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+e rationale of the paper is to present a new probability distribution that can model both the monotonic and nonmonotonic
hazard rate shapes and to increase their flexibility among other probability distributions available in the literature. +e proposed
probability distribution is called the New Weighted Lomax (NWL) distribution. Various statistical properties have been studied
including with the estimation of the unknown parameters. To achieve the basic objectives, applications of NWL are presented by
means of two real-life data sets as well as a simulated data. It is verified that NWL performs well in both monotonic and
nonmonotonic hazard rate function than the Lomax (L), Power Lomax (PL), Exponential Lomax (EL), and Weibull Lomax
(WL) distribution.

1. Introduction

From the last few years, it is usual practice to make a
contribution to the existing theory of probability due to its
wide application in different fields of sciences, for example,
in reliability analysis, signal processing, survival analysis,
and so on. Due to the advanced computer technology and
statistical software, many researchers have developed new
probability distributions to improve the goodness of fit
measures. For example, Lemonte et al. [1] introduced the
additive Weibull distribution by adding the two Weibull
distributions, Al-Aqtash et al. [2] presented the new family
of distribution with a logit function, Aldeni et al. [3, 4]
explored by employing the quantile function, Alzaatreh et al.
investigated the gamma-normal distribution [5], and ref-
erences [6–11] presented new probability distributions using
transmutation technique. Alzaghal et al. [12] introduced an

exponentiated T-X family of distribution. Extended Lomax
distribution was introduced by Lemonte and Cordeiro [13].

+e fundamental goal of this paper is to present a new
life-time probability distribution that improves the flexibility
of the model and also provides a better fit in monotonic and
nonmonotonic hazard function than other existing proba-
bility models.

1.1. Lomax Distribution. Let a positive random variable be
Y ∼ L(α, β); the CDF is given by

F(y) � 1 − 1 +
y

β
􏼠 􏼡􏼢 􏼣

− α

, y> 0 and α, β> 0. (1)

+e PDF related to (1) is defined as
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f(y) �
α
β

1 +
y

β
􏼠 􏼡􏼢 􏼣

− (α+1)

, y> 0. (2)

Equation (2) is one of the right skewed distributions and
has been applied by many researchers to real data sets found
in business science, engineering, computer, survival analysis,
and some others.

To increase the flexibility of the model, modification of
this distribution has been done by many researchers; for
example, Ashour and Eltehiwy [10] introduced transmuted
Lomax distribution, Ashour and Eltehiwy [11] transmuted
Exponentiated Lomax distribution, Lemonte and Cordeiro
[13] explored the extended Lomax, Cordeiro et al. [14]
defined gamma-Lomax, Ghitany et al. [15] presented
Marshall–Olkin extended Lomax and discussed their ap-
plications to censored data, Al-Zahrani and Sagor [16]
modified Poisson Lomax distribution. El-Bassiouny et al.
[17] defined Exponential Lomax, and Shams [18] presented
Kumaraswamy-generalized Lomax distribution. Ijaz et al.
[19] worked on the Flexible Lomax distribution, ZeinEldin
et al. [20] presented Alpha power transformed inverse
Lomax distribution, Almetwally and Gamal [21] defined
Alpha Power Inverse Lomax, ul Haq et al. [22] discussed
Marshall–Olkin power Lomax distribution, Lemonte and
Cordeiro [13] explored an Extended Lomax, and Cordeiro
et al. [14] worked on gamma-Lomax distribution. Kilany
[23] worked on the Weighted Lomax distribution, and
Ahmad et al. [24] derived a Length-Biased Weighted Lomax
distribution. For other modifications, refer [25–38].

1.2. A New Weighted Lomax (NWL) Distribution. In this
paper, we developed a highly flexible Lomax distribution by
replacing a Lomax random variable y by ey and using the
inner product of (β/(β + 1)). +e suggested distribution is
called a NewWeighted Lomax distribution or in short NWL
distribution. +e shape and scale parameter of this distri-
bution are α and β, respectively. +e proposed distribution
in this paper provides more flexibility and provides the best
fit than other existing distributions.

