Hindawi

Mathematical Problems in Engineering
Volume 2021, Article ID 7858270, 9 pages
https://doi.org/10.1155/2021/7858270

Hindawi

Research Article

Obtaining Solutions of a Vakhnenko Lattice System by N-Fold
Darboux Transformation

Ning Zhang' and Xi-Xiang Xu®?

'Public Course Teaching Department, Shandong University of Science and Technology, Taian 271019, China
2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Xi-Xiang Xu; xixiang xu@sohu.com
Received 15 September 2021; Accepted 15 October 2021; Published 8 November 2021

Academic Editor: Dimitrios Mitsotakis

Copyright © 2021 Ning Zhang and Xi-Xiang Xu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Using a suitable gauge transformation matrix, we present a N-fold Darboux transformation for a Vakhnenko lattice system. This
transformation preserves the form of Lax pair of the Vakhnenko lattice system. Applying the obtained Darboux transformation,
we arrive at an exact solution of the Vakhnenko lattice system.

1. Introduction In the soliton theory, the Darboux transformation is

a very effective method for solving soliton equations [12, 13].
Since the beginning of this century, the integrable lattice  Later, it also applies to solving integrable lattice equations
systems (or lattice soliton systems) have received consid- [7-9, 14, 15]. In reference [10], a Vakhnenko lattice system is
erable attention. Many important integrable lattice systems  introduced:

have been studied from the perspective of Mathematics and
Physics, for instance, the Ablowitz-Ladik lattice [1], the Toda
lattice [2], and the relativistic Toda lattice [3], [4-11].

Put = PndnXn-1 = Pndn1Xn = TnXpn1 10Xy = uVn + i1 Vo
qn,t =9u'v-1Yn ~ AuDn1Xn + dni1%n — ann Tyt Ty

Tt = Va'n1Yn = Due1"n¥n — PuVu-1 t T0Zn — Gu + Gua

Xt = AnXnXn-1 = TnXnVne1 = X120t PnXn = YV T Vs

Yot = DnXn1Vn ~ TuVnVnr1 T PulVns1 = YuBn = Xu1 + X

L Zn,t =T V@i ~ VaVni1Zn — Va1 X T 10X0 = 4uVu t 4V it

where p, = p(n,t),q, = q(n,t),r, =r(nt),x, = x(nt), t is a continuous variable, t € R. Equation (1) can be re-
y, =y(nt),z, =z(nt),nis adiscrete variable, n € N, and written as a discrete zero curvature equation
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Un,t = E(Vn)Un - UnVn = Vn+1Un - UnVn’ (2)
of a discrete spatial spectral problem
1
V+p, Ag,+ 3n
Un (un, A) = 5
1

1
/\xn + Xyn Z,t /\7

Ep, =U,(u»A)9,

(3)

and a corresponding continuous time evolution equation

1
Az ~ GnXn-1 qn/1 + rn—li

Pri = Vi (V)@ V(1 1) =
11
Aqnfl + ynX A_Z “Tw1Vn
(4)

Here, for a lattice function f, = f (n), the shift operator
E and the inverse of E are defined as follows.
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Efn :fn+1’
E_lfn :fn—1>

In equations (3) and (4), (¢{", )" is the eigenfunc-
tion vector, (P, Gp» V> X Y Z2,,)° 18 @ potential vector, (1) is
a very meaningful lattice system, and many important lattice
systems can be reduced from it, such as the nonlinear self-
dual network equation, the two coupled discrete nonlinear
Schrédinger equation, and the relativistic Volterra lattice [9].
In reference [9], the authors discussed the Darboux trans-
formation of (1), but their results are incorrect [11]. In
reference [10], although the author gave some properties of
the Darboux transformation of (1), but his approach is
different from ours. In reference [11], we derived a 1-fold
Darboux transformation of (1). In addition, let p, = z,, = w,,,
G = Uy Ty =V X, =V, ¥, = U, and the equation (1) is
reduced to a three-component differential-difference
system.

(5)
neZz.

2
Upp = (14") Vo1 = Uplp Vi T Uy Wy — UV =V TV

2
Vn,t =UpVp 1V — Up (Vn) —W, Vg T VW, Uy Uy, (6)

2 2
wn,t = UV Wy — Uy VW, =V Vy t (Vn) - (un) U,y

In reference [14], its N-fold Darboux transformation is
presented. Furthermore, if we set p, =z, =1,V,,q, =1,
r,=V,x,=1,y,=V,, equation (1) becomes the non-
linear self-dual network equation.

