
Research Article
Magnetohydrodynamic Impact on Carreau Thin Film Couple
Stress Nanofluid Flow over an Unsteady Stretching Sheet

Taza Gul,1,2 Muhammad Rehman,1 Anwar Saeed,3 Imran Khan,4 Amir Khan,5

Saleem Nasir,1 and Abdul Bariq 6

1City University of Science and Information Technology, Peshawar 25000, KP, Pakistan
2Higher Education Archives & Libraries Department KP, Government Superior Science College, Peshawar, Pakistan
3Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
4Department of Mathematics, Bacha Khan University, Charsadda 24450, Pakistan
5Department of Mathematics and Statistics, University of Swat, Mingora 19200, KP, Pakistan
6Department of Mathematics, Laghman University, Mehterlam 2701, Laghman, Afghanistan

Correspondence should be addressed to Abdul Bariq; abdulbariq.maths@lu.edu.af

Received 19 July 2021; Revised 24 August 2021; Accepted 22 September 2021; Published 30 September 2021

Academic Editor: Tirivanhu Chinyoka

Copyright © 2021TazaGul et al.+is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A mathematical model of time-dependent thin-film flow of Carreau liquid over a stretching surface is studied in this investigation
in the presence of couple stress and uniform magnetic field. To explain the properties of heat and mass transport phenomena, the
influence of both thermophoresis and Brownian motion variables is used. For the conversion of the model framework (mo-
mentum, heat, and concentration expression with boundary conditions) into a set of ordinary differential equations, the ap-
propriate transformation technique is followed. By using analytical tool, HomotopyAnalysis Method (HAM), the transformed
model expressions are solved. For different estimations of the affected physical factors, the numerical results involving skin-
friction coefficient, Nusselt number, Sherwood number, fluid velocity profile, thermal profile, and concentration profile are
displayed graphically. Besides, the findings for skin-friction coefficient, Nux, and ϕ(η) are given in the table format. In raising the
fluid temperature, the effect of thermophoresis and magnetic parameters is beneficial. With the Brownian motion and Schmidt
number, the solute concentration is found to reduce.

1. Introduction

+e thin-film liquid has numerous applications in various
sectors such as coating industries, oil recovery, colloid
suspension, soap bubbles, and interface sciences. +e
analysis of the stretching phenomena with heat and mass
transfer together with the thin liquid film has dynamic
usages. In mechanics, there are some nonlinear issues open
towards complete mathematical learning. Heat transfer
remains an essential portion of individual parts such as
chemical production, atomic energy, and lubrication. Non-
Newtonian fluids regarding the thin film are mainly used in
wire coating, paintings and fiber coatings, removal of
foodstuff objects, numerous freezing subjects, container
fluidization, and sheet coatings. To see the provisions used

on behalf of all these applications, many researchers focused
on studying the flow of thin liquid film over rigid and
stretched surfaces.

Andersson et al. [1] have examined the Power-law
fluid thin film flow affected through the time-dependent
extending medium using similarity alteration. Myers [2]
studied Power-law fluid flow considering small shear
forces. +e key features of his study are to investigate the
influence of the modeled parameters over the thin film of
the Power-law liquid when the shear rate approaches zero.
Ali et al. [3] inspected the flow of the liquid film, con-
sidering the micropolar fluid flow using the extending
surface. Similarly, Abbas et al. [4] examined the liquid film
motion of the viscoelastic liquid using the extending
surface. Siddiqui et al. [5] considered the liquid film flow
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using the two non-Newtonian fluids over a vertical sur-
face. +ey used the analytical technique to obtain the
results of the model problem. Li et al. [6] examined the
nanofluid streaming on a thin layer liquid including
thermal radiations. Dandapat et al. [7] examined the film
flow considering the Marangoni convection and the bi-
viscosity terminology. In addition to nonlinear free sur-
face boundary conditions, complete expression of
Navier–Stokes and continuity are analytically solved. Gul
et al. [8] discussed the model of effective Pr number for
thin film flow of nanofluids over stretching sheet.