Definition 1. . Considering a continuous random variable Y,
the CDF of a New Weighted Lomax distribution is defined
by

F(y) � 1 −
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡􏼢 􏼣

− α

, y> 0 and α, β> 0.

(3)

+e corresponding PDF is given by

F(y) �
α
αβ

β + 1
β

􏼠 􏼡

α

e
y 1 +

ey

β
􏼠 􏼡

− (α+1)

, where α, β> 0.

(4)

Figure 1 shows the behavior of the PDF and CDF of the
NWL(α, β) distribution.

Figure 1 shows the probability and distribution function
of the New Weighted Lomax distribution with different
parameter values.

2. Survival and Hazard Function

+e survival function of NWL(α, β) is defined by the ex-
pression as under

S(y) � P(Y>y), y> 0. (5)

Using (3), we get

S(y) � 1 − 1 −
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡􏼢 􏼣

− α

􏼨 􏼩 �
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡􏼢 􏼣

− α

.

(6)

+ehazard function or failure rate of a NWL distribution
is defined by using the formula as under
h(y) � (f(y)/(1 − F(y))); recalling (3) and (4), we have

h(y; α, β) �
α
αβ

e
y 1 +

ey

β
􏼠 􏼡

− 1

; y> 0, α, β> 0. (7)

Figure 2 delineates the capability of the suggested dis-
tribution to model the nonmonotonically hazard function.

3. Mode

+e mode or a point by which the probability density
function of a NWL will reach to its maximum point is
defined as

f′(y) �
d
dy

α
αβ

β + 1
β

􏼠 􏼡

α

e
y 1 +

ey

β
􏼠 􏼡

− (α+1)

⎡⎣ ⎤⎦. (8)

In order to find the maximum point, we have to equate
this expression equal to zero and then solve for Y, and we get

αe
y

− β( 􏼁 � 0. (9)

+e mode is obtained as follows:

ym � log
β
α

􏼠 􏼡. (10)

4. Quantile and Median Function

+e QF is the real solution to the inverse cumulative dis-
tribution function of NWL distribution having two pa-
rameters. +is function will help in providing the median
but also in generating random data from NWL distribution.
+e QF is defined as F(y) � u where u ∼ U(0, 1).

By using equation (3), we have

1 −
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡􏼢 􏼣

− α

� u. (11)

When we solve the above function for a variable Y, we
obtained
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yQ � log
β

(β/(β + 1))
α
(1 − u)( 􏼁

1/α − β⎛⎝ ⎞⎠. (12)

Now, if we are interested to find the median of the data
understudy, we can easily measure the median value using
the above equation by just placing u � 0.5. Hence, the
median function is obtained as follows:

yM � log
β

(β/(β + 1))
α
(0.5)( 􏼁

1/α − β⎛⎝ ⎞⎠. (13)

5. Bowley Skewness (S) and Moors Kurtosis (K)

+e mathematical equation of the Bowley Skewness and
Moors Kurtosis [39, 40] is given by

SK �
Q(3/4) + Q(1/4) − 2Q(2/4)

Q(3/4) − Q(1/4)
,

KM �
Q(7/8) + Q(3/8) − Q(5/8) − Q(1/8)

Q(3/4) − Q(1/4)
,

(14)
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Figure 1: +e PDF and CDF of the NWL(α, β) distribution.

0 2 4 6 108
hazard function

a=0.9b=0.1
a=0.8b=0.5

a=0.1b=0.9
a=0.8b=5

1.00

0.98

0.96

0.94

0.92

h 
(x

)

Figure 2: +e hazard function of NWL(α, β) distribution.
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where Q represents different quartile values. +e numerical
values of Skewness and Kurtosis using different parameter
values are given in Table 1.

