order
controller dynamics has a good interpretation of the com-
plex processes in the reality, its consensus control is of great
interest, thus has been deeply studied [7–9]. More recently,
the stabilization and consensus problem of systems has
received much attention [10–12].

According to the number of leaders in the formation, the
algorithm for its cooperative control can be demarcated into
two categories: the case of one leader and the one with
multiple leaders. As for the previous case, it is a consensus
control problem.(e corresponding algorithm will track the
trajectory of each agents. Among these agents, one of them is
called a leader, However, it is not able to receive any

feedback from the other agents. (ere already exists many
studies in the literature. In [13], the fixed-time leader-fol-
lowing consensus of second-order MASs with delay is in-
vestigated. In [14], a high-dimensional leader for
neuroadaptive consensus tracking of MASs is discussed. In
[15], a dynamic leader for bipartite tracking consensus of
linear MASs is studied.

As for the case with several leaders, it focuses on the
formation containing a group of leaders and followers. It is
essentially a containment control problem. Different from
the main idea in the consensus control problem, the control
law in the containment control problem is supposed to force
the followers to get into the convex hull formed by the
leaders. In recent years, the containment control has re-
ceived great population [16–18]. In [16], a dynamic output
approach is investigated to study the containment of higher-
order multileaders’ MASs. In [17], a distributed containment
law is proposed to study the double-integrator controllers
for the multiple dynamic leaders by only using their position
measurement. In [18], a distributed finite-time containment
control is developed for the double-integrator MASs.

Many researchers have studied a group of leaders and
followers. In recent years, the containment control problems
[16–18] have been intensively studied, aiming at designing
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control laws to force followers into the convex hull formed
by leaders. In [16], a dynamic output approach is investi-
gated to study containment of higher-order multileaders
MASs. In [17], distributed containment law is investigated to
study multiple dynamic leaders for double-integrator dy-
namics and only using position measurement. In [18], a
distributed finite-time containment control is investigated
for double-integrator MASs.

However, the abovementioned algorithms only apply to
the consensus problems with homogeneous MASs, in which
the dynamics for all agents are modeled by the same order.
Meanwhile, it should be mentioned that variety of phe-
nomena for consensus problem cannot be described by the
homogeneous dynamics systems [7, 19]. Indeed, the con-
tainment control problem of heterogeneous MASs has al-
ready been investigated in [20–22]. In [20], the
asynchronous group consensus is investigated for hetero-
geneous MASs. In [21], a containment law is studied for
heterogeneous MASs. In [22], a distributed containment law
is studied for heterogeneous MASs.

Nevertheless, the protocols devised in the above-
mentioned references do not consider time-vary delay. Quan
et al. and Dong et al. [23, 24] investigated MASs with time
delay, but they are not for heterogeneous MASs. So, inspired
by the above progress, the containment control problem of
heterogeneous discrete-time MASs with time delay is con-
sidered in this manuscript. To be more specific, the leaders
designed to form the formation are interactional. (at is to
say, the positions of leaders form the first layer of the MASs.
Followers are controlled to enter the convex hull of the
leaders’ final position, in which the leaders are first-order
agents and the followers are second-order agents. In view of
the different goals of the leaders and the followers, this paper
designs a leader position formation control protocol which is
independent of the positions of the followers. Moreover, a
consensus method based on the agents’ neighbor infor-
mation is proposed. (e upper bound of time delay is given
which depends on the topology, the control parameters, and
the sampling time.

(e paper is organized as follows. In Section 2, some
important definitions on topology are given. In Section 3, the
dynamics equation and control law are described and some
basic lemmas are given. In Section 4, the stability of con-
tainment control law involvingmultiple leaders is studied. In
Sections 5 and 6, the numerical simulation and conclusions
are presented, respectively.

2. Preliminaries

In this section, some basic knowledge about graph, con-
cerned definition, and notations is given.