Rudraiah et al. [9] are the pioneer to introduce the
Marangoni convection concept in the fluid flow considering
the open cavity. Chen et al. [10] have explored Marangoni
convection’s effect considering the Power-law model liquid
film flow past an unstable surface.+ey observed the influence
of the various parameters in the existence of the surface
tension. Wang [11], Narayana and Sibanda [12], and Qasim
et al [13] have examined the liquid film flow over a stretched
surface. +ey have used the unsteady flow using the same
similarity transformations. Gul et al. [14] have extended the
idea of the liquid film flow by adding the Marangoni con-
vection influence over the liquid film flow. Vajravelu et al. [15]
explored the mathematical model for the thin layer streaming
of the Power-law liquid over an unstable extending and
permeable surface. Noor et al. [16] have analyzed thin-film
liquid properties in thermos capillary and magnetic fields.
Similarly, Shah et al. [17] investigated the fluid’s convective
flow over an extending surface.

It is important to remember that, in the case of non-
Newtonian fluids, the interaction between the deformation
rate and shear forces is not linear. +e Carreau fluid’s ex-
treme shear ratio functions as the Power-law fluid, and the
Carreau fluid behaves as Newtonian as the modest shear
ratio. To find the mathematical results of the problem, they
used the bvp4c scheme. +e thin-film flow of the Carreau
fluid over an inclined surface was scrutinized by Tshehla
[18]. Akbar et al. [19] explored the model of Carreau fluid
flow across a porous surface. Using a curved channel, Abbasi
et al. [20] examined the peristaltic transport of the Carreau
fluid. Khellaf and Lauriat [21] have examined the same fluid
flow among the double concentric cylinders. Myers et al. [2]
studied the liquid film flow considering Power-law, Ellis, and
Carreaumodels.+e related and interesting work can also be
seen in the existing literature [22, 23].

+e general Newtonian Carreau liquid remained was
first offered by Carreau [24]. +e model turns sensibly fit
through the interruptions of polymers’ performance in
numerous stream positions. Mostly, the Carreau model is
well-matched for certain diluted polymer results and
meltdown. It determines the behavior of many non-
Newtonian liquids to incorporate shear thinning and
shear thickening. +e Carreau fluid model was subse-
quently determined by numerous investigators, as its uses
in many natural and then scientific innovations. Akbar
et al. [19] found the double resolutions of magneto-hy-
drodynamics stagnation point stream of Carreau liquid

near a porous stretching surface. Abbasi et al. [20], Khan
et al. [25], and Iqbal et al. [26] discussed the thermody-
namics of a Carreau fluid tinny film using different ge-
ometries. Kohilavani et al. [27] measured the flow of thin
layer plus energy transmission in the Carreau liquid over a
porous extending surface. Similarly, Sarada et al. [28],
Gowda et al. [29], and Makinde et al. [30] examined the
simultaneous convective flow of Carreau fluid, the be-
havior of non-Newtonian fluids, and ferromagnetic
nanofluid flow over stretching surfaces along with MHD
and thermal radiation effects.

In view of the above interesting debate, the contribution
of this analysis is to extend the existing study of thin layer
flow of the Carreau fluid [25] including the following steps.

(i) +e couple stress fluid is included to extend the
published work [25]

(ii) +e previous work [25] is extended with the ad-
dition of the magnetic field

(iii) also includes the influence of Marangoni convection

2. Problem Formulation

+e mathematical model has been focused on the two-di-
mensional thin film flow considering Carreau fluid. +e
liquid film’s width h(t) is uniform, and the surface stretches
across the x-axis, as illustrated in Figure 1. +e y-axis is
considered vertical to the x-axis and in the direction of the
liquid film’s thickness. +e thin film is stretched with the
Uw(x, t) � bx(1 − αt)− 1 (uniform velocity), where α and b

are constants and b> 0 shows the stretching rate. Here, t is
the time and α is the constant used in the unsteadiness
parameter. Vw �

�����������
(υb/(1 − αt))