I = (1 + (In)z) ((Vn—l) - Vn)’
Vn,t = (1 + (Vn)z) (In - In+1)'

In reference [15], the author derived its N-fold Darboux
transformation. In this letter, for arbitrary positive integer N,

(7)

we will present a N-fold Darboux transformation for the
Vakhnenko lattice system (1). Finally, an exact solution of (1)
is derived.

2. N-Fold Darboux Transformation

For any positive integer N, we introduce the following
matrix:

N-1 N N N
A2N+ Z A:lZJ)AZJ_'_ZAr(le])AfZ] ZB£2171)A2]71 +ch(:2]+l)/\72]+l

j=0 j=1
nMw=|

j=1 j=1

Here, A (-N<j<N-1),B’ " (-N<j<N), c¥D
(-N<j<N),F#V(-N<j<N), G (-N<j<N),H®H
(-N+1<j<N) are 8N undetermined constants.

Next, we consider the gauge transformation [7, 8].

, = IV (D), 9)

By the transformation (9), the Lax pairs (3) and (4)
become

= =i

N N N-1
ZF;SZI_l)AZJ_l + szl—Zﬁl)A—Zﬁ-l ZHr(,Z])/\ZJ + z H,i_z])/\_z" +/1_2N

(8)

= 0
E$, = U4, (10)
Gt =V B (11)
o™ =) W, w) (12)
v - (& )+ ™ v, ) (MNP W)L (13)
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Equations (10) and (11) constitute a new Lax pair. Let us
denote

(EP M, EX W),

(14)
(W@ W)

are two real linear independent solutions of equations (3)
and (4), and A, (1 <i<4N) are 4N distinct eigenvalues of
spectral problem (1).

Proposition 1. The matrix U has the same form asU,, in
equation (3), and the transformation formula is presented by

2N-1
p = AGN-D _ 4ON-2) o pON-1) _ p(N-1) dn _By(z :
n n+l n P n-n n H(zN) ’
n
(2N-1)
Q _ In — Bn
n @eN) 2
Hi’l
(-2N) (-2N+1)
Rn = rnAnJrl + Cn+1 4
3 (15)
(2N) (2N-1)
Xn = ann+1 + Fn+1 >
(-2N+1)
y. = 2n=Cn
n (-2N) >
A}’l
(-2N+1)
7 =y y O _ N+ | SGN-D) o (2N-D [ Vn T G, "
n~— “n n+l n n>-n+l n A(_ZN) '
n

Namely,
1
MV +p, /\Qn+XRn
uNew = (16)
1 1
)LXH+XYH Zn+/?
N L2, N a2y 2
Y AN+ Y AT
j=0 j=1
Nz_l (2j+1)12j+1 I\f (~2j-1)1-2j-1
A Y BRI LY c)
j=0 n 1 J=O n 1
1 v . N-1 ‘ .
Z Fr(12]+1)/\i2]+1 n Z GV(I—ZJ—I)/\;ZJ—I
j=0 j=0
+ ZHfL ]))Li] + Z H,(l_ ])Ai /
j=1 j=0
Here,
(2) 1)+ ¢ (2) 1.
pln = e W2 G4 )y g
n (Ai)+(i£n (/\1)

In the above matrix, P,,Q,,R,X,,Y,,Z, are de-
termined by (15), and they are all independent A. Obviously,
(15) transform the old potentials (P, Gy Xy V1o Z,)" 0f (1)
into the new potentials (P,,Q,,R,,X,,Y,,Z,)" of (9).

Proof. We consider the following linear system:

>Pi (n) = _/\z‘ZN’

i=1,...4N. (17)

>p,» (n) = —=p; (WA,

where A; (1 <i<4N), {;(1 <i<4N) are suitably chosen, such
that all the determinants of coeflicients for the equation and
(17) are nonzero. By solving the linear system (17), we get
AP (-N<j<N-1),B¥D(0<N-1),



C{HM(0<j<N-1),FFM(0<j<N-1),G{% -1)(0<
jSN-1,H (-N+1<j<N).
From equations (3) and (18), we have

XA+ (VA)y, + 2,p; (n) +(l//\ )pl (n)
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N-1 N-1
@r(lc) _ Z Fr(,21+1)/\2]+1 + Z G;E—ZJ—I)A—ZJ—I,

