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Differential pricing of trains with different departure times caters to the taste heterogeneity of the time-dependent (departure
time) demand and then improves the ticket revenue of railway enterprises. *is paper studies optimal differential pricing for
intercity high-speed railway services. *e distribution features of the passenger demand regarding departure times are analyzed,
and the time-dependent demand is formulated; a passenger assignment method considering departure periods and capacity
constraints is constructed to evaluate the prices by simulating the ticket-booking process. Based on these, an optimizationmodel is
constructed with the aim of maximizing the ticket revenue and the decision variables for pricing train legs. A modified direct
search simulated annealing algorithm is designed to solve the optimization model, and three random generation methods of new
solutions are developed to search the solution space efficiently. Experimental analysis containing dozens of trains is performed on
Wuhan-Shenzhen high-speed railway in China, and price solutions with different elastic demand coefficients (ϕ) are compared.
*e following results are found: (i) the optimization algorithm converges stably and efficiently and (ii) differentiation is shown in
the price solutions, and the optimized ticket revenue is influenced greatly by ϕ, increasing by 7%–21%.

1. Introduction

Intercity high-speed railways serve passengers that are lo-
cated in densely populated metropolitan areas or city
clusters. *ey feature high departure frequencies and high
speeds, not less than 250 km/h. Since 2016, the ticket prices
of part high-speed trains have been floated within certain
limits on several lines (Beijing-Shanghai high-speed railway
and Hangzhou-Shenzhen railway) because pricing power
has been devolved to the railway transport enterprise in
China. However, train prices of most high-speed lines in
China are still unitary for the same train leg and fixed now,
which have seriously affected the market competitiveness of

intercity high-speed railways. Hence, more theoretical
methods are needed to guide pricing. According to the
passenger characteristics in the railway transportation
market, optimal pricing methods for intercity high-speed
railways are studied in this paper, which are of great sig-
nificance for improving railway operation and management
mechanisms and increasing the economic revenue of railway
transportation enterprises.

Determining the optimal pricing of intercity high-speed
railways is a revenue management problem, and revenue
management methods have been studied for decades and
widely applied in the railway industry in Europe and Japan
[1, 2]. Researches related to revenue management have
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mainly focused on air transport industry, and revenue
management methods for intercity high-speed railways are
under-researched. However, there are great differences be-
tween airlines and high-speed railways. For example, few
intermediate stops are included for airline services, whereas
many stop stations are dotted in train lines. Hence, the
pricing problem for high-speed railways is much more
complicated.

Considering the complexity of pricing problem for high-
speed railways, fewer researchers studied optimal pricing
based on a railway network scale or multiple trains. How-
ever, all trains in an intercity high-speed railway network
form an integrated passenger transport system. Multiple
trains operate together to serve passengers with different
departure times, and passengers make choices between
trains under capacity constraints. Hence, the optimal pricing
of intercity high-speed railway services should be studied on
a network scale.

*e passenger demand is premise or basis of optimal
pricing problems. Based on historical ticket reservation data,
the passenger demand for different departure times in a day
shows fluctuation rules, and the rules are stable over a short
period. Such a demand can be called time-dependent de-
mand. *e time-dependent demand has been studied by
various researchers [3–6], and a train timetable or line
planning has been evaluated and optimized based on the
passenger choice behaviors with different departure times.
However, time-dependent demand has been under-
researched in the optimal pricing studies of intercity high-
speed railways.

Passengers are usually characterized by a high level of
taste heterogeneity considering their different preferences
for scheduling and pricing [7, 8]. Time-dependent demand
has heterogeneous behavior preferences for trains with
different departure times. Similarly, trains with different
departure times serve passengers with different preferences.
Hence, train legs with different departure times can be
priced differently. Differential pricing of trains caters to the
taste heterogeneity of the time-dependent demand and will
improve the ticket revenue of railway enterprises.

In light of the above, this paper proposes an optimal
differential pricing method for intercity high-speed railway
services considering the time-dependent demand and pas-
senger choice behaviors under capacity constraints. *e
main contributions are as follows: (i) time-dependent de-
mand features are analyzed and formulated, and a multi-
nomial logit model is applied to predict the passenger choice
behaviors between trains considering their departure times;
(ii) an optimal differential pricing model is constructed
considering capacity constraints and time-dependent de-
mand; (iii) a modified direct search simulated annealing
algorithm is developed to solve the optimization model, and
three random generation methods of new solutions are
designed to search the solution space efficiently, and a
passenger assignment method by simulating the ticket-
booking process is proposed to evaluate the price solutions;
and (iv) experimental analysis is performed to prove the
stability and efficiency of the algorithm convergence, and
price solutions with different elastic demand coefficients are

compared to verify the feasibility of the optimization
method.

In Table 1, the main notations used in the paper are listed
in order of appearance. *e remainder of the paper is or-
ganized as follows. A review of the literature on revenue
management in the railway industry is presented in the next
section. In Section 3, the time-dependent demand is ana-
lyzed and formulated. In Section 4, a travel choice model
considering departure periods and capacity constraints is
proposed. In Section 5, an optimal differential pricing model
is constructed and a modified direct search simulated
annealing algorithm is developed to solve the optimization
model. In Section 6, a case study is conducted on Wuhan-
Shenzhen high-speed railway in China to illustrate the
optimized method and verify its feasibility. In Section 7, the
conclusions and future research directions are presented.

2. Literature Review

In recent years, with the development of high-speed rail-
ways, more and more scholars have paid attention to the
pricing problems in the high-speed railway industry [9–11].
However, most studies have considered only one train.