􏽰
is the suction/injection

velocity such that Vw � 0, Vw > 0, andVw < 0 belong to
impermeability, suction, and injection cases, respectively.
+e surface temperature is symbolized by Tw, and thin film
thickness is h(t). Since, in the abovemathematical modeling,
we considered the Carreau fluid flowing past an extending
hot plate, the expression of τ (Cauchy stress tensor) for the
said fluid is known as [27]

τ � − Ip + ε A1( 􏼁. (1)

Here,

ε � ε∞ + 1 +(λ _c)
2

􏽨 􏽩
((n− 1)/2)

ε0 − ε∞( 􏼁. (2)

Here, ε demonstrates the apparent viscosity,
ε∞, p, τ, and ε0 denote the infinite-shear-rate viscosity, the
pressure term, the Cauchy stress tensor, and zero-shear rate
viscosity, respectively, I used to show identity tensor, λ is the
material time constant, and n is the power-law index. +e
shear rate is defined as

_c �

�����������
1
2

􏽘
i

􏽘
j

_cij _cji

􏽳

, (3)

and τ is defined as [27]
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τ � − pI + A1ε0 (λ _c)
2

+ 1􏽨 􏽩
((n− 1)/2)

. (4)

+e power-law index falls between 0< n< 1, and the
Carreau model shows the shear-thinning or pseudoplastic
properties. +e dilatants’ behavior accurses when n> 1. +e
magnetic field is considered in the transverse direction in the

unsteady form such as B(t) � B0(1 − at)− 0.5. About the
Carreau fluid model, the liquid film flow can be compiled as
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Heat/energy equation is
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where the element of velocity (u, v) varies along the x and y

direction, λ represents the material time constant, ρ denotes
density, κ shows thermal conductivity, cp is the capacity
specific heat, and T is temperature of fluid.

+e surface tension varies in a linear way, depending on
the temperature. +e other is made unchanged by the other
properties of the fluid. Surface tension is described as follows
[7, 11–14]:

Stretching sheet

Slit

Free surfaceThin Carreau film

u
T C

y=h

h (t)

y=0

X

y

Tw, Cw

Figure 1: Coordinate system and physical flow model.
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According to the abovementioned assumptions, the
physical conditions are

aty � 0,

u � Uw,

v � Vw,

C � Cw,

T � Tw,

aty � h(t),

zu

zy
􏼠 􏼡 � 0,

zC

zy
� 0 �

zT

zy
,

v �
zh

zt
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. (9)

+e wall temperature (Tw) is defined as

Tw � T0 − Tref
bx

2

2υ
􏼠 􏼡(1 − αt)

− (3/2)
,

Cw � C0 − Cref
bx

2

2υ
􏼠 􏼡(1 − αt)

− (3/2)
,

(10)

where T0 and C0 and Tref and Cref indicate the slit and
reference temperature and concentration, respectively.

Tref and Cref can be treated as a constant or differences of a
uniform temperature and concentration. +e concept of Tw

impersonates the situation in which the temperature of the
sheet reduces in proportion to x2 from T0 at the slit; also, the
quantity of thermal drop along the surface of the sheet
improves over time.

Next, we introduce the similarity factors as in [16]:
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2
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By using equations (13) and (5), it is satisfied identically
but equations (6)–(8) and (11) take the following form:

1 + w
2
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2

,
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(15)
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where

M �
σB

2
0

ρb
,

K �
η∗b3

U
wρf

,

S �
α
b

,

τ �
(ρcp)p

(ρcp)f

,

Pr �
μcp

k
,

NB �
τ Cw − C∞( 􏼁DB

υ
,

NT �
τ Tw − T∞( 􏼁DT

υT∞
,

Sc �
υ

DB

,

W
2
e �

λ2bU
2
w

υ
,

δ �
Vw��
υb

√ ,

(16)

where M, S,Pr, NT, w2
e , NB, Sc, τ, K, and Rex are the mag-

netic field parameter, unsteady factor, Prandtl number,
thermophoresis factor, local Weissenberg number, Brow-
nian motion factor, Schmidt number, Cauchy stress tensor,
couple stress parameter of the fluid, and local Reynolds
number. δ is the suction\injection parameter.