Jj=0 Jj=0

piln+1 3 i=12 ABINE LN A2 72 ) 2N,
A+ P+ guhips (n) + (1/A,)r,,p0; () Z ]zi
(19) (21)
For convenience, we set Then, we obtain the following equation:
@(ﬂ) @(b) Qll (A n) le (/1 1’1)
n™m=( " ") (20) nNu,(mM)" = (22)
®7(1‘:) @fld) QZI (A ﬂ) QZZ (/\ n)
where where (Hy(lN))* is the adjoint matrix of Hy(lN) and
(a) 2N Nil (2j)y2j i (=2j)y-2j
V=AY AT Y AT,
=1 =1
(b) NEI (2j+1) 1 2j+1 NXI (~2j-1)4-2j-1
0, = BTN 4 Y ¢TIV
=0 =0
0y, (An) = 6211 d)/lz (X 615111 ~4qn ni)1®(6))
b c b d) c
A+(p,000 - 2,60,0%) 4 (7,00,04" - 1,00
(b (-
A ®n+1 /\
Q, (An) = nﬂ@(h)/lz ( Qii)l@) X Qﬁjl@(a )
b a) o (b b) o (b)
Ae(z000 - p.0lel) (06l 0l
AtveP el 0
23
0y, (A, n) = ngrl d)/lz (X 615‘1)1@) ~4qn ni)1®(6))
c d) c d)
/\+(pn®1i+1 ®( ®( ) (pn®r(zfr1 ®r(1+1®(c)
(b (e) y—
A ®n+1 n+1/\
O, (A1) = a)@) d))L +(r ®r(ti)1®(a - ;Vrl(ar(zl(a(h))/1
d) (d o
( 10,00,” - p,0,70,0) +(r,0,,0,” - 5,0,110,")
(d) o (a)y -
A +eewr?
In the light of (17), t (:-1)
n the light of (17), we can ge 047(1“’2)/12+oc£,“’0) “;b)l)A'f'(an
4N
N N
Det[IY (V)] = HV (A - 13). (24) «, = , (26)
=1
! (c-1) (d,-2)
. . . (1) n @0 | %
Analyzing the coefficients of powers of A in (22), we o, A+ 1 o, 2
obtain that
1% WU, = o1 (1), (3 where af®), a6, afb, alt D, gle), afé-D, o4, gld

Here,

are all independent of A. By comparing the coefficients of A in
(25), we have
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al*? =,
(a2) (2N-2) (2N-2)
(xna An+1 An + pn
(2N-1)
(2N-1) @N-1) [ 9n— B,
+x,B, -F, <W> =P,
Hﬂ
2N-1)
NCOIN i B _0
n HézN) n
b1 2N 2N+1
‘Xi’(! )= nAr(z+1 r Cn+1 W= R,
(27)
1) (2N (2N-1)
“516 = ann+1) Fn+1 Xn’
(—2N+1)
“(c,—l) _yn_Gn ’ -v
n - (-2N) -
Afl
“r(ld,—z) =1,
“;id’O) H,(HfN”) H( N2 anNH)
(-2N+1)
_C(—2N+1) <yn B Gn ' ) =7
n (=2N) - “n
An
The proposition is proved. O  Proof. We consider
. I, (A,n) T,
Proposition 2. Under the transformation (15), the matrix (Hg) + H;EN)Vn)(H;SN)) :( n(hm) T n))
VINW) has the same form as V,, in equation (2). In other ’ I (An) T (A n)
words, (29)
1
/12 - Qan—l (2;1/1 + Rn—li where
VW = : (28)
11
AQn—l + YnX P - Rn—IYn
(d b) o (d d
T, (An) =020\ + ,H@,i ’@,5 N+eel?
d)y-1
Xp- lqn®(a +qn r(z )/1 >
Iy, (Ln) =-4,0°01 -0 +r, ,y,(6 )
b),- b)\24-
—rn,l(a,i“’@,i o) 1—(@,Q) A
(30)
Iy (hn) = {09)1 - 6,070 )

60+, lqn<@,sc>)2 0o,
Iy, (An) = qn®£la)®?56)/\' - an)@r(i)

riyn @90 4y 0Wel) ! Lo We )2,



Owing to Det[TI{N] = HZM TN, (A* - 1) and paying
attention to the coefficients of powers of A in (29), we find

