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Generation of synthetic data is a challenging task. 'ere are only a few significant works on RGB video generation and no
pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can
further be used as dataset for various applications like object tracking, gesture recognition, and action recognition. 'is paper has
put forward a proposal for a novel architecture that uses conditional deep 3D-convolutional generative adversarial networks to
synthesize RGB-D data by exploiting 3D spatio-temporal convolutional framework. 'e proposed architecture can be used to
generate virtually unlimited data. In this work, we have presented the architecture to generate RGB-D data conditioned on class
labels. In the architecture, two parallel paths were used, one to generate RGB data and the second to synthesize depth map. 'e
output from the two parallel paths is combined to generate RGB-D data.'e proposed model is used for video generation at 30 fps
(frames per second). 'e frame referred here is an RGB-D with the spatial resolution of 512× 512.

1. Introduction

Deep learning requires a huge volume of data to train the
networks. Collection of data by physically creating is a
daunting task. While capturing images or videos physically,
there will be some issues like a foreground objects shadow,
background clutter, change in illumination, the effect of
moving background objects, and viewpoint of the scene.
'ese issues evoke the need for depth information in data.
With the addition of depth as an extra dimension, useful
information about the scene is gathered which is insensitive
to variation of illumination. Additionally, combining the
depth map with RGB gives a rich 3D scene which is close to
real life experience and is very useful in various applications.
Despite this requirement and with the availability of a vast
variety of sensors, RGB-D data acquisition is a challenge.

For a particular application such as gesture recognition
and activity recognition, till now we have two largest
datasets, namely, ChaLearn gesture challenge [1, 2] and NTU
RGB+D [3]. 'is gives rise to the need for a generation of

synthetic data with or without a little intervention (to ac-
quire reference frame) of any RGB-D sensor. 'ere are a few
networks which can generate RGB images and videos from
random number.

Synthetic data created are used in training purpose for
varied applications related to computer vision and also in the
machine learning domain which includes scene recon-
struction, camera and object tracking, pose identification,
action/gesture recognition, and many more. Using these
networks, we can generate scenes which are difficult to
capture in real life. From the literature, we can see that the
quality of synthetic data generated through generative
adversarial networks has been much better than the pre-
viously used methods. GAN and its variants are one of the
potentially important breakthroughs in deep learning.
'ough GAN has been used successfully to generate RGB
videos, very little attention has been devoted to RGB+D
generation.

Motivated by the importance of depth data in many
applications, we are proposing a new framework for
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RGB+D data generation which uses conditional deep 3D-
convolutional generative adversarial network for RGB-D
data generation. 'e proposed framework has two parallel
paths. Here, each path is having conditional deep 3D-
convolutional GAN, one is for generating RGB video and
second one is to synthesize depth map and combine them to
generate RGB-D video. Two generators are fed with a noise
vector sampled from normal distribution to generate RGB-D
data by two-stream conditional deep 3D-convolutional
GAN. Discriminator learns to differentiate between gener-
ated synthesized videos and real videos (which are the videos
from NTU RGB+D [3] dataset) for both RGB and depth
videos.

'e remaining paper is organized as follows. Section 2
discusses the related work. Proposed methodology is dis-
cussed in Section 3. Section 4 presents the experimental
results. Section 5 concludes the paper.

2. Related Work

Ian Goodfellow gave the sophisticated architecture of GANs
(generative adversarial networks) [4] for the purpose of
generating data. Since then, several adaptations have been
applied for various applications [5]. Early research on data
synthesis was dominated by synthesis of image data using
GAN and its variants. Durugkar et al. [6] developed an
architecture known as generative multiadversarial network
in which multiple discriminators and a single generator were
used to model images. A similar system called generative
adversarial parallelization was created by Daniel et al. [7, 8]
in which multiple GAN pairs were used that were inter-
changeable during training. Initially, it resulted in an un-
stable result but later modified and improved and various
variants of the architecture have been used since then.
Radford et al. [9] developed an architecture called “Deep
Convolutional Generative Adversarial Networks” acronymic
to DCGANs for unsupervised representational learning of
images by combining GAN and CNN architectures which
was later modified, and its variants were used by many
researchers.'e outcome of these architectures is better than
that of conventional GAN. Much of the research on GAN
was confined to image generation [10], and very little has
been done for video sequences.

Vondrick et al. [11] developed an architecture com-
bining GAN [12] with 3D convolution and used as a
milestone for video generation. Our work is motivated from
this work in which two stream networks were used, one is to
generate foreground and other is to generate background,
which was then combined to produce video. It is then fed to
the discriminator to discriminate probably fake output from
real videos. Arjovsky et al. [13, 14] created a variant of GAN
known as WGAN (Wasserstein GAN) which uses Was-
serstein distance instead of Jensen Shannon distance,
resulted in a more stable system. Mathieu et al. [15] created
the deep multiscale system to predict future frames, but the
accuracy was measured for only for few frames. Similarly,
Zhu et al. [16] developed SeqGAN, and Yu et al. [17] de-
veloped CycleGAN, with the focus to resolve generator
differentiation issue. Xue et al. [18] used single image instead
of sequence of images, to generate future frames. Walker
et al. [19] used optical flow to generate future frames. 'ere
are other GAN-related works which has been done for
different applications [20–27].