In this model problem, the physical quantities of
practical importance are Cfx,Nux, and Shx as follows
[7, 15]:
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τw

ρu
2
w

,
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,
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,

(17)

where τw, qw, and qm are represented by the below equations:
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(18)

3. HAM Solution

+e analytical approach has been used to examine the
modeled problem. +is technique includes the latest version
BVPh 2.0 package of the Homotopy Analysis Method
(HAM). BVPh 2.0 package tends to converge rapidly, and
more iterations are possible in this method in a short time.
+e recent solution has been achieved using the package
mentioned above up to the 30 order estimations. +e trail
solution for the modeled problem is obtained as
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(19)
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where An(n � 1, 2, . . . , 8) are the constants of the integra-
tion. +e residual errors considering average estimations up
to the kth order is defined as
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,
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(20)

+e sum of the total residual errors εt
m has been attained

from the fluid velocity, temperature, and concentration
profiles.

4. Result and Discussion

+e objectives of the current portion are to inspect the effect
of major factors on the thin liquid flow of Carreau liquid
through an extending sheet. +e findings obtained for the
velocity, heat, and concentration profiles (f′(η), θ(η), and
ϕ(η)) are seen in plots to discuss the effects of prevailing
factors such as K, M, S, we2, NT, NB, Pr, and Sc. For
computational estimates, we assumed (K � 0.6, M � 0.6,

S � 0.4, we2 � 1, NT � 0.8, NB � 0.7, n � 0.1,
Pr � 10.4,Ψ � 1, and Sc � 0.4). But these values are con-
sidered to be consistent in the analysis, except that the
variable values are seen in the corresponding figures and
tables. +e coordinate system and physical geometry of the
model problem are represented in Figure 1. +e influence of
M on f′(η)(fluid velocity field) is presented in Figure 2.+e
velocity profile f′(η) has shown the decline behavior by
increasing the magnitude of the magnetic parameter M.
With increasing strength of the magnetic field, we will
encounter a resistive force known as Lorentz force. +e rate
of Lorentz force increases with a greater value of magnetic
parameter. +is force behaves as an agent of resistance to
fluid motion. Due to this fact, the speed of the liquid film
declined. +e effect of S(unsteady factor) on f′(η) (velocity
field) is presented in Figure 3. We witnessed from the plot a
decrease in velocity fields for rising magnitude of S. Ob-
viously, for the greater degree of the S unsteadiness factor,
the density of the thin film rises, and hence, the fluid velocity
declines with maximum value of S. Figure 4 indicates an-
other major effect of we2 on thin layer liquid f′(η) velocity.
We observed a drop in f′(η) from the plot for the increasing
amount of we2. In this graph, we can see contradictory
patterns occurring with various values of we2 on fluid ve-
locity. In case of shear-thinning, the velocity of the liquid
thin film reduces, whenever we strengthen its value we2. In

comparison, the behavior of we2 is opposite for shear
thickening fluid. +is has been confirmed that the boundary
film width reduces for 0< n< 1, although it improves for
n> 1. Figure 5 illustrates the importance of K(couple stress
factor) on the f′(η)(velocity profile). Here, as the magni-
tude of the couple stress factor increases, the f′(η) velocity
profile is reduced. It is interesting that the liquid becomes a
Newtonian fluid when the couple stress factor tends to zero
(K⟶ 0). Figure 6 highlights influence of β (layer thick-
ness factor) on the f′(η) velocity profiles of the fluid film. A
rise in the value of f′(η) depreciation in the fluid flow
velocity profiles has been observed. Physically, the viscosity
of the momentum boundary film is enlarged by the growth
of the value of β. For this purpose, we observed a depre-
ciation in fluid velocity. +e influence of NT (thermo-
phoresis factor) is captured in Figures 7 and 8 on θ(η)

(temperature field) and ϕ(η)(concentration field). +ere-
fore, the conclusion is taken from Figure 7 that θ(η) is
growing with rising values NT. Figure 8 illustrates the in-
fluence of NT on ϕ(η), where an increasing behavior is
observed in ϕ(η) with the growing quantity of NT. +e
impact of NB on θ(η) (thermal profile) and ϕ(η) (con-
centration field) is shown in Figures 9 and 10. Figure 9
indicates that θ(η) grows with the rising valuesNB. Brow-
nian motion particles spontaneously travel across the fluid,
and therefore, increase in NB produces an improvement in
the fluid objects’ random motion and as a result more heat
can be transported. But at the other side, in the case of ϕ(η)