Zheng and Liu [12] developed a ticket fare optimization
model for one high-speed train and determined the number
of fare grades and the price of each fare grade in the sale
horizon. Hetrakul and Cirillo [8] studied the revenue op-
timization problem considering the pricing and seat allo-
cation jointly. Multinomial and latent class models were
used to explain the ticket purchase timing of passengers, but
only one train was considered in the optimization model.
Fransiscus [13] proposed a practical revenue management
method of railways including three stages. Also, only one
train was considered in this method.

Qin et al. [14] used prospect theory to construct a dif-
ferentiated pricing model under elastic demand and applied
a simulated annealing algorithm to solve the model, and
eight trains are tested. Some researchers [15, 16] jointly
studied pricing and seat allocation optimization problems
including several trains, and a multinomial model was used
to analyze the passenger choice behaviors between trains. Hu
et al. [17] also proposed a joint optimization method of
pricing and seat allocation in high-speed rail networks and
tested a large-scale instance.

In the above studies, time-dependent demand was not
considered deeply. Usually, ticket fares and booking days
were taken as factors in the choice models, and deterministic
demand using historical data and stochastic demand fol-
lowing a Poisson process and elastic demand were assumed
[18–20]. Actually, time-dependent demand had already been
studied in some passenger transportation organization
optimization problems. For example, time-dependent de-
mand was considered in the train timetable optimization by
Kaspi and Raviv [3] and Niu et al. [4] and also used in the
line planning problem by Su et al. [5]. Xu et al. [6] designed
passenger assignment methods for high-speed railways
based on time-dependent demand. Nevertheless, time-de-
pendent demand regarding the pricing problems of high-
speed railways has not been studied sufficiently.
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Discrete choice models were applied to analyze passenger
choice behaviors for the above pricing problems. *ere is only
once chance in the above studies when passengers were
assigned to trains by the discrete choice models. Passengers
were accepted to aboard trains if there were residual capacities
for their choices. Otherwise, they were refused to aboard trains.
However, the choices are not unique; if there are no residual
capacities for a choice, passengers can be assigned to other
trains with residual capacities again, which means passengers
have several chances to make choice. *is is a passenger as-
signment problem of railways. Passenger assignment problems
have been widely studied for urban transit systems [21–23]. For
example, Sumalee et al. [24] proposed a dynamic transit as-
signment model that had an explicit seat allocation process.
Hamdouch et al. [25] proposed a schedule-based transit as-
signmentmodel with travel strategies and loaded passengers on
a first-come-first-served basis. However there are big differ-
ences between the urban transit systems and high-speed rail
systems, which have been analyzed in detail by Su et al. [26].
Considering the features of high-speed rail systems, Su et al.
[26] proposed a schedule-based passenger assignment method
for high-speed rail networks by simulating the ticket-booking
process, which can be used for a reference in this article.

As previously stated, the research status of the optimal
pricing of railway revenue management can be summarized
as follows: (1) many researchers have focused on the optimal
pricing problem of one train in the sale horizon, and optimal

differential pricing of multiple trains has not been studied
extensively; (2) the passenger demand is generally formu-
lated as elastic demand or stochastic demand in the sale
horizon, and the time-dependent demand deserves more
attention in revenue management research; (3) discrete
choice models were widely applied to assign passengers and
passenger assignment methods considering the features of
high-speed rail systems deserve more attention; and (4) for
large-scale instances, the convergence efficiency of the so-
lution algorithm need to be improved. *e comparison of
our research with the literature in pricing problems of high-
speed railways is shown in Table 2.

Consequently, this paper aims to fill the gap by proposing
an optimal differential pricing method for intercity high-speed
railway services, considering the time-dependent demand and
passenger choice behaviors under capacity constraints.

3. Time-Dependent Demand

In this section, we analyze the fluctuation rules of passenger
demands with different departure times in a day and de-
termine the formulation of the time-dependent demand.*e
analysis is based on the historical ticket reservation data of
the Wuhan-Shenzhen railway in the first half of 2016. *is
railway is located in Central China and South China with a
length of 1171 km, 18 stations, and a design speed of 350 km/
h, as shown in Figure 1. *e passenger demand along this

Table 1: *e main notations used.

(r, s) An origin-destination (O-D) pair; r is the departure station and s is the arrival station for passengers
qrs *e demand of an O-D pair (r, s)

k *e departure period
fk

rs *e probability of departing in the kth period for the demand of an O-D pair (r, s)

qk
rs *e time-dependent demand of an O-D pair (r, s) departing in the kth period
SN *e set of stations
RS *e set of all O-D pairs
j A train
W *e set of all trains
h(j) *e number of stop stations of train j

v
j
x *e xth stop station of train j

STj *e sequence of stop stations of train j

(v
j
x, v

j
y) A leg of train j between stop stations v

j
x and v

j
y

LEGj *e set of all the legs of train j

CAj *e capacity of train j

trs(j) *e running time of train j on leg (r, s)

crs(j) *e price of train j on leg (r, s), the decision variable
Wrs *e set of trains stopping at station r and stopping at station s

trs(j) *e running time of train j on leg (r, s)

crs(j) *e price of train j on leg (r, s), the decision variable
dj *e departure hour of train j

ηm *e assignment ratio of the demand in the mth stage
Wm

rs *e set of alternative trains for O-D pair (r, s) in the mth stage
qk,m

rs *e accepted passenger demand for O-D pair (r, s) and period k in the mth stage
P(j|r, s, k, m) *e probability of selecting train j from set Wk,m

rs for time-dependent demand qk,m
rs

F(j, x, m) *e number of passengers on leg (v
j
x, v

j
x+1) at the end of the mth stage

M *e number of stages of the ticket-booking process
cn *e number of decision variables
C *e vector of the decision variables
CL *e vector of the lower limits of the decision variables
CU *e vector of the upper limits of the decision variables
Z Ticket revenue
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railway is great. With high departure frequency, passengers
can decide their departure time according to their will. *e
passenger demand for different departure times in a day
shows fluctuation rules.