2.1. Graph"eory. In the study of MASs, the directed graph
is always employed for modeling the communication be-
tween agents. (e graph offers an intuitive glance of the
switching topology, and it also facilitates the control analysis.
Basically, the network consists of n agents (m leaders and
n − m leaders), and its graph can be described by

G � V,E{ }. Here, V � 1, 2, . . . , m, m + 1, . . . , n{ }, and it
represents the set containing the followers and leaders.
E � (i, j) ∈V × V ; it embodies the undirected edges
between the leader and the followers and neighboring re-
lations among leaders and followers. Denote the set of
leaders as f � 1, 2, . . . , m{ } and the set of followers as
l � m + 1, m + 2, . . . , n{ }. Define the adjacency matrix as
A � [aij] ∈ R(n)×(n), aij > 0, if (j, i) ∈ E, otherwise aij � 0.

(e Laplacian matrix of the graph is given by
L � [Lij] ∈ R(N)×(N), where lii � 

N
j�1,j≠i aij and lij � − aij,

i≠ j.

2.2. Definition andNotations. In this paper, 1n, Im, and 0 are
designed as n × 1 column vector of all ones, the identity
matrix with order m, and zero matrix, respectively.
diag x1, x2, . . . , xn  denotes the block-diagonal matrix
constructed by x1, x2, . . . , xn. ⊗ is the Kronecker product.

Definition 1. A setC⊆R(N)×(N) is convex if, for all x, y ∈ C
and any μ ∈ [0, 1], we can have (1 − μ)x + μy ∈ C. Define
the minimal convex set encompassing all points
X � x1, x2, . . . , xM  as Co(X). In detail,

Co(X) � 
M

i�1
μixi|xi ∈ X, μi ∈ R, μi ≥ 0, 

M

i�1
μi � 1

⎧⎨

⎩

⎫⎬

⎭.

(1)

3. Problem Formulation

In this part, the containment law with the dynamic leader for
the heterogeneous MASs is introduced, while each follower
agent receives the relative information of its neighbors with
time delays τ(t).

Definition 2. If, for each tracking node, at least one guide
node has a directed path to the following node, the directed
graph G has a spanning tree [25].

We consider the discrete-time MASs. Each leader’s
dynamics is described as follows:

xi(k + 1) � xi(k) + Tui(k), i � 1, . . . , m. (2)

(e dynamics of the followers are given as follows:

xi(k + 1) � xi(k) + Tvi(k), i � m + 1, . . . , n,

vi(k + 1) � vi(k) + Tui(k),
 (3)

where T is the sample time.
(e Laplacian matrix L can be written as

L �
Lll Lfl

0 Lff

⎡⎣ ⎤⎦, (4)

where Lll is the corresponding Laplacian matrix among
leaders, Lff is the Laplacianmatrix among followers, and Lfl

represents the connection between leaders and followers.
Note that the last n − m rows and the first m columns of L
are equal to zero because the last n − m rows are for the
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followers and the first m columns represent the leaders, who
do not receive the information from any other agents.

In order to solve the containment problem for hetero-
geneous agents, a distributed controller is designed. (e
control protocol is illustrated as follows:

ui(k) � 
m

j�1
aij xj(k − τ(k)) − ηj − xi(k − τ(k)) − ηi(  , i � 1, . . . , m,

ui(k) � 
n

j�1
xj(k − τ(k)) − xi(k − τ(k))  + c

− 1


n

j�1
aij vj(k − τ(k)) − vi(k − τ(k))  − cvi(k), i � m + 1, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where c � k− 1
1 , k1 > 0, is an unknown feedback gain which

awaits for later determination.
Letting yi(t) � xi(t) + c− 1vi(t), we have

xf(k + 1) � xf(k) + Tc yf(k) − xf(k) , (4a),

yf(k + 1) � yf(k) − T c
− 1

Lffyf(k − τ(k)) + c
− 1

Lflyl(k − τ(k)) , (4b),

xl(k + 1) � xl(k) − TLllxl(k − τ(k)) + TLllηl(k), (4c),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where xf � [xm+1, xm+2, . . . , xn], yf � [ym+1, ym+2, . . . , yn],
xl � [x1, x2, . . . , xm], and yl � [y1, y2, . . . , ym]. yi(t), i � m

+1, . . . , n, is considered as virtual followers corresponding to
xi(t), i � m + 1, . . . , n.