Figure 10, the opposite behavior is noticed. Figure 11
demonstrates the influence of Pr on the θ(η) (tempera-
ture filed) of thin film fluid. It is shown from this graph that,
with the rising values of Pr, θ(η) indicates a decrease.
Physically, with the increasing values of Pr, decline the
temperature field for its larger values. Figure 12 examines
the influence of Sc on the ϕ(η) field. It is clearly found from
the graph that ϕ(η) and its corresponding width of the
boundary layer are decreasing function of Sc. Also, Sc is
inversely related to the coefficient of diffusion. +erefore, a
rise in Sc leads to a lower coefficient of diffusion. So, a
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decrease in the ϕ(η) profile is caused by such a lower
diffusion coefficient. +e skin friction of the Carreau liquid
film increasing with the larger magnitude of the parameters
M, n, S, k, andwe is shown in Table 1. +e resistance force
enlarges due the increasing magnitude of these parameters,
and consequently, the skin friction boots up. Similarly, the
thermophoretic parameter and Brownianmotion parameter
improve the heat transfer rate for the larger values of these
parameters, as shown in Table 2, while the increasing value
of the unsteady parameter reduces the heat transfer rate.

β = 1, 0.8, 0.7, 0.6.
we

2 = 0.2, 0.4, 0.6, 0.8.

S = 0.5, K = 0.8, M = 0.3.

0.0

0.2

0.4

0.6

0.8

1.0

f′ 
(η

)

0.0 0.4 0.6 0.8 1.00.2
η

Figure 4: f′(η) (velocity field) for multiple values of We2.

β = 1, 0.95, 0.9, 0.85.
K = 0.3, 0.5, 0.7, 0.9.

S = 0.5, M = 0.6, we
2 = 0.3.

0.0

0.2

0.4

0.6

0.8

1.0

f′ 
(η

)

0.0 0.4 0.6 0.8 1.00.2
η

Figure 5: f′(η) (velocity field) for multiple values of K.

β = 0.85, 0.90, 0.95, 1.

S = 0.5, M = 0.6, we
2 = 0.3.

0.0

0.2

0.4

0.6

0.8

1.0

f′ 
(η

)

0.0 0.4 0.6 0.8 1.00.2
η

Figure 6: f′(η) (velocity field) for multiple values of β.

NT = 1, 2, 3, 4.

S = 0.5, M = 0.6, Pr = 10, NB = 1.
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Figure 7: Θ(η) (temperature field) for multiple values of NT.

NT = 0.1, 0.5, 1, 1.4.
S = 0.5, M = 0.6, Pr = 10, Sc = 0.3, NB = 0.3.
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Figure 8: ϕ(η) (concentration field) for multiple values of NT.

β = 1, 0.8, 0.7, 0.6.
M = 0.1, 0.3, 0.5, 0.7.

S = 0.5, K = 0.8, we2 = 0.3.
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Figure 2: f′(η) (velocity field) for multiple values of M.

β = 1, 0.95, 0.9, 0.85.
S = 0.5, 0.7, 0.9, 1.1.

K = 0.5, M = 0.6, we
2 = 0.3.
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Figure 3: f′(η) (velocity field) for multiple values of S.
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Nt,Nb, and S augmenting the Sherwood number for the
increasing amount of these parameters is displayed in Ta-
ble 3, but the parameter Sc reduces the mass transfer rate for
its larger values. +e comparison of the present study and
published work [31] is shown in Table 4.

NB = 1, 2, 3, 4.

S = 0.5, M = 0.6, Pr = 10, NT = 1.
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Figure 9: Θ(η) (temperature field) for multiple values of NB.

NB = 0.3, 0.5, 0.7, 0.9.
S = 0.5, M = 0.6, Pr = 10, Sc = 0.3, NT = 0.3.
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Figure 10: ϕ(η) (concentration field) for multiple values of NB.