6. Order Statistics

If Y1, Y2, Y3, . . . , Yn are ordered variables, then the mini-
mum (1st) and maximum (nth) CDF of the order statistics of
NWL(α, β) distribution are defined by

FY(1)(y) � 1 − [1 − F(y)]
n
,

FY(n)(y) � [F(y)]
n
.

(15)

+e corresponding PDF is defined by

fY(1)(y) � n[1 − F(y)]
n− 1

f(y),

fY(n)(y) � n[F(y)]
n− 1

f(y).
(16)

Hence, the CDF and PDF of the 1st and nth order
statistics of a new WL, respectively, take the following form:

FY(1)(y) � 1 −
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡

− α

􏼢 􏼣

n

,

FY(n)(y) �
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡

− α

􏼢 􏼣

n

,

f(1;n) yi( 􏼁 �
n!

(n − 1)!

α
αβ

β
β + 1

􏼠 􏼡

α

e
y 1 +

ey

β
􏼠 􏼡

− (α+1) β
β + 1

􏼠 􏼡 1 +
ey

β
􏼠 􏼡􏼢 􏼣

− α

􏼠 􏼡

n− 1

,

f(n;n) yi( 􏼁 �
n!

(n − 1)!

α
αβ

β + 1
β

􏼠 􏼡

α

e
y 1 +

ey

β
􏼠 􏼡

− (α+1)

1 −
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡􏼢 􏼣

− α

􏼠 􏼡

n− 1

.

(17)

7. Parameter Estimation

In statistical inference, the estimation of the unknown pa-
rameters of the model is an important phase. In general, the
parameters are unknown constant; we obtain their repre-
sentative value through sample data. Under this section, we
have considered the following likelihood function to esti-
mation the parameters of NWL distribution:

L � 􏽙
n

i�1

α
αβ

β
β + 1

􏼠 􏼡

α

e
y 1 +

ey

β
􏼠 􏼡

− (α+1)

⎛⎝ ⎞⎠. (18)

After applying the log function, we obtain

l � n log
α
αβ

β
β + 1

􏼠 􏼡

α

􏼠 􏼡 + 􏽘 yi − (α + 1)log 1 +
e
􏽐 yi

β
⎛⎝ ⎞⎠,

(19)

where α and β are estimated by partially differentiating (19)
with respect to α and β and will give the following results:

dl

dα
�
dl

dα
n log

α
αβ

β + 1
β

􏼠 􏼡

α

􏼠 􏼡 + 􏽘 yi − (α + 1)log 1 +
e
􏽐 yi

β
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (20)

which finally becomes

� n
1
α

+ log
β + 1
β

􏼠 􏼡 − log β􏼠 􏼡 − 􏽘 1 +
e

yi

β
􏼠 􏼡. (21)

Now, differentiating (19) with respect to β, we have

dl

dβ
�
dl

dβ
n log

α
αβ

β + 1
β

􏼠 􏼡

α

􏼠 􏼡 + 􏽘 yi − (α + 1)log 1 +
e
􏽐 yi

β
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

dl

dβ
� n −

α(β + 2)

β(β + 1)
􏼠 􏼡 + 􏽘

(α + 1) + e
yi

β2
􏼠 􏼡.

(22)
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Since the two expressions (21) and (22) are not in closed
form, we can obtain the asymptotic confidence bounds for
the population parameter of a new WL distribution. To
achieve the asymptotic confidence bounds, we need the
second time partial derivative of the parameters, and we have

dl

dα2
� I11 � n −

1
α2

􏼠 􏼡 + 0,

dl

dβ2
� I22 � n −

β + 2
β(β + 1)

􏼠 􏼡 + 􏽘
e

yi

β2
􏼠 􏼡,

dl

dαβ
� I12 � n −

1
β + β2􏼐 􏼑

−
1
β

⎛⎝ ⎞⎠ + 􏽘 0 −
e

yi

β2
􏼠 􏼡.