Y+ v, = g, (31)
In equation (31),
2)42 0 141 “14-1
DB BIPA + BV
ﬂn = (1)A (-1)7-1 0) (—Z)A—Z > (32)
:821 +ﬁ21 /1 22 +‘322
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0) p2) p(=1) p) p(=1) (1) p0) A(=2) ;
where B 11 By B Bar s Bia s B s By, are all in-
dependent of spectral parameter A. Comparing the co-
efficients of AN*' (-2<i<2) in equation (31), we arrive at

(2N) (2N-1)
(xn—lHn + Fn ) = _Qan—1>

(33)

@,
) _ 9n— Bi’(IZN_l)
1~ Hy(LZN)
W) _9n ~ B;SZN%) -Q
12 HE >
};1) - (xn—lHr(LZN) * F(ZN_I))RH—I’
W) _9n-1 ~ Br(ill\u)
T EE
(1) _Yn~ G;E_ZNH) Y
12 Ar(l_ZN) n
w1

y G(—2N+1)
0 -2N -2N+1 B
§2) = {rn—lAz ) + Cr(l ' )) . > = _Rn—IYn'

The proposition is proved.
In summary, we get the following theorem. O

Theorem 1. The equations (9) and (15) constitute a Darboux
transformation of (1), that is, from an old solution
(P Qo s X0 Vi 2,)" Of (1), through transformation (15),
a new solution (P,,Q, R, X,,Y,,Z,)" of (1) is derived.

3. An Exact Solution

In what follows, we will derive a solution of equation (1) by
the Darboux transformation (15). For simplicity, we con-
sider the case of N = 1.

First, we select the seed solution of the lattice system (1),
namely, the simple special solution, (p,, G,» 7 X, Y Z,)" =
(1,0,0,0,0,1)T. Substituting this solution into the corre-
sponding Lax pair, we get

e
MV+1o0 N -A
E¢, = e 9= -
0 1+ 2
: A )L—+ 1

(34)

Solving the above two equations, we get two real linear
independent solutions:

(1 +)L2)”_1
£,(1) = exp(1’t) _—
2(1 + P>
(35)
2(1 +)t2)"'1
7,(A) = exp(/lzt) -
(1+3)
Then, we have
pi[n] = &2 (W) +vimy” (A
! (1) (1)
A) +vitt, (A
& (A) +yim,” (L) 36)
. (N
i 2 + ')/l bl bl bl bl .

Here, A; (1 <i<4) are four different arbitrary constants.
When N =1,
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2 (0) (=2)y-2 1 (-1)y-1
I () = AM+A7+A 7 B,’A+C, A
’ FO 4G HON +HO 4272

According to Proposition 1, we can get the following

Darboux transformation:

$, =11V (Vg

© _ 40 M o 9u =By
PnzAnJrl_An +Pn+ann _Fn . (z)n
Hn
(1)
Q _dn Bn
n H,(,Z)
(=2) (=1)
Rn = rnAn+1 + Cn+1 >
- 4
(2) (1)
Xn = ann+1 + Fn+1’
(=1
Y = Yn— Gn
n A(—Z)
n
(0) (0) (-1 (Y
Zn:Zn+Hn+l_Hn +rnGn+1 _Cn < . .

Here,

’1;2 Mpy [n] )‘Ilf’l [n]
/1;2 Aop, (1l A;Pz [n]
/1;2 Asps (1] A;1P3 (n]

Ni A7 Aapyln A5 [n]
1 A7 Apy ] AL'p,[n]

/\;2 Aypy (1] Agll’z [n]

Det

—
~ > >
w N [N ) — N

Det )
A7 Aspslnl AS'ps(n]

/\12 Aypylnl Mlpl (n]
Az

S
P
—_ — —_

Apy[n] /\IIP1 (]

—_

5 Apy[nl A5'p, (]
Ai Asps[n] A;1P3 (]
Ai Aypyln] /\ZIP1[”]

" 1 A7 Aypyln] A'py (1]
1 /1;2 Ap, (1] Aglpz (]

Det

—_ — — —

Det
1 /\;2 Asps[n] A;1P3 1]

—

/\;2 A ’LIIP1 [n]

>

LA AT A py ]
1A% 4 A p, (0]
Det
LA A A psln]
LA A5 A py[n]
! 1 /\;2 Mpy [n] Mlpl (]

1 /\;2 Ap (1] /lglpz [n]
Det

1A% Aspslnl A3'ps )
1 /\;2 Aypyln] /LIIPI 1]
1A Aupylnl A
1 )‘;2 Apa[nl Ay
Det
1 )@2 Asps[nl] /\g