Noting that the Laplacian matrix of a directed graph is
asymmetrical, thus its corresponding eigenvalues are
complex. For the convenience, we state the following lemma
to provide a rational for further demonstration.

Lemma 1 (see [26]). Suppose that the digraph G has a di-
rected spanning tree. "en, all the eigenvalues of Lff have
positive real parts, each element of L− 1

fflfl is nonnegative, and
the sum of each row of L− 1

fflfl is 1.

Lemma 2 (see [27]). Given the polynomial with complex
coefficients,

Fn(s) � s
n

+ α1 + iβ1( s
n− 1

+ · · · + αn− 1 + iβn− 1( s + αn + iβn.

(7)

(e polynomial is stable if and only if Fn− 1(s) (see
equation (11)) is stable:

Fn− 1(s) � α1s
n− 1

+ α1α
(1)
2 + β(1)

1 β2 + iβ2 s
n− 1

+ · · · +

αn− 1 + i α1β
(1)
n− 1 − β(1)

1 αn− 1  s + α1α
(1)
n + β(1)

1 βn + iβn,

(8)

where β(1)
1 � α1β1 − β2, α(1)

2 � α1α2 − α3, . . . , β(1)
n− 1 � α1βn

− 1 − βn, α(1)
n � α1αn.

Corollary 1. It is not difficult to verify that Lemma 2 works
well for a second-order polynomial s2 + ps + q, whose con-
ditions can be induced as

Re(p)> 0,

(Re(p))
2Re(q) + Re(p)Im(p)Im(q) − (Im(q))

2 > 0.


(9)

4. Main Results

(e sufficient condition proves that law (6) is competent
with the consensus objective of heterogeneous MAS (3) and
(5).

Theorem 1. Suppose that the sampling time T satisfies
T< 1/maxi�1,...,ndii. Using (6) for (3) and (5), the heteroge-
neous MASs reach consensus, for any initial condition, if G
contains a directed spanning tree, feedback gain c− 1 and
sample time T satisfy

T< c
− 1

,

4 μi



4

T − c
− 1

 
4

− 4c
− 2 μi



4

− 12Re μi(  μi



2

  T − c
− 1

 
2

− 9Im2 μi( > 0,

⎧⎪⎨

⎪⎩
(10)

and time delay,
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τ ∈ [0, τ), τ � min
μi ,i∈f

τ||Z|≥ 1,Ψ(z, τ) � 0{ }. (11)

Proof. Taking the Z transform of xl in equation (2); then,
we can obtain

Xf(z) � (z − 1 + Tc)
− 1

TcY(z) + zxf(0) . (12)

Similarly, applying the Z transform to equation (3), we
can obtain

z
2

− 2z + 1 Im + T
2

− Tc
− 1

 Lffz
− τ

+ Tc
− 1

 Lffz
− τ+1

 Yf(z)

� z(z − 1 + Tc)y(0) − Tcxf(0) − Tc
− 1

 (z − 1 + Tc)Lfl

z
− τ+1

z − 1xl

,

(13)

where Xf(z) and Yf(z) are the Z transforms of xf(k) and
y(k), respectively.