(23)

+e information matrix is then obtained as

I � −
I11 I12

I21 I22
􏼢 􏼣. (24)

+e approximated variance-covariance matrix is defined
as

V �
v11 v12

v21 v22
􏼢 􏼣 �

I11 I12

I21 I22
􏼢 􏼣

− 1

. (25)

+e approximated ml estimates are given by

􏽢v �
􏽢I11

􏽢I12

􏽢I21
􏽢I22

⎡⎣ ⎤⎦
− 1

. (26)

Using (26), we can easily obtain the (1 − c) 100%
confidence bounds for the unknown parameters α and β in
the following forms:

α ± Zc/2

������
var(α)

􏽰
,

β ± Zc/2

������

var(β)

􏽱

.
(27)

8. Mean Residual Life (MRL)

In reliability analysis or survival analysis, the mean residual
life is also an important aspect of the probability model. +e
MRL is used to measure the remaining mean life of an object
given that the object has survived until the time y. Let a
random variable y represent the life expectancy of an object,
then the MRL is define as follows.

MNWL(y) � E(((Y − y)/Y)>y); it can be expressed as

�
1

S(y; α, β)
􏽚
∞

y
tf(t; α, β)dt − y, (28)

where

S(Y; α, β) �
β

β + 1
􏼠 􏼡 1 +

eyi

β
􏼠 􏼡􏼠 􏼡

− α

. (29)

By employing these functions in (28), we get

􏽚
∞

y
tf(t; α, β)dt � 􏽚

∞

y
t
α
αβ

β + 1
β

􏼠 􏼡

α

e
t 1 +

et

β
􏼠 􏼡

− (α+1)

dt

�
− tαβ
α2β

β + 1
β

􏼠 􏼡

α

1 +
ey

β
􏼠 􏼡

− α

.

(30)

Replacing (6) and (30) result in (28), the result of the
MRL is obtained:

MNWL(y) �
1

(β/(β + 1)) 1 + e
yi /β( 􏼁( 􏼁( 􏼁

− α
− tαβ
α2β

β + 1
β

􏼠 􏼡

α

1 +
ey

β
􏼠 􏼡

− α

− y �
− tαβ
α2β

− y. (31)

Table 1: Skewness and Kurtosis of NWL(α, β).

α Β S K
0.9 0.6 0.21263546 1.262644
0.5 0.5 0.24844780 1.298883
0.2 0.4 0.26177711 1.306311
0.4 0.3 0.25919498 1.305287
0.6 0.2 0.25555346 1.301593
1.1 2.1 0.12763767 1.217210
1.2 2.2 0.11767883 1.210175
1.3 2.3 0.10862779 1.204149
1.4 2.4 0.10036278 1.198988
1.5 2.5 0.09278102 1.194565
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9. Stress Strength Parameter

Let us consider Y1 and Y2 as the two IRV which follow a new
WL distribution with parameters (α1, β) and (α2, β), then

the stress strength of the New Weighted Lomax distribution
is defined by the following expression:

Sstress,strength(y) � 􏽚
∞

0
f1(y)F2(y)dy

� 􏽚
∞

0

α1
α1β

β + 1
β

􏼠 􏼡

α1
e

y 1 +
ey

β
􏼠 􏼡

− α1+1( )

1 −
β

β + 1
􏼠 􏼡 1 +

ey

β
􏼠 􏼡

− α2
􏼢 􏼣􏼠 􏼡dy

� 􏽚
∞

0

α1
α1β

β + 1
β

􏼠 􏼡

α1
e

y 1 +
ey

β
􏼠 􏼡

− α1+1( )

dy − 􏽚
∞

0

α1
α1β

β + 1
β

􏼠 􏼡

α1
e

y 1 +
ey

β
􏼠 􏼡

− α1+1( ) β
β + 1

􏼠 􏼡 1 +
ey

β
􏼠 􏼡

− α2
􏼢 􏼣􏼠 􏼡dy.

(32)

+e solution to the first integral function in the above
equation is given by

� 􏽚
∞

0

1
β

β + 1
β

􏼠 􏼡

α1
e

y 1 +
ey

β
􏼠 􏼡

− α1+1( )

dy

�
β + 1
β

􏼠 􏼡

α1
􏽚
∞

0

1
β

e
y 1 +

ey

β
􏼠 􏼡

− α1+1( )

dy �
1
α1

.