*e passenger demand is analyzed statistically in di-
mensions of departure times and days of a week.*e average
passenger demand per hour in each day of one week is
calculated, and the results of some origin-destination (O-D)
pairs (Wuhan-Guangzhounan, Changshanan-Shenzhenbei,
Changshanan-Guangzhounan, and Guangzhounan-Shenz-
henbei) are shown in Figure 2.

According to Figure 2, passenger demand floats along
departure times and shows some rules as follows:

(i) *e “peaks and valleys” of the passenger demand
occur at different departure times in one day and
form some variation rules.

(ii) *e variation rules are similar for each day of week
for an O-D pair.

(iii) *e variation rules are different for different O-D
pairs.

*e variation rules in the above analysis reflect some
time-dependent features of passenger demand. *us, pas-
senger demand with the above variation rules can be called
time-dependent demand. For the sake of description, time-
dependent demand can be formulated by calculating the
probability of passenger demand choosing different de-
parture times using statistical regression methods based on
historical ticket reservation data, which are defined in detail
as follows.

*e service time horizon [t1, t2] is divided into periods
by hours; for example, [6:00, 6:59] is called period 6, [7:00, 7:

59] is called period 7, and so on. Let RS be the set of all O-D
pairs. *e passenger demand of O-D pair (r, s) in a day is
denoted as qrs, (r, s) ∈ RS, and the probability of the pas-
senger demand departing in the kth period is denoted as fk

rs,
so the passenger demand departing in the kth period can be
calculated as follows:

q
k
rs � f

k
rs × qrs, k � t1, t1 + 1, . . . , t2 − 1; (r, s) ∈ RS.

(1)

*erefore, equation (1) is the formulation of the time-
dependent demand and period k is the expected departure
hour of passenger demand qk

rs.

4. PassengerAssignmentconsideringDeparture
Periods and Capacity Constraints

*e analysis of passenger assignment aims to calculate the
number of passengers on each train more accurately and
then to evaluate the differentiated pricing of trains. In this
section, a passenger assignment method is designed by
simulating the ticket-booking process to assign passengers to
trains with limited capacities. In addition, a multinomial
logit model is adopted to determine the choices between
trains for time-dependent demand.

A passenger assignment method can be constructed by
simulating ticket-booking process because passengers’
choices of trains are determined in this process [26]. As the
ticket-booking process continues, some train legs become
fully occupied and the alternative trains for the subsequent
passengers’ booking requests change. Hence, the ticket-
booking process is partitioned into several stages and the
passenger assignment is conducted stage by stage. In each

Table 2: Comparison of our research with the literature in pricing problems of railways.

References Time-dependent
demand

Taste
heterogeneity

Multiple
trains Solution method

Hetrakul and Cirillo
[8] ✕ ✓ ✕ LINGO 12.0

Zhang et al. [11] ✕ ✓ ✕ An inverse dynamic programming method
Zheng and Liu [12] ✕ ✕ ✕ Lagrange multiplier and KKT conditions
Fransiscus [13] ✕ ✕ ✕ Enumeration
Qin et al. [14] ✕ ✓ ✓ Simulated annealing algorithm
Qin et al. [15] ✕ ✕ ✓ Artificial bee colony algorithm
Wu et al. [16] ✕ ✕ ✓ Two-stage algorithm
Hu et al. [17] ✕ ✕ ✓ Quasi-Newton method-based solution algorithm

*is paper ✓ ✓ ✓ Modified direct search simulated annealing
algorithm
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Figure 1: Wuhan-Shenzhen high-speed railway.
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stage, the alternative trains are constant for the unassigned
passengers. When all the time-dependent demands are
assigned or there is no train with residual capacity to satisfy
the unassigned passengers, the passenger assignment pro-
cess is over.

For ease of presentation, some notations are expressed as
follows. Let SN be the set of all stations. *e train set is
expressed as W � j . For train j, h(j) is the number of stop
stations and STj � (v

j
1, v

j
2, . . . , v

j

h(j)) is the sequence of stop
stations (vj

x ∈ SN). *e railway line section between stop
station v

j
x and stop station v

j
y (x<y) for train j is called one

leg, denoted as (v
j
x, v

j
y). *e set of all the legs of train j is

denoted as LEGj. For x≤ x′ andy′ ≤y, leg (v
j

x′ , v
j

y′) is
covered by leg (v

j
x, v

j
y) on the line, denoted as

(v
j

x′ , v
j

y′)⊆(v
j
x, v

j
y). *e capacity of train j is denoted as CAj.

*e travel time and price of leg (r, s) of train j are denoted as
trs(j) and crs(j), respectively. *e departure hour of train j

is denoted as dj. *e set of trains stopping at stations r and s

is expressed as Wrs.
In the passenger assignment method, the ticket-booking

process is partitioned into M stages. In the m th stage,
m � 1, 2, . . . , M, the available train set is denoted as Wm

rs and

the accepted passenger demand is denoted as qk,m
rs for O-D

pair (r, s) and period k. *e accepted passenger demand in
the whole ticket-booking process will not exceed the real
passenger demand, as shown in the following equation:


M

m�1
q

k,m
rs ≤ q

k
rs, (r, s) ∈ RS; k � t1, t1 + 1, . . . , t2 − 1. (2)

*e seat allocation optimization problem is also quite
complex for multiple trains, which is not considered in this
paper. Hence, we set the same accepted ratio (the proportion
of the accepted passenger demand to the total demand of
each O-D pair) for all O-D pairs, denoted as ηm for the m th
stage in the ticket-booking process. *en, we have

q
k,m
rs � ηm

q
k
rs, (r, s) ∈ RS; k

� t1, t1 + 1, . . . , t2 − 1; m � 1, 2, . . . , M,
(3)