Firstly, we show that the convergence of the state of real
followers will reach to the state of their own virtual followers.
We have T − c− 1 < 0. (e condition and final value theorem
guarantee the response of (13), i.e., xf(k), where the initial
condition xf(0) will be 0 at t⟶∞. Besides, (14) indicates
that the poles of Y(z) are the zeros of the transfer matrix:

z
2

− 2z + 1 Im + T
2

−
T

c
 Lffz

− τ
+

T

c
Lffz

− τ+1
. (14)

It can be completed by calculating characteristic equa-
tion in the following:



m

i�1
z
2

− 2z + 1 + T
2

−
T

c
 μiz

− τ
+

T

c
z

− τ+1
  � 0. (15)

Case 1: τ � 0.
Assume that there is no time delay; equation (15) will be
reduced to

z
2

+
T

c
μi − 2 z + 1 + T

2
−

T

c
 μi � 0. (16)

All the roots of the polynomial,

z
2

+ c
− 1

Tμi − 2 z + 1 + T
2

− c
− 1

T μi � 0, (17)

site in the unit circle if and only if the sample time T

satisfies the following inequality:

T< c
− 1

,

4 μi



4

T − c
− 1

 
4

− 4c
− 2 μi



4

− 12Re μi(  μi



2

  T − c
− 1

 
2

− 9Im2 μi( > 0,

⎧⎪⎨

⎪⎩
(18)

(e proof is as follows. In order to keep the roundness
of the polynomial equation, the value out of the unit
circle is mapped to its right, and we substitute z in
equation (17) by adopting a Mobius transformation,
i.e., z⟶ s + 1/s − 1; then, multiplying (s − 1)2 to the
two sides of equation (17), subsequently, equation (17)
becomes

T
2μi s

2
+ 2μi c

− 1
T − T

2
 s + T

2
− 2c

− 1
T μi + 3  � 0.

(19)

It can be derived that equation (19) follows the con-
ditions in equation (18).(en, use Lemma 1, if and only
if equation (19) is stable, which is equivalent to
equation (17) which has roots inside the unit circle.
All the roots of characteristic polynomial are inside the
unit circle. Hence, this system is asymptotically stable
based on the final value theorem.
Case 2: τ ≠ 0.

When T< c− 1, we can have [28]

Ψ(z, τ) � 

m

i�1
z
2

− 2z + 1 + T
2

−
T

c
 μiz

− τ
+

T

c
μiz

− τ+1
  � 0.

(20)

It has no root locating inside the unit circle for ∀τ ∈ Z.
It can be easily found that the roots of (22) never stay

over the unit circle for ∀τ ∈ Z. (erefore, one can
guarantee that the system never makes the oscillation
behavior cross the convex hull spanned by the leaders’
states. Hence, the maximum time delay can be reckoned
by τ. (erefore, when the delay satisfies τ, (12) and (22)
are stable.

(us, it is sufficient to prove the convergence of virtual
follower to the convex hull crossed by the leader as
t⟶∞; it further demonstrates that the real followers are
able to converge to the convex hull which is spanned by the
leaders.

Supposing that

ξ(k) � x(k), x(k − 1), . . . , x k − ⌈
τ
T
⌉  

T

,

x(k − j) � x1(k − j), . . . , xm(k − j), ym+1(k − j), . . . , yn(k − j) 
T
,

(21)

the equation of the system can be summarized as follows:

ξ(k + 1) � Φξ(k) + Y, (22)

where
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Φ �

In − Tc
− 1

D + Tc
− 1

A0 Tc
− 1

A1 . . . Tc
− 1

A⌈τ/T⌉− 1 Tc
− 1

A⌈τ/T⌉

In

In

⋱
In 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ �

0
TLllηl

0
⋮
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

where the Laplacian matrix L � D − 
⌈τ/T⌉
k�0 Ak.

Meanwhile, from the definitions of the leaders and the
followers, it is easy to attain the following partitions:

D �
Df

Dl

 ,

Ak �
Affk Aflk

0 Allk

 .