(33)

Now, consider the second part of (32):

� 􏽚
∞

0

α1
α1β

β + 1
β

􏼠 􏼡

α1
e

y 1 +
ey

β
􏼠 􏼡

− α1+1( ) β
β + 1

􏼠 􏼡 1 +
ey

β
􏼠 􏼡

− α2
􏼢 􏼣􏼠 􏼡dy

�
α1
α1β

β + 1
β

􏼠 􏼡

α1+α2
􏽚
∞

0
e

y 1 +
ey

β
􏼠 􏼡

− α1− α2+1( )

dy

�
α1
α1β

β + 1
β

􏼠 􏼡

α1+α2 1
β

􏼠 􏼡

− α1− α2+1( )

􏽘

∞

n�0
βn

− α1 − α2

n

⎛⎝ ⎞⎠
1

α1 + α2
􏼢 􏼣.

(34)

Combining the result of (33) and (34) gives the stress
strength parameter of a new WL:

Sstress,strength(y) �
1
α1

−
α1
α1β

β + 1
β

􏼠 􏼡

α1− α2 1
β

􏼠 􏼡

− α1− α2+1( )

􏽘

∞

n�0

βn
− α1 − α2

n

⎛⎝ ⎞⎠
1

α1 + α2
􏼢 􏼣. (35)

10. Rank Regression on Y

CDF of a NWL distribution is defined as

1 − F(t) �
β + 1
β

􏼠 􏼡 1 +
et

β
􏼠 􏼡􏼢 􏼣

− α

,

log(1 − F(t)) � − α log
β + 1
β

􏼠 􏼡 � − α log 1 +
e

t

β
􏼠 􏼡.

(36)

By comparing (36) with a simple linear regression
model, we have

y � log(1 − F(t)),

a � − log
β + 1
β

􏼠 􏼡,

b � α.

(37)
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From the least square equation method, the parameters
are estimated by using the following two equations:

􏽢a �
􏽐iyi

N
− 􏽢b

􏽐ixi

N
,

􏽢b �
􏽐ixiyi − 􏽐ixi􏽐iyi( 􏼁/N( 􏼁

􏽐ix
2
i − 􏽐ix

2
i /N􏼐 􏼑

.

(38)

So, in the current case, we have to replace

y � log(1 − F(t)),

x � log 1 +
e

t

r
􏼠 􏼡.

(39)

So, the regression equations related to a new WL dis-
tribution are described as

􏽢a � 􏽘 ln(1 − F(t)) − 􏽢b ln 1 +
e

t

r
􏼠 􏼡,

􏽢b �
􏽐iln 1 + e

t/r􏼐 􏼑􏼐 􏼑ln(1 − F(t)) − 􏽐 ln 1 + e
t/r􏼐 􏼑􏼐 􏼑 􏽐 ln(1 − F(t))􏼐 􏼑/N􏼐 􏼑

􏽐 ln 1 + e
t/r􏼐 􏼑􏼐 􏼑

2
− 􏽐 ln 1 + et/r( 􏼁( 􏼁( 􏼁

2/N􏼐 􏼑
.

(40)

Note. ln� log and F(t) values are estimated from the median
ranks.

11. Total Time on Test (TTT)

+e TTT plot identifies various shapes of the hazard func-
tion. +e TTT plot exhibits a straight line (diagonal) for a
constant failure rate. For nonmonotonic failure rates, this
plot would first decrease and then increase or vice versa. For
monotonic failure rates, the TTTplot will be decreased if it is
convex and increases if it is concave. +e general formula of
the TTT plot is given by

G
r

n
􏼒 􏼓 �

􏽐
r
i�1 xi:n +(n − r)xi:n

􏽐
n
i�1 xi:n

, r � xi:n � 1, 2, 3, . . . , n,

(41)
where xi:n are the order statistics.