Pr = 10, 11, 12, 13.
S = 0.5, M = 0.6, Pr = 10, NB = 2, NT = 1.
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Figure 11: Θ(η) (temperature field) for multiple values of Pr.

Sc = 0.3, 0.5, 0.7, 0.9
S = 0.5, M = 0.6, Pr = 10, NB = 0.5, NT = 0.3.
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Figure 12: ϕ(η) (concentration field) for multiple values of Sc.

Table 1: Skin friction versus embedded parameters.

M We k S n Ψ Re(1/2)
x Cfx

0.1 0.1 0.1 0.1 0.1 0.1 3.41518
0.2 3.4223
0.3 3.42942

0.2 3.5927
0.3 3.89123

0.2 3.97121
0.3 4.05627

0.2 4.36927
0.3 4.70292

0.2 4.78074
0.3 4.85167

0.2 4.99909
0.3 5.15497

Table 2: Nusselt number versus embedded parameters.

NT NB S Re(− 1/2)
x Nux

0.1 0.1 0.1 1.02978
0.2 1.241424
0.3 1.452541

0.2 1.53642
0.3 1.64861

0.2 1.352101
0.3 1.053761

Table 3: Sherwood number versus embedded parameters.

NT NB S Sc Re(− 1/2)
x Shx

0.1 0.1 0.1 0.1 0.9243210
0.2 0.8233101
0.3 0.7123013

0.2 1.0234124
0.3 1.1342151

0.2 1.3284632
0.3 1.4122154

0.2 1.2542810
0.3 1.13243702
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5. Conclusions

In this analysis, by taking into account the influence of
Marangoni convection, couple stress, and MHD, we in-
vestigated the flow, heat transport and concentration
properties of thin film fluid flow of the Carreau fluid model
over an unsteady stretching sheet. +e Buongiorno model
was also used to develop the effects of thermophoresis and
Brownian diffusion.+e key finding of the present analysis is
taken in the following way.

(i) +e obtained results shows that the velocity field is
dependent on the thickness parameter β. +e
convergence phenomenon is validated with the
variation of the thickness parameter.

(ii) +e velocity field declines with the augmentation of
the thickness parameter β.

(iii) +e increasing value of the couple stress parameter
K improves the resistive force and consequently the
fluid motion decline.

(iv) f′(η) decelerates with increasing values of
M, S, andwe2.

(v) +e thermal field θ(η) reduces by rising Pr whereas
it strengthens for NB and NT.

(vi) Whereas the opposite pattern for both NB and NT,
it is observed on ϕ(η) profile.

(vii) Both the concentration and related layer thickness
are the decreasing function of Sc.

Symbol description

Nomenclature

u and v: x and y components of velocity (ms− 1)

Uw(x, t): Stretching surface velocity(ms− 1)

h(t): +ickness of the fluid(m)

ρ: Density (kgm− 3)

cp: Specific heat capacity(Jkg− 1K− 1)

x and y: Cartesian coordinates (m)

κ: +ermal conductivity
we2: Local Weissenberg number
Tw: Surface temperature (K)

T0: Slit temperature (K)

Tref : Reference temperature (K)

NB: Brownian motion parameter
n: Power-law index
η0: Zero-shear rate viscosity (kgm− 1s− 1)

p: Pressure (Pa)

A1: Rivlin–Ericksen tensor (Pa)

μ: Dynamic viscosity (kgm− 1s− 1)

υ: Kinematic viscosity (m2s− 1)

S: Unsteady parameter
Pr: Prandtl number
λ: Material time constant
Rex: Reynolds number
T: Temperature (K)

NT: +ermophoresis parameter
τ: Cauchy stress tensor (Pa)

Sc: Schmidt number
M: Magnetic parameter
Nux: Local Nusselt number
ε∞: Infinite-shear-rate viscosity (kgm− 1s− 1)

I: Identity tensor
ε: Apparent viscosity (kgm− 1s− 1)

b: Stretching rate (s− 1)

t: Time (s)
(Cfx): Skin-friction coefficient
(Shx): Sherwood number.
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