(24)

Denote ξf(k) � [yT
f(k), yT

f(k − 1), . . . , yT
f(k − ⌈τ/T⌉)]T

and ξl(k) � [xT
l (k), xT

l (k − 1), . . . , xT
l (k − ⌈τ/T⌉)]T. After-

wards, the dynamics of the leaders can be transformed to

ξl(k + 1) � Φllξl(k) + Yl, (25)

where

Φll �

Im − TDl + TAll0 TAll1 . . . TAll(⌈τ/T⌉− 1) TAll⌈τ/T⌉

Im

Im

⋱
Im 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υl �

TLllηl

0
0
⋮
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Likewise, the dynamics of the followers become

ξf(k + 1) � Φffξf(k) +Φflξl(k), (27)

where

Φff �

In− m − TDf + TAff0 TAff1 TAff(⌈τ/T⌉− 1) TAff⌈τ/T⌉

In− m

In− m

⋱
In− m 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φff �

TAfl0 TAfl1 . . . TAfl(⌈τ/T⌉− 1) TAfl⌈τ/T⌉

0 0 . . . 0 0

0 0 . . . 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 . . . 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(28)
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It is worth mentioning that T< 1/maxi�1,...,ndii; therefore,
ρ(Φff)≤ 1. Assume that 1 is an eigenvalue of Φff; it can be
concluded that there exists an eigenvector,

α � αT
0 , αT

1 , . . . , αT
⌈τ/T⌉ 

T
≠ 0, (29)

such that Φffα � 1 · α, i.e.,

In− m − TDf + TAff0 α0 + TAff1α1 + · · · + TAff⌈τ/T⌉α⌈τ/T⌉ � α0, (30a)

α0 � α1, (30b)

⋮ (30c)

α⌈τ/T⌉− 1 � α⌈τ/T⌉. (30d)

1 2 3

4 6 5

(a)

1

6 7 8

10

45

2

3

9

(b)

Figure 1: (e communication topology of two examples. (a) Example 1. (b) Example 2.
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Figure 2: State trajectories of all agents in the phase plane. (a) Example 1. (b) Example 2.
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Figure 3: Velocity trajectories of all followers in Example 1. (a) Case 1. (b) Case 2.
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Figure 4: Velocity trajectories of all followers in Example 2. (a) Case 1. (b) Case 2.
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From equation (30a), we can directly obtain that
(In− m − TLff)α0 � α0, that is, TLffα0 � 0. (ereon, it fol-
lows that α � 0. It arrives to a contradiction, where α≠ 0 is

assumed in equation (29). Hence, every eigenvalue ofΦff is
less than 1.

Once the leaders achieved the desired information, the
states of virtual followers would become

lim
k⟶∞

ξf(k + 1) � lim
k⟶∞
Φk+1

ff ξf(0) + Φk
ffΦfl +Φk− 1

ff Φfl + · · · +ΦffΦfl +Φfl ξl 

� lim
k⟶∞
Φk+1

ff ξf(0) + 
k

i�0
Φi

ffΦflξl
⎡⎣ ⎤⎦

� I(n− m)×(⌈τ/T⌉+1) − Φff 
− 1
Φflξl

� Γξl,

(31)

where Γ � 1⌈τ/T⌉+1 ⊗ [L− 1
ffAfl0, L− 1

ffAfl1, . . . , L− 1
ffAfl⌈τ/T⌉]ξl.

Finally, the positions of the virtual followers can be given
by

yf � L
− 1
ffAfl0, L

− 1
ffAfl1, . . . , L

− 1
ffAfl⌈τ/T⌉ ξl

� L
− 1
ffAflxl.

(32)

It is not difficult to verify that L− 1
ffAfl11m � 1n− m. Besides,

all the entries of L− 1
ffAfl1 are nonnegative. Considering the

definition of convex hull, the result reveals that all of the
followers converge to the convex hull spanned by the leaders’
final states. □

5. Simulation Results

5.1.Example1. First of all, considering a containment problem
of discrete-time multiagent systems (DTMASs), its commu-
nication topology graph is shown in Figure 1(a), where
l � 1, 2, 3{ } andf � 4, 5, 6{ }. It is evident that each follower has
at least one directed path to the leaders. To avoid stochastic
factors, two sets of parameters are tested on this example.