12. Applications

Under this section, we provided applications to the proposed
probability model using two real-lifetime data sets. To decide
the best among other models, we considered goodness of fit
statistics including AIC, CAIC, BIC, HQIC, W (Cramer-von
Mises), and A (Anderson Darling). It is noted that a
probability model with less value of AIC, CAIC, BIC, and
HQIC and with a greater value of W and A will be con-
sidered the best one among others.

12.1. Wind Catastrophes Data. +e data set represents the
losses (in millions of dollars) due to wind catastrophes
recorded by Boyd [41]. +e data set consists of the following
information:

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6,
6, 6, 6, 8, 8, 9, 15, 17, 22, 23, 24, 25, 27, 32, 43.

+e fitted line in Figure 3 shows that the data follow a
constant failure function.

Table 2 reflects the values of ml estimates, and their
corresponding standard error is attached in the parentheses.
Table 3 defines the values of the goodness of fit measures,
and it has been observed that the values of AIC, CAIC, BIC,
and HQIC are less while W and A statistics are larger for the
New Weighted Lomax distribution than other probability
models. Hence, a new WL leads to a better fit than Lomax
(L), Power Lomax (PL), Exponential Lomax (EL), and
Weibull Lomax (WL).

Figure 4 shows the empirical and theoretical PDF and
CDF of the proposed distribution WL(α, β) and other
existing distributions for the losses due to wind
catastrophes.

12.2. Bladders Cancer Patients. +e data set represents the
remission times (in months) of 128 bladders cancer patients
and is taken from Aldeni et al. [3]. +e data set values are
given as follows:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09,
9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81,
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,
10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75,
16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12,
1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87,
5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50,
6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28,
2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63,
22.69.
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+e fitted line in Figure 5 is concave-convex type; hence,
we determined that the bladder cancer patient data follow a
nonmonotonic hazard function.

+e ml estimates and their standard error in braces are
given in Table 4. Table 5 explains the goodness of fit
measures, and it has been noted that the proposed model
provides a better fit to these data as compared with other
probability models including Lomax (L), Power Lomax (PL),
Exponential Lomax (EL), and Weibull Lomax (WL).

Figure 6 shows the empirical and theoretical CDF
and CDF of the proposed distribution WL(α, β) and

other existing distributions for the Bladder cancer
patients.

13. Simulations

+e simulation study also plays an important role in making
a decision that whether the given model provides a better fit
or not. In order to get random data from the NewWeighted
Lomax distribution, equation (12) would be considered. +e
random experiment is replicated 100 times with different
samples of sizes n with different values of parameters. +e

0.0 0.2 0.4 0.6 0.8 1.0
i/n

1.0

0.8

0.6

0.4

0.2

0.0

T 
(i/

n)

Figure 3: TTT plot of the losses due to wind catastrophes using WL distribution.

Table 2: ML estimates.

Model
Estimates

􏽢α 􏽢β 􏽢c 􏽢ϑ
NW-Lomax 0.1115898 (0.0178886) 24.7376349 (4.6011156)
Lomax 2.259102 (0.9034286) 13.107217 (6.7006737)
P-Lomax 0.1612794 (0.0677728) 5.4172791 (1.7104091) 20.3051382 (13.2356863)
W-Lomax 2.8345778 (1.10337502) 1.9742578 NaN 1.0284592 NaN 0.2073842 (0.03295629)
E-Lomax 28.842426 (36.1915908) 1.481920 (0.2297605) 2.482791 (2.5815765)

Table 3: Goodness of fit measures for losses due to wind catastrophes.