0≤ ηm ≤ 1, m � 1, 2, . . . , M. (4)

Passenger choices between trains are influenced by many
factors, and in this paper, we mainly consider departure time
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Figure 2: Passenger demand distribution. (a) From Wuhan to Guangzhounan. (b) From Changshanan to Shenzhenbei. (c) From
Changshanan to Guangzhounan. (d) From Guangzhounan to Shenzhenbei.
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deviation, travel time, and ticket price. *en, according to
the multinomial logit model theory widely used in the
studies [15, 17], the probability to select train j for passenger

demand qk,m
rs is denoted as P(j|r, s, k, m), which is calculated

as follows:

P(j|r, s, k, m) �
exp ϑV

r,s,k
j 

− 1

j∈Wm
rs
exp ϑV

r,s,k
j 

−1, j ∈W
m
rs; (r, s) ∈ RS; k � t1, t1 + 1, . . . , t2 − 1; m � 1, 2, . . . , M, (5)

V
r,s,k
j � θ1 × k − dj



 + θ2 × trs(j) + crs(j), (6)

whereVr,s,k
j is the generalized travel cost; |k − dj| is the

absolute value of departure time deviation between the
expected departure time period k and the real departure time
period dj; θ1 and θ2 are time value parameters; and ϑ is a
positive scaling factor. If the departure time of train j is not
in period k, then |k − dj|> 0, which results in more travel

cost for passenger demand qk,m
rs . In this way, departure time

preferences of passengers are considered in the passenger
assignment method.

At the end of the m th stage, the number of passengers on
leg (v

j
x, v

j
x+1) is denoted as F(j, x, m), 1≤ x≤ h(j) − 1,

j ∈Wm
rs. *en, the following expressions are satisfied:

F(j, x, m) � F(j, x, m − 1) + 

(r,s): v
j
x,v

j

x+1( ⊆(r,s) and j∈Wm
rs



t2−1

k�t1

q
k,m
rs P(j|r, s, k, m), 1≤x≤ h(j) − 1; j ∈W; m � 1, 2, . . . , M, (7)

F(j, x, 0) � 0,

(8)

F(j, x, m)≤CAj, 1≤x≤ h(j) − 1; j ∈W; m � 1, 2, . . . , M. (9)

Equations (7) and (8) calculate the passengers on each
train leg. Equation (9) guarantees the passengers on each
train leg will not exceed the train capacity at the end of each
phase in the ticket-booking process.

Based on the above formulation, the passenger assign-
ment method is constructed by simulating the ticket-
booking process as shown below:

Step 0: calculate the time-dependent demand qk
rs,

(r, s) ∈ RS, k � t1, t1 + 1, . . . , t2 − 1, by equation (1).
Let phase m � 0.

Step 1: let m←m + 1. For (r, s) ∈ RS, construct the
available train set Wm

rs, Wm
rs � j|F(j, x, m − 1)<

CAj, (v
j
x, v

j
x+1)⊆(r, s), j ∈Wrs}. If all Wm

rs � ∅,
(r, s) ∈ RS, the simulation is over, and let M � m − 1;
otherwise, go to Step 3.
Step 2: for (r, s) ∈ RS, k � t1, t1 + 1, . . . , t2 − 1,
j ∈Wm

rs, calculate the probability P(j|r, s, k, m) by
equations (5) and (6).
Step 3: calculate the accepted ratio ηm. Let

ΔFm
(j, x) � 

(r,s): v
j
x,v

j

x+1( ⊆(r,s) and j∈Wm
rs



t2−1

k�t1

q
k
rsP(j|r, s, k, m), 1≤ x≤ h(j) − 1; j ∈W, (10)

where ΔFm(j, x) represents the number of passengers’
booking requests for leg (v

j
x, v

j
x+1) in the mth stage.

Combining equation (3) and (7)–(9), we have

ηm ≤
CAj − F(j, x, m − 1)

ΔFm
(j, x)

, ΔFm
(j, x)> 0; 1≤x≤ h(j) − 1; j ∈W. (11)
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Besides, the accepted passenger demand until the
current phase cannot exceed the total passenger de-
mand; then, we have



m

l�1
ηl

q
k
rs ≤ q

k
rs, (r, s) ∈ RS, k � t1, t1 + 1, . . . , t2 − 1.

(12)

It is feasible for ηm satisfying equation (11) and (12), so
let

ηm
� min 1 − 

m−1

l�1
ηl

,
CAj − F(j, x, m − 1)

ΔFm
(j, x)

|ΔFm
(j, x)> 0, 1≤ x≤ h(j) − 1, j ∈W, η0 � 0

⎧⎨

⎩

⎫⎬

⎭. (13)

Step 4: calculate the accepted passenger demand qk,m
rs ,

(r, s) ∈ RS, k � t1, t1 + 1, . . . , t2 − 1, by equation (3).
Calculate passenger demand on each train leg
F(j, x, m), 1≤ x≤ h(j) − 1, j ∈W, by equations (7)
and (8). If 

m
l�1 ηl � 1, the simulation is over, and let

M � m; otherwise, go to Step 3.

Based on Step 0 to Step 4, the ticket-booking process is
simulated and passengers are assigned to each train leg. In
brief, the above passenger assignment method considering
departure periods and capacity constraints is denoted as
PACC, which will be used to evaluate the differentiated
pricing of trains in the following sections.

5. Optimal Differential Pricing Model and
Solution Algorithm

An optimal differential pricing model for multiple trains is
constructed with the objective of maximizing the ticket
revenue, and a heuristic optimization algorithm is designed
to solve the model.