In the first case of validation, take
c � 0.5, T � 0.1, η1 � (2, 2)T, η2 � (− 2, 2)T, η3 � (0,

− 3)T, τ � 0.1/T, x1(0) � (3, − 3)T, x2(0) � (− 8, 4)T, x3(0) �

(4, 7)T, x4(0) � (− 4, − 6)T, x5(0) � (7, 8)T, and x6(0) �

(− 5, 5)T.
In the second case of validation, take c � 0.5, T �

0.1, η1 � (2, 2)T, η2 � (− 2, 2)T, η3 � (0, − 3)T, τ � 0.1/T,

x1(0) � (3, − 3)T, x2(0) � (− 8, 4)T, x3(0) � (4, 7)T, x4(0) �

(− 3, 3)T, x5(0) � (5, 6)T, and x6(0) � (7, 2)T.
No matter in which case, the state trajectories of all

agents (t→∞) in the phase plane are presented in Figure
2(a), and the velocity trajectories of all followers in these two
cases over time are depicted in Figures 3(a) and 3(b), re-
spectively. It can be seen from Figures 2(a) and Figure 3 that
the containment control of the systems can be achieved
without the influence of initial positions.

5.2. Example 2. Now, take a more complex system into
consideration, similar to example 1, but more vertices are
added. Its communication topology graph is shown in

Figure 1(b), where l � 1, 2, 3, 4, 5{ } andf � 6, 7, 8, 9, 10{ }. It
is noteworthy that each follower harbors at least one directed
path to the leaders. Likewise, two cases are conducted for the
confirmation.

In the first case, the parameters are set to be
T � 0.1, c � 0.5, τ � 0.1/T, η1 � (0, 4)T, η2 � (3, 0)T, η3 �

(3, − 3)T, η4 � (− 3, − 3)T, η5 � (− 3, 0)T, x1(0) � (3, − 3)T,

x2(0) � (− 8, 4)T, x3(0) � (4, 7)T, x4(0) � (− 4, − 6)T, x5
(0) � (7, 8)T, x6(0) � (− 5, 5)T, x7(0) � (− 10, 9)T, x8 (0) �

(8.5, − 7.5)T, x9(0) � (− 5, 7)T, and x10(0) � (− 4.5, 8.5)T.
In the second case, the parameters are set to be
T � 0.1, c � 0.5, τ � 0.1/T, η1 � (0, 4)T, η2 � (3, 0)T,

η3 � (3, − 3)T, η4 � (− 3, − 3)T, η5 � (− 3, 0)T, x1(0) � (3,

− 3)T, x2(0) � (− 8, 4)T, x3(0) � (4, 7)T, x4(0) � (− 4, − 6)T,

x5(0) � (7, 8)T, x6(0) � (− 3, 3)T, x7(0) � (5, − 6)T, x8(0) �

(7, 2)T, x9(0) � (− 5, − 6)T, and x10(0) � (2, − 2)T.
In both cases, when t→∞, the state trajectories of all

agents in the phase plane are illustrated in Figure 2(b), and
the velocity trajectories of all followers in these two cases
over time are depicted in Figures 4(a) and 4(b), respec-
tively. From Figures 2(b) and 4, it can be seen that the
containment control of the systems can be achieved with
the number of agents increasing. (e results unveil that
the control protocol is efficient and robust for the con-
tainment problem.

6. Conclusion

(is paper studies the containment control of heterogeneous
discrete-time multiagent systems with time delay. In this
manuscript,

(1) (e double-integrator followers and single-integra-
tor leaders are investigated.

(2) (e containment control problem is of two layers.
For the leaders, the information among multiple
leaders is interactive and the leaders converge to the
expected values. As for the followers, the states
converge into the convex hull shaped by the final
states of the leaders.
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(3) (e sufficient conditions of the sampling time,
feedback gain, and delay to ensure the consensus
control are given by using a reduced-order method.

(4) (e maximum allowed time delay is determined by
using the Z-transform.

Finally, the validity of our results is guaranteed by the
simulation. In the future, our attention will be focused on the
problems such as fractional-order dynamics with nonsym-
metric time delays.
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