_ A2 Agpy[n] 22
! 1 ’\Iz Apy (1] AIIPI (]

1 /\52 Ayp, (1] Aglpz 1]
Det

L A" Aspslnl A'ps (o]

LA Aypylnl A7'py ]

A Ay n) Kpy[n] pyln]

L' paln] aps (] pyln]
Det

X1 A5%psln) Mpsln] psln]

- A Al palnl Apylnl pyln)
" A AL Apy(nl py ]

LA Apyln] pylnl
Det

Ay 31 Aapslnl pslnl
Ay )‘;1 )‘iP4[”] p1[n]
Aplnl Ay Apy[n] pyln]
A7panl Ay Aopylnl py ]
Det
A;2P3 (n] A )@Pa (n] ps[n]

A;2P4 (n] A AiP4 [n] p;n]

G(*l) —
” A AT Apy [ py [

A A Aypy (] pyln]
Det

A A5t Aspsnl psln]

Ay AL Adpyln] pyln



A Ml AIZPI (n] py[nl]

Ay Agl )L;sz (n] py[n]
Det

Ay A;I A;2P3 [n] psln]

R WALEAL
' /\%Pl (n] p,n]

>

' hpylnl p,[n]
Det

Ay A3 Npsln] pslnl
Ay A7 Adpyln] pylnl
A AT Apylnl A [n]

Ay Agl Ayp, (1] /\Ezpz (]

Det
Ay A;I A§P3 (] /\;ZPS» (]

_ Ay A Nipylnl Alpy(n]
! /11 /Hl AfPl (n] P1 [n]

Ay /1;1 Aypy(nl pylnl
Det

Ay 15 Xpsln] psln]

My A1 Xipaln] piln]
(39)

Thus, we can obtain a solution of equation (1) as follows:

, © 4, penf B
P,=1+A" - A0 F H"(z) ,

n

4 (40)

n+l

(-1)
zZ =1+HY —g© 4V G,
n n n A(fz) °
n

In equation (40),

Det

A(O) —
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A Ap 1] A'p [n+1]
L2 A Lpy[n+1] A py[n+ 1]
A Apsln+1] A ps[n+1]

A2 A Apy[n+ 1] A py[n+ 1]

n+1

Det

>

1 )gz Mpy[n+1] )glpl [n+1]
1A Aopyn+1] A'p,[n+1]
1 )L;Z Aspsn+ 1] )L;Ip3[n+1]
1A Apgln+1] A'p, [n+1]
A2 1 A n+1] A
A2 1 Apyn+1] A,
Det
A2 1 Apsln+1] A

A2 1 Ay ln+1] A

Det

Det

1 _

1A Apyn+1] A'p, [n+1]
1 A2 Apyln+1] A'p,[n+1]
1A% Aypsln+1] A'psln+1]
1 )L;Z Agpyln+1] )L;Ipl [n+1]
A ACp ] ApyIn+1] pyln+1]
N A2ps ] Mpy[n+1] pyln+1]
A A2psnl Apsn+ 1] pyln+1]

A Al p,[n] AipyIn+ 1] pyln+1]

n+l

Det

Det

LA Apn+1] pyln+1]
L A Lpy[n+1] pyln+1]
A A Aps[n+ 1] pyln+1]
A A AlpyIn+1] pyln+1]
AN A ApIn+ 1] A%, [nl]
LA, Apy[n+ 1] A)%p, [0l
A5 Bpsln+ 1] A57ps[n]

Ay Ay Aipaln+ 11 A pyln]

Det

Here,

LAY Apn+1] pyln+1]
LA Apyn+1] pyln+1]
A /\;1 /\gp3[n+1] psln+1]

A A Alpyn+1] pyln+1]
(41)
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_pilnl +(1/A7)p; ]

- . i=1,234  (42)
1+

piln+1]

4. Conclusion

In this work, by means of a gauge transformation of Lax pair,
we established a N-fold Darboux transformation for
a Vakhnenko lattice system. Under this transformation, the
structure of the Lax pair remains unchanged. Finally, as an
application of this transformation, an exact solution of the
Vakhnenko lattice system (1) is given. Starting from the
exact solution (40), we apply the Darboux transformation
(38) once again; then, another new solution of equation (1) is
derived. This process can be performed continually. So, we
can get many exact solutions for the lattice system (1).
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