5.1. Model Formulation. *e price of each train leg denoted
as crs(j), (r, s) ∈ LEGj, j ∈W, is a decision variable and is
optimized collaboratively in the optimal model. Ticket prices
can influence the passengers’ choice between trains; how-
ever, if the price is too high, some passengers may consider
other alternative modes, such as intercity automobiles. In
other words, ticket prices can influence whether passengers
choose trains; such a demand is called the elastic price
demand. An exponential function is used to formulate the
total passenger demand of each O-D pair regarding ticket
prices as follows:

qrs � q
0
rs exp −ϕ

crs

c
0
rs

− 1  , (14)

where crs is the average price of leg (r, s) for all trains. If the
average price crs is equal to c0rs, the elastic demand qrs is q0rs.
c0rs and q0rs can be determined based on historical ticket
reservation data. ϕ is an elastic coefficient. *e bigger ϕ is,
the greater the demand elasticity becomes.

For a given price solution, the average price of leg (r, s)

for trains departing in the kth period can be calculated
simply as follows:

c
k
rs �

j∈Wk
rs

crs(j)

W
k
rs




. (15)

*e probability of passengers departing in the kth period
is fk

rs; then, the average price of leg (r, s) for all the trains
perceived by passengers can be calculated as follows:

crs � 
22

k�7
f

k
rsc

k
rs. (16)

Based on the above description, the optimal differential
pricing model is expressed as follows:

maxZ � 
M

m�1


(r,s)∈RS


j∈Wm
rs



t2−1

k�t1

q
k,m
rs P(j|r, s, k, m)crs(j),

(17)

s.t.

c
min
rs ≤ crs(j)≤ c

max
rs , (r, s) ∈ LEGj, j ∈W, (18)

where Z is the ticket revenue, which can be calculated by the
PACC method, and cmin

rs and cmax
rs represent the lower limit

and upper limit of the price of leg (r, s), respectively.

5.2. SolutionAlgorithm. *e number of decision variables in
the above optimization model is great. Hence, we need to
develop an algorithm to solve the combinational optimi-
zation problem with high dimensions. *e simulated
annealing (SA) algorithm converges globally and is used
widely in engineering practices. Ali et al. [27] proposed the
direct search simulated annealing (DSA) algorithm, which
improved the calculation efficiency and accuracy of the DSA
algorithm compared with the SA algorithm. To improve the
convergence stability and efficiency for solving the opti-
mization problem with high dimensions, a modified DSA
(MDSA) algorithm is proposed.

5.2.1. Solution Generation. *ree methods of generating
new solutions are included in the MDSA algorithm.*e first
one generates a new solution randomly in a search space
based on Cauchy distribution with a variable scale parameter
[28], called GNS 1. *e second one generates a new solution
by selecting a certain number of solutions randomly from
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the solution set and combining them with the current op-
timized solution [27], called GNS 2. *e third one generates
a new solution by searching randomly around the current
optimized solution based on the standard normal distri-
bution [28], called GNS 3.

For ease of description, the number of decision variables
is denoted as cn. C is the column vector of the decision
variables, which is also called a solution vector. CL is the
column vector of the lower limits of the decision variables.
CU is the column vector of the upper limits of the decision
variables. *en,

C
L ≤C≤C

U
. (19)

All the solution vectors satisfying equation (19) form a
search space of solutions, denoted as S. Based on the con-
straints in the optimization model, the solution vectors in S

are feasible solutions. Z(C) is used as the evaluation
function in the MDSA algorithm. Let N � 7(cn + 1). N

solutions are generated randomly in search space S and form
an initial solution set A. In set A, the best solution is CBest

and the worst solution is CWorst. *e evaluation function
values are denoted as Zmax and Zmin, respectively.

*ree methods of generating new solutions are described
in detail below.

(1) GNS 1. A new solution C is generated randomly in search
space S based on Cauchy distribution with a variable scale
parameter. *e Cauchy distribution probability density
function centered at the origin is shown as follows:

f(ξ) �
1
π

φ
φ2

+ ξ2
, −∞< ξ <∞, (20)

where φ is a variable scale parameter determined by equation
(21) based on the number of cooling iterations in the MDSA
algorithm, which leads to searching in a wide range early and
on a small scale later in the optimization process.

φ �
1.1a

, a≤ 50,

0.9a− 50
, a> 5,

 (21)

where a is the number of cooling iterations.
New solution C is generated by the following:

C �

C
L

+ C
U

− C
L

  ∘ abs(y), w ∈ (0, 0.33],

C
L

+ C
U

2
+

C
U

− C
L

 

2
∘y, w ∈ (0.33, 0.67],

C
U

− C
U

− C
L

  ∘ abs(y), w ∈ (0.67, 1],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

y �
AY

AY
, (23)

where symbol “ ∘ ” in equation (22) represents the Hadamard
product. AY is a column vector with cn dimensions

generated randomly by equations (20) and (21), and y is a
unit column vector with cn dimensions. abs(∗ ) represents
the absolute value function. w is a random number gen-
erated randomly in section (0, 1) based on the uniform
distribution.

(2) GNS 2. RN solutions are selected randomly from the
solution set, denoted as Cn1 , Cn2 , . . . , CnRN . *en, these so-
lutions are combined randomly with the current optimized
solution CBest. Each element ci (i � 1, 2, . . . , cn) in new so-
lution C is generated by the following:

ci �

c
nk

i , wi ∈
k − 1
RN + 1

,
k

RN + 1
 , k � 1, 2, . . . ,RN,

c
Best
i , wi ∈

RN
RN + 1

, 1 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where wi is a random number generated randomly in section
(0, 1) based on the uniform distribution. RN makes up a
proportion of the number of solutions in the solution set.
*is method helps greatly in improving the convergence
efficiency and stability.