'e proposed paper addresses the following agendas:

(1) 'e generation of RGB-D data by using two-stream
conditional deep 3D-convolutional generative
adversarial networks

(2) Exploitation of spatio-temporal convolutional ar-
chitecture for generating both depth as well as RGB
videos

(3) Generation of 2 second RGB-D video with the rate of
30 frames per second where each RGB-D frame is
having 512× 512 spatial resolution

(4) Use of SR process to increase resolution of generated
videos with good perception quality

(5) RGB prediction architecture for the future

3. Proposed Methodology

Figure 1 shows the diagrammatical flow of the proposed
model. 'ere are two streams serving for color video gen-
eration and depth video generation, respectively. At the end
of each stream, super-resolution network is used to improve
the quality of output video of each path. After improving the
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Figure 1: Block diagram of the framework.
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quality of both types of videos, both videos are concatenated
using merge block to obtain RGB-D video.

Each stream has been implemented by a conditional
GAN. In conditional GAN, the label of each type of video is
provided along with noise sample to generator and same
label with training data to the discriminator. 'e block

diagram of the proposed framework is shown in Figure 2.
Same noise sample with same label is used for both the
generators. Same label is assigned to discriminator associ-
ated with real videos to obtain the expected video. 'e
structure of generator and discriminator is discussed in the
remaining sections.
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Figure 2: Detailed block diagram of the proposed framework.
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Figure 4: Block diagram for future prediction of video frames.

Figure 5: Ground truth or training video frames of class “kicking” with a frame gap of 5 frames.
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3.1. Generator. As shown in Figures 2 and 3, we are using a
noise vector of dimension 100 obtained from normal dis-
tribution.'e noise vector is then concatenated with the label,
and the output vector is later reshaped into a [1, 1, 1, 106].

Since we have only 6 classes of activity, we use one-hot
encoding technique to get the label vector. To utilize both
spatial and temporal information, a 3D convolution-
transpose operation is performed over this reshaped vector
with the kernel size of [2, 4, 4] where 4 and 4 are height and
width, respectively, and 2 is the depth of the filter. 512 filters
are used in the first convolution-transpose layer with the
stride of [1, 1, 1]. 'e next five layers use the same 3D
convolution-transpose operation having the kernel size of [4,
4, 4] with 256, 128, 64, 32, and 3 filters, respectively. To
increase the size of image, we use stride of 2 in each di-
mension. 'e output shape of the last layer is 64, 128, and
128 which represents height and width of output video as
128×128 and 64 frames in depth. Rectified Linear Unit
(ReLU) has been used as an activation function in all layers.
We use only 60 frames of the last layer out of 64.'e purpose
of doing is to create 2 second video at 30 fps requiring only
60 frames. 'e final output of generator is 60 frames of
dimension 128×128.

'is generator network is replicated into two streams to
generate RGB and depth video.'e same label is fed into the
depth video generating stream. After the generating both

videos, we use super-resolution network to improve the
perceptual quality of generated videos. Later, both videos
have been merged to obtain RGB-D video. 'e output is the
RGB-D video of 2 second length saved at 30 frames per
second.'e dimension of the output video is the same as the
final output layer of each generator network which is
128×128.

3.2. Discriminator. 'e job of discriminator is to act as a
classifier. It must distinguish between the real video and fake
video. As we are using conditional GAN, the classification is
also based on label. 'e discriminator comprises five 3D
convolution layers having a kernel dimension of [4, 4, 4] at
each layer except for the last layer which is [2, 4, 4]. 'e
spatio-temporal information of both the videos is studied
with the help of 3D convolution operation. 'e filter size of
each layer is 64, 128, 256, 512, and 1, respectively. Before
feeding the real video into the first layer of network, the label
which is of one-hot encode in nature is reshaped into the
same size of input video frame which is 128×128. After
reshaping, it concatenates with input video frame and goes
to the first layer of discriminator network. 'e leaky-ReLU
activation function is basically employed in the first three
layers, and the ultimate layer makes use of the sigmoid
activation function.

Figure 6: Generated video frames of class “kicking” with a frame gap of 5 frames.
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3.3.Training. 'e training data are augmented using various
kinds of data augmentation techniques to prevent overfitting
issue. 'e used data augmentation techniques are image
rotation, image cropping, and image filters. 'ereafter, all
images are resized to the actual resolution. To build model,
we use two steams one for generation of RGB video and
other for depth video. 'e above-described generator and
discriminator model is replicated in two streams. Each
generator and discriminator are given proper training with
the aid of cross entropy loss methodology. 'e optimizer is
optimized at a learning rate of 0.002. 'e model is to be
trained for 1000 epochs. In every epoch, we train our model
for all the video in training folder, and after each complete
iteration, we are generating sample video as well as saving
the model file.