Model AIC CAIC BIC HQIC − log W A
NW-Lomax 52.2338 52.56714 55.56093 53.42755 24.1169 0.5933578 3.367013
Lomax 252.6833 253.016 256.0104 253.877 124.3416 0.2949964 1.946171
P-Lomax 235.6173 236.303 240.608 237.4079 114.8086 0.1678204 1.406701
W-Lomax 249.5339 250.7104 256.1881 251.9214 120.7669 0.2982084 1.942425
E-Lomax 237.7877 238.4734 242.7784 239.5783 115.8939 0.1700244 1.383728
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Figure 4: +e empirical and theoretical PDF and CDF of the WL(α, β) distribution.
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Figure 5: TTT plot of the bladders cancer patients using NWL distribution.

Table 4: ML estimates.

Model
Estimates

􏽢α 􏽢β 􏽢c 􏽢ϑ
NW-Lomax 0.10613 (0.009386) 31.98979 (3.188287)
Lomax 3.8661 (1.1079) 28.4134 (9.4998)
P-Lomax 1.404926 (0.4085148) 1.438151 (0.1522463) 19.819986 (5.4992568)
W-Lomax 5.4732949 (0.0506327) 1.5096438 NaN 4.7310404 NaN 0.2643016 NaN
E-Lomax 10.0160681 (2.41150223) 9.7029282 (1.84701652) 0.1310464 (0.03225501)
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Table 5: Goodness of fit measures for bladder cancer patient.

Model AIC CAIC BIC HQIC − log W A
NW-Lomax 100.39 100.49 106.10 102.71 48.199 0.56604 3.7004
Lomax 835.54 835.64 841.25 837.86 415.77 0.034874 0.224
P-Lomax 827.8986 828.0921 836.4547 831.375 410.9493 0.02481589 0.1860483
W-Lomax 828.6928 829.018 840.1009 833.328 410.3464 0.03741088 0.2432686
E-Lomax 305.2265 305.4765 313.0421 308.3896 149.6133 0.3014044 1.615242
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Figure 6: +e empirical and theoretical PDF and CDF of the WL(α, β) distribution.

Table 6: Bias and MSE of NWL(α, β) distribution.

α Β N MSE (α) MSE (β) Bias (α) Bias (β)

0.033

16.87
30 3.996406e − 05 15.18753 0.00570363 3.460371
60 3.967258e − 05 2.213798 0.005476957 0.9058611
80 6.484166e − 06 0.183196 0.002486657 0.3842137

17.1
30 3.170174e − 05 14.62279 0.00233932 3.752701
60 1.079283e − 05 4.312617 0.002267292 1.901363
80 4.80265e − 06 2.457985 0.0009147354 0.8291876

17.5
30 2.453543e − 05 16.9866 0.003788296 3.993388
60 1.591147e − 05 8.288684 0.003596319 2.036911
80 3.825583e − 06 3.029128 0.0007795378 0.8864978

0.036

21.29
30 4.484847e − 05 54.86977 0.005403825 7.251341
60 2.466488e − 05 28.85079 0.004804561 5.304583
90 6.124085e − 06 10.57544 0.002321392 3.138554

21.35
30 4.484847e − 05 55.74353 0.005403825 7.311341
60 2.466488e − 05 30.46467 0.004804561 5.454583
90 6.085762e − 06 10.95351 0.002315325 3.198279

22.45
30 5.25542e − 05 57.16769 0.005964773 7.383071
60 1.331295e − 05 36.26379 0.003408052 6.00667
90 5.233742e − 06 7.576437 0.002065704 2.621302
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result given in Table 6 declares that both the Bias and MSE
are continuously decreased as the sample size increases.

14. Conclusion

+e basic aim of this paper is to make a further contribution
to the existing theory of the probability models. +e paper
presents a NewWeighted Lomax (NWL) distribution model
with two parameters, which is very versatile than others.
Various statistical properties are discussed like hazard
function, mean residual life function, and stress strength
function. To make a comparison with other existing dis-
tributions, we have considered two real data sets. +e first
data set follows a monotonic hazard shape while the second
data set (bladder cancer patients) has a nonmonotonic
(bathtub) hazard shape. +e results demonstrated in both
data sets that a new WL model is too much better and
provides an adequate fit than the Lomax, P-Lomax,
W-Lomax, and E-Lomax distribution.
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