(3) GNS 3. A new solution C is generated by searching
randomly around the current optimized solution CBest based
on the standard normal distribution as follows:

C � C
Best

+ bI ∘ C
U

− C
L

  ∘y, (25)

where symbol “ ∘ ” in equation (25) presents the Hadamard
product. b is an adjustment factor of the search radius, and I

is an adaptive factor. y is a unit column vector with cn
dimensions. All of the above variables are calculated using
equations (26)–(28).

b �

arctan Ta(  − 0.5 

ma

, Ta ≥ 1,

0.05, Ta < 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

Ii �
1 ci < β
0 ci ≥ β

 , i � 1, 2, . . . , cn, (27)

y �
SY

SY
, (28)

where Ta is the current temperature. ma and ci are random
numbers generated randomly in section (0, 5) and (0, 1),
respectively, based on the uniform distribution. β is an
adaptive probability and takes 0.1 generally. SY is a column
vector with cn dimensions generated randomly based on the
standard normal distribution.

New solution C generated by equation (25) may not be in
search space S, and, in this situation, each element ci

(i � 1, 2, . . . , cn) of new solution C is amended by
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ci �

c
U
i − mod c

L
i − ci, c

U
i − c

L
i , ci < c

L
i ,

ci, c
L
i ≤ ci ≤ c

U
i ,

c
L
i + mod ci − c

U
i , c

U
i − c

L
i , ci > c

U
i .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(29)

5.2.2. MDSA Algorithm Structure. In the MDSA algorithm,
the initial temperature T0 satisfies a requirement that new
solutions are accepted in the early stage with a probability
greater than the desired value (between 0.8 and 0.9). *e
refresh method of Ta refers to the paper by Ali et al. [27].*e
length of Markov chain La is calculated by equation (30),
which is the maximum number of inner iterations.

La � 10cn + 10cn 1 − e
Zmin− Zmax . (30)

*e acceptance probability of new solution C is deter-
mined by the following equation:

Pacc �
1, Z(C)≥Zmin,

e
Z(C)− Zmin( )/Ta , Z(C)<Zmin.

⎧⎨

⎩ (31)

Let ΔZmax � Za+1
max − Za

max.δand τ are given positive real
numbers. If
ΔZmax ≤ δ, for successiveΔa cooling times (Δa< τ), which
means Zmax does not change or significantly change after a
certain cooling, the MDSA algorithm is judged to enter a
local extremum. *e structure of the MDSA algorithm is
shown in Figure 3.

In the early stage (a≤ 50) of MDSA algorithm, new
solutions are generated mainly by GNS 1, which can expand
the search range and improve the coverage of solution set A

in search space S. In the later stage (a> 50) of MDSA al-
gorithm, new solutions are generated mainly by GNS 2,
which can improve the convergence efficiency and stability.
GNS 3 can avoid the MDSA algorithm falling into a local
extreme too early.

6. Numerical Experiments

In this section, experimental analysis is performed on
Wuhan-Shenzhen high-speed railway in China, and price
solutions with different elastic demand coefficients are
compared.

6.1. Sample Setting. In the case study, 51 trains with different
departure times and stop patterns are selected. 8 stations,
including Wuhan, Yueyangdong, Changshanan, Hen-
gyangdong, Chenzhouxi, Shaoguan, Guangzhounan, and
Shenzhenbei (numbered from 0 to 7), are shown in Table 3.
Only 11 O-D pairs are involved because passenger demand
of other O-D pairs is low and insufficient to study. *e
historical ticket reservation data in the first half of 2016 are
used. *e fixed price c0rs and the relevant demand q0rs of each
O-D pair (r, s) are shown in Table 3.*e total demand under
fixed prices is 41,759 and ticket revenue Z0 � 1.1775 × 107.
*e upper and lower limits of the price of each leg are shown
in Table 3.

*e solution dimension cn � 296 and N � 2079 (the
number of solutions in set A). In the early stage of the al-
gorithm, La � 5920 (the length of the Markov chain). ϵ1 �

0.05 and ϵ2 � 0.05 are the convergence precisions. Time
value coefficients θ1 � 0.8 E/min and θ2 � 1E/min.

6.2.OptimizationResults. 9 different elastic coefficients ϕ are
tested, and 30 experiments are performed for the MDSA
algorithm with each elastic coefficient. *e ticket revenue
(optimization objective) of the optimized solution is denoted
as Z∗.*e test obtains 30 optimized solutions for each elastic
coefficient, and the biggest ticket revenue of these solutions
is selected, called the best Z∗. *e average ticket revenue of
these solutions is also calculated, called the average Z∗. *e
achieved proportion of the best Z∗ after 200 cooling iter-
ations is denoted as AP.

*e statistical results of Z∗ for each elastic coefficient are
shown in Table 4, where the last column is the increase in the
proportion of the best Z∗ compared with Z0. *e relative

Y

Y

N

Start

Generate an initial solution set A randomly;
evaluate each solution by the PACC method;

Determine CBest, CWorst, Zmax, and Zmin
in set A; create the initial temperature T0;

Δa < τ
YN

Generate a
new

solution C
by method
GNS 3;

Generate a
new solution
C by method
GNS 1 or

GNS 2 with a
probability;

Evaluate new solution C by the PACC
method; calculate the acceptance probability 
Pacc by Eq. (31); generate Pran randomly in
[0,1] based on the uniform distribution;

refresh 
CWorst ,
Zmin in set
A;

Delete CWorst from set A
and add new solution C to set

If new solution C is 
the best solution in set

A or i = La;

Refresh CBest ,
CWorst , Zmax, Zmin
in set A and Δa;

N

End

Y
N

a ← 0; calculate Markov chain La by Eq.
(30); Δa ← 0;

a ← a + 1;
refresh La,

Ta;

Ta ≤ 1 and
Zmax −
Zmin ≤ 2

Pran ≤ Pacc

i ← 0;

i ← i + 1;

Figure 3: *e structure of the MDSA algorithm.
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standard deviation (RSD) of Z∗ is no more than 0.10%,
illustrating the stability of the convergence of MDSA al-
gorithm. Over 98% of the bestZ∗ has been achieved after 200
cooling iterations, illustrating the efficiency of the conver-
gence of MDSA algorithm. *e average number of cooling
iterations (ANCI) is less than 900 due to high convergence
precisions (ϵ1 � 0.05 and ϵ2 � 0.05).*e convergence details
of the best optimized solutions are shown in Figure 4.