3.3.1. Super-Resolution (SR). Here, we are using 3D-CDCA
[28] to 4x super-resolve the RGB video frames. 'is 4X
super-resolution increases the spatial resolution of RGB
frames from 128×128 to 512× 512 and temporal 4X-SR
increases the number of frames 4 times than earlier. For
depth SR, we are simply interpolating space-time video
frames by tri-cubic interpolation. 'is SR block helps in
improving spatio-temporal resolution of the generated RGB
and depth videos.

3.4. Future Generation: Prediction of Next Frames. We have
adapted our previous proposed framework for future frames
prediction as shown in Figure 4. Here, our input is static
frames or reference frames, and we are predicting next
frames, so the output is future frames. 'e working
methodology is as follows. 'e reference frame is fed into a
convolutional encoder (CE). 'e CE learns the features of
reference frame and reduces the size of the reference frame
equal to the first layer of generator network. 'en, our
proposed framework generates the video by creating the next
future frames.

4. Experimental Results

4.1. Dataset. NTU RGB+D action recognition dataset
containing 56,880 RGB videos each with a resolution of
1920×1080 along with the depth map has been implemented
for our experiments. Videos of this dataset have 40 videos of
classes of daily action, 9 classes of videos of medical condi-
tions, and 11 classes ofmutual conditions for each subject. For
conditional video generation, we use only 6 classes. 'e NTU
RBG+D till date is the largest dataset assembled by taking 40
subjects performing 60 different action classes which are
subdivided as daily actions, mutual actions, and medical
conditions. Daily actions include 40 days to day actions classes
such as drinking water, jumping up, taking selfie, and

Figure 7: Generated video frames of class “sitting on knee” with a frame gap of 5 frames.
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pointing to something. A total of 11 action classes are cat-
egorized as mutual conditions such as kicking, hugging, and
punching, and 9 action classes are considered as medical
conditions such as sneezing, vomiting, and falling. We have
shown original video frames in Figure 5.

5. Result Analysis

Using this dataset, we generated videos as shown in Figures 6
and 7. Figure 7 shows videos of subjects hugging each other,
and Figure 8 shows videos of fight. Figures 6 and 7 are of
classes kicking and sitting on chair, respectively. All of the
videos are 2 seconds long and have 60 frames per second.We
are showing only 12 frames per video.

It is very difficult to measure the quality of generated
video, and since there is no one to correspond between real
data and generated data, calculated mean squared error is
not suitable for this kind of quality measurement. Addi-
tionally, mean squared error does not reflect the human
perception of reality. A commonly adapted tool is Amazon
Mechanical Turk, commonly known as MTurk. We con-
ducted a survey on Amazon Mechanical Turk, motivated
from [29], to get the subjective MOS based on perceptual
quality of generated videos. Our aim is to measure the
perception quality of the motion in the generated video. We
categorize the MOS (mean opinion score) in five categories
such as bad, poor, fair, good, and excellent, score of 1 for bad
(least perceivable) and 5 for excellent (most perceivable and
realistic). For each HIT (Human Intelligent Test), subjects
are asked to rate the videos of two seconds. A total of 1200
ratings were collected from more than 60 unique subjects,
and the survey is still ongoing. Some subjects were rejected
on the account of reliability, and no subject was allowed to
take the survey more than once. By averaging the rating for
individual video, we obtain MOS for our generated videos.

76 percent of the rating lies in the range of 3 to 5. By an-
alyzing the scores, we can say that our generated videos look
realistic and perceivable with its motion. Figures 8 and 9
show the output of future prediction of frames using a
reference frame of any particular action. In these figures,
output predicted frames are shown with the gap of 10
frames.

'e quantitative analysis on testing dataset indicates that
the proposed model obtains false-positive and false-negative
values as 1.37% and 1.87%, respectively. 'ese values also
indicate that the proposed model does not suffer from the
overfitting issue.

6. Conclusions

'e proposed conditional deep 3D-convolutional generative
adversarial network can generate more realistic videos of 2
second length as shown in the experimental results. 'is
framework has proven to be more promising for predicting
future frames. In the proposed framework, the super-res-
olution framework enables us to produce the video of high
spatio-temporal resolution. In addition, we have generated
RGB-D video for each action class. 'is RGB-D data gen-
eration will help in many computer-vision applications as
well as help us in understanding of features responsible for
action recognition of different classes. In future, we will
explore CNN-LSTM-based generative architecture on the
lines of the proposed architecture for RGB-D generation
with more realistic quality and will develop end-to-end
pipeline that contains data generation with application in
improving action recognition accuracy for many classes.

Data Availability

'e data that support the findings of this study are available
upon request.

Reference Frame Predicted Frames

Figure 8: Future prediction: here first frame is static or reference frame and next six are future predicted frames with the gap of 10 frames.

Reference Frame Predicted Frames

Figure 9: Future prediction: here first frame is static or reference frame and next six are future predicted frames with the gap of 10 frames.
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