According to Table 4, when ϕ≥ 1 (ϕ< 1), the best ticket
revenue Z∗ increases as the elastic coefficient ϕ becomes
greater (smaller), which is also shown in Figure 5. *e best
Z∗ increases by 7%–21% compared with Z0. Hence, the
optimal differential pricing method for multiple trains can
improve ticket revenue, and the ticket revenue is greatly
influenced by the elastic coefficients.

For the limited space, the best optimized solutions of some
OD pairs with ϕ � 0.6 and ϕ � 1.4 are shown in Table 5. Based
on Table 5, the train legs are priced differentially. Most prices
are approximate to the upper limits with ϕ � 0.6, illustrating

that the ticket revenue can be increased by raising the prices in
this situation. In contrast, most prices are approximate to the
lower limits with ϕ � 1.4, illustrating that the ticket revenue
can be improved by reducing the prices in this situation. Some
train leg prices that are influenced greatly by time-dependent
demand are not consistent with this tendency.

*e elastic demand and unsatisfied demand after pas-
senger assignment of the best optimized solution for each ϕ
are shown in Table 6. FromTable 6, we can see that the elastic
demand increases with greater ϕ except for ϕ � 0.2. Pas-
sengers are less sensitive to the prices when ϕ decreases, and
hence the prices in the optimized solutions increase. *e
increase of prices results in less passenger demand. However,
prices cannot be higher than the upper limits. When ϕ
decreases to 0.4 and 0.2, most prices are very close to the
upper limits. *us, there are no big differences for prices
with ϕ � 0.2 and ϕ � 0.4. In this situation, according to
equation (11), the elastic demand for ϕ � 0.2 is greater than
that for ϕ � 0.4.

Table 3: Fixed prices and demands and price limits.

O-D 0-6 0-7 1-2 1-6 2-3 2-4 2-6 2-7 3-6 5-6 6-7
q0rs 6740 3786 2010 3491 2352 2526 4947 4565 2147 2323 6872
c0rs(¥) 463.5 538 69.5 373.5 79.5 149.5 314 388.5 244 104.5 74.5
cmin

rs (¥) 324 377 49 261 56 105 220 272 171 73 52
cmax

rs (¥) 603 699 90 486 103 194 408 505 317 136 97

Table 4: Optimization results.

ϕ Best Z∗ AP (%) Average Z∗ ANCI RSD (%) Increase (%)
0.2 14,265,420 98.97 14,263,035 520 0.01 21.15
0.4 13,561,210 98.51 13,556,558 515 0.02 15.17
0.6 12,923,750 98.81 12,913,503 737 0.04 9.76
0.8 12,620,750 99.28 12,615,282 577 0.02 7.18
1 12,669,030 99.22 12,659,635 596 0.05 7.60
1.2 12,875,180 99.28 12,870,759 457 0.02 9.34
1.4 13,234,920 98.85 13,219,348 671 0.10 12.40
1.6 13,707,830 98.56 13,681,189 859 0.09 16.41
1.8 14,132,780 98.49 14,093,197 659 0.10 20.02
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Figure 4: Convergence of the MDSA algorithm.
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Figure 5: *e best ticket revenue (Z∗) of the optimized solutions with different elastic coefficients.

Table 5: Best optimized solutions (ϕ � 0.6/ϕ � 1.4).

Departure period Train name
Leg

0-6 0-7 1-2 1-6 2-3 2-4 2-6
7 G1001 603/603 699/699 — — — 191/173 408/352
7 G1003 603/603 699/699 — — — — 407/327
8 G1005 602/325 699/399 89/63 485/261 102/56 — 380/221
9 G1007 429/324 416/377 89/69 365/261 91/62 106/105 274/220
9 G1009 603/327 699/378 — — — 194/108 399/222
10 G1011 603/599 699/699 — — — — 408/373
12 G1013 377/325 378/377 89/65 311/261 102/56 107/105 235/220
13 G1015 352/324 377/377 90/49 314/261 101/57 105/105 225/221
14 G1017 596/333 624/377 90/49 486/263 102/56 — 370/238
15 G1019 603/395 699/465 — — — — 405/277
16 G1021 603/331 688/377 89/65 486/303 — 194/110 408/255
6 G1101 603/484 — — — 84/80 150/136 367/264
7 G1103 603/451 — 90/49 486/399 80/72 — 359/235
7 G1105 602/462 — 90/49 485/399 99/57 173/126 370/258
8 G1107 603/468 — 90/62 486/420 89/71 172/140 370/273
9 G1109 603/494 — — — 91/72 171/140 372/277
9 G1111 603/324 — 90/70 486/262 — 187/106 375/220
10 G1113 576/324 — 82/62 454/261 102/66 181/107 381/220
11 G1115 399/324 — 85/65 346/261 — 119/105 284/220
11 G1117 476/325 — 90/50 — 103/99 — 320/220
12 G1121 582/324 — 88/64 486/262 — 194/106 371/220
13 G1123 601/325 — — — 103/79 — 372/221
15 G1125 593/324 — — — — 194/110 388/223
15 G1127 600/484 — — — — — 384/285
15 G1129 595/324 — — — 99/64 — 367/221
17 G1133 603/603 — 89/69 486/444 84/80 168/139 374/282
18 G1135 602/600 — 88/66 485/423 81/77 — 371/277
19 G1139 602/603 — 73/62 486/486 — 187/130 390/288
19 G1141 603/502 — 76/67 486/483 103/56 188/126 385/284
9 G1143 602/363 — — — 92/73 — 384/242
15 G6001 — — — — — — 385/296
7 G6011 — — — — — 162/106 372/240
7 G6013 — — — — — 156/111 380/257
7 G6015 — — — — — 152/106 375/260
10 G6017 — — — — 92/69 — 371/264
10 G6019 — — — — — — 377/268
13 G6023 — — — — — — 373/269
18 G6025 — — — — 103/56 — 395/287
19 G6027 — — — — 86/76 169/126 375/261
8 G6029 — — — — 81/72 — 361/232
15 G6031 — — — — 101/79 194/166 369/289
17 G6033 — — 90/49 484/411 — 155/131 399/300
13 G6111 — — — — — 194/172 371/286
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7. Conclusion and Future Research

An optimal differential pricing method for intercity high-
speed railway services is proposed in this paper. To analyze
passenger choice behaviors between trains, a time-depen-
dent demand formulation is determined based on the his-
torical ticket reservation data, and a passenger assignment
method considering departure periods and capacity con-
straints is constructed by simulating the ticket-booking
process. Combining these methods, an optimization model
is built with the aim of maximizing the ticket revenue and
the decision variables for pricing train legs.

Amodified direct search simulated annealing algorithm is
designed to solve the optimization model, and three random
generation methods of new solutions are designed to search
the solution space efficiently. *e passenger assignment
method is used to determine the number of passengers on
each train and then to evaluate the price solutions.

A case study containing dozens of trains is performed on
Wuhan-Shenzhen high-speed railway in China. *e results
illustrate the stability and efficiency of the convergence of the
algorithm.*e ticket revenue which can be improved greatly
by pricing train legs differently increases by 7%–21% for
different elastic demand coefficients.

*e optimization method in this paper can be extended
to the optimal pricing problem in the sale horizon. *en,
there are two dimensions of passenger choices: the first one
being to choose the ticket-booking time and the second one
being to make a selection from multiple trains. To solve this
problem, data about the demand distribution in the sale

horizon are needed to analyze passenger choice behaviors,
and a more efficient algorithm is crucial for this problem
considering thousands of decision variables.
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Table 5: Continued.

Departure period Train name
Leg

0-6 0-7 1-2 1-6 2-3 2-4 2-6
17 G6117 — — — — 102/69 188/142 361/281
19 G6119 — — — — — 169/136 375/279
21 G6121 — — — — — 188/118 385/270
11 G6131 — — 87/67 486/476 95/77 178/170 386/295
9 G77 603/603 699/699 — — — — 408/377
7 G6101 — — — — 80/61 157/111 378/255
7 G6103 — — — — 80/59 -/- 369/255
7 G6105 — — — — 82/62 157/110 369/256

Table 6: Elastic demand/unsatisfied demand of the best optimized solution for each ϕ.

O-D ϕ � 0.2 ϕ � 0.4 ϕ � 0.6 ϕ � 0.8 ϕ � 1.0 ϕ � 1.2 ϕ � 1.4 ϕ � 1.6 ϕ � 1.8
0-6 6350/0 6004/0 6069/0 6509/0 7162/0 7749/0 8362/0 8826/0 9146/0
0-7 3567/0 3387/0 3596/0 3960/0 4137/0 4327/0 4633/492 4766/679 4974/850
1-2 1900/0 1796/0 1727/0 1738/0 1984/0 2287/0 2503/0 2475/0 3180/0
1-6 3307/0 3133/0 3185/0 3469/0 3766/0 3998/0 4258/0 4468/0 4455/0
2-3 2226/0 2129/0 2118/0 2194/0 2424/0 2595/0 2930/0 2600/0 2637/0
2-4 2411/0 2297/0 2362/0 2456/0 2609/0 2763/0 3058/0 3234/0 3629/0
2-6 4689/0 4418/0 4494/0 4817/0 5251/0 5745/0 6281/0 6778/0 7450/0
2-7 4337/0 4088/0 4075/0 4322/0 4623/0 4981/0 5776/0 6133/0 6510/0
3-6 2025/0 1911/0 1951/0 2119/0 2268/0 2446/0 2678/0 2827/0 3031/0
5-6 2198/0 2079/0 2078/0 2313/0 2484/0 2699/0 2867/0 2884/0 2937/0
6-7 6484/0 6122/0 5927/0 5977/0 6719/0 7506/0 8064/0 8816/0 8243/0
Sum 39494/0 37364/0 37582/0 39874/0 43427/0 47096/0 51410/492 53807/679 56192/850

12 Mathematical Problems in Engineering



Supplementary Materials

In the data file (train timetable.txt), the first line is made up
of headings for the columns of data that follow. *ere are 16
columns in the data file. Each column is described as follows:
column 1—train number; column 2—the number of the
station to get on; column 3—the number of the station to get
off; column 4—the departure time of the station to get on;
column 5—the arrival time of the station to get off; column
6—train ID number; column 7—train capacity; column
8—the number of the origin stop; column 9—the number of
the terminal; column 10—the origin stop; column 11—the
terminal; column 12—the departure time of the origin stop;
column 13—the station to get on; column 14—the mileage
between the station to get on and the origin stop; column
15—the station to get off; and column 16—the mileage
between the station to get off and the origin stop. (Sup-
plementary Materials)
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