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Structural reliability analysis is usually realized based on a multivariate performance function that depicts failure mechanisms of a
structural system. -e intensively computational cost of the brutal-force Monte-Carlo simulation motivates proposing a
Gegenbauer polynomial-based surrogate model for effective structural reliability analysis in this paper. By utilizing the orthogonal
matching pursuit algorithm to detect significant explanatory variables at first, a small number of samples are used to determine a
reliable approximation result of the structural performance function. Several numerical examples in the literature are presented to
demonstrate potential applications of the Gegenbauer polynomial-based sparse surrogate model. Accurate results have justified
the effectiveness of the proposed approach in dealing with various structural reliability problems.

1. Introduction

Structural reliability analysis needs to recursively run a
performance function g(X) for an accurate estimation result
of the structural failure probability. Herein, the vector X �

[X1, . . . , Xd]T comprises all input random variables, and
each pair of Xi and Xj are assumed as independent for the
sake of simplicity. Or else, statistical transformations in the
literature are required to obtain equivalently independent
random variables [1–3]. Note that the performance function
is highly possible to be implicitly expressed and computa-
tionally expensive, which makes the corresponding struc-
tural reliability analysis be not an easy but highly demanding
task in reality.

Analytical derivation for stochastic characteristics of the
multivariate performance function is only feasible in rare
cases. -e Monte Carlo simulation (MCS) and its variants
allow one to alleviate the difficulty to some extent [4–6].
However, a simulation-based approach might become te-
dious due to high computational efforts [7]. Approximation
methods, for example, the first-order reliability method
(FORM) were widely investigated [8]. -is paper primarily
focuses on the utility of the Gegenbauer polynomials for a

sparse surrogate model to mimic the true but computa-
tionally demanding performance function in structural re-
liability analysis. To achieve this, the orthogonal matching
pursuit (OMP) in the signal processing domain is intro-
duced to determine the principle explanatory polynomials
for a sparse model, and the chaotic Gegenbauer polynomials
are Directional MCS00 introduced in this paper to realize
the sparse regression, rather than ordinary polynomials
1, x, x2, . . .  in conventional response surface methods
(RSMs).

In reality, the RSM has received considerable attention
over the past decades [9–11]. A general procedure to build
the surrogate model usually comprises two aspects: (1) to
locate feasible combinations of explanatory variables and
their coefficients for the optimized mean response and (2) to
estimate the model response in the vicinity of the optimized
location for better understanding the of the “local” effect of
factors [12]. Once a group of explanatory variables are
available, the least-square regression and the error back-
prorogation mechanism are combined to determine un-
known parameters [13–16].

Consider that all explanatory variables need to be fully
assessed in the conventional regression analysis. -e total
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number of model terms will be exponentially increased with
the dimensionality of input variables. -e curse of dimen-
sionality makes the conventional RSM be usually applicable
to low-dimensional problems. Instead, the sparse regression
analysis aims to use a fairly small number of regressors to
overcome the disadvantage. Combined with the Galerkin
projection [17] or the stochastic collocation method [18] to
calculate the coefficients, the determined surrogate models
have been widely used for uncertainty quantification of
various structural systems [19–21].

-e paper proposes to build a sparse surrogate model for
structural reliability analysis via the Gegenbauer polyno-
mials. -e univariate Gegenbauer polynomials G

(β)

k (x) (as
k � 0, 1, . . .) are specified by the weight function w(x) �

(1 − x2)β− 1/2 and are constituted as a complete basis to
represent an arbitrary function defined on ∀x ∈ [− 1, 1] [22].
Given various realizations of the polynomial parameter β,
G

(β)

k (x) define a group of polynomials for the model ap-
proximation. For instance, β � 1/2 defines the Legendre
polynomial, whereas β � 0 and β � 1 are related to the first
and the second kinds of the Chebyshev polynomials.
Flexility motivates to utilize the Gegenbauer polynomials to
develop surrogate models for the structural reliability
analysis in this paper.

Following the theorem of the generalized Furious ex-
pansion, a real-valued function can be exactly represented
via a complete basis set. Results from the variance-based
global sensitivity analysis have vividly demonstrated uti-
lizing a small number of principle terms for an accurate
estimation of the true model. -is motivates developing a
sparse approximation of the multivariate performance
function. Once the multivariate basis set based on the
Gegenbauer chaos polynomials is constituted, the method of
the orthogonal matching pursuit is further introduced to
select primary functions to maintain the high sparsity of the
surrogate model. Similar algorithms include the basis pur-
suit [23] and the matching pursuit methods [24], or the
method via the numerical approach of the orthogonal
matching pursuit (OMP) [25].

-e OMP algorithm has been widely recognized to select
principle regressors that are correlated with residual errors
of an engineering model. Relying on the orthogonal pro-
jection of residual errors to the linear space spanned by
orthogonal polynomials, the OMP algorithm can iteratively
minimize the global model error sparsely [26]. Due to its
advantages in terms of simple implementation and fast
convergence, the OMP has been successively used for data
compression, signal recovery, image recognition, and so on.
Besides, advanced algorithms such as the stagewise or-
thogonal matching pursuit (StOMP) and the regularized
orthogonal matching pursuit (ROMP) were developed in
[27, 28]. -e paper introduces the Gegenbauer polynomials
to constitute the basis functions, and a variety of stopping
criteria are further investigated for a robust OMP-based
sparse regression model in structural reliability analysis. -e
approach is nonintrusive, which implies the corresponding
structural reliability analysis is only based on a small number
of deterministic model evaluations, rather than requiring

high order responses, for example, the gradients in the first-
order reliability method (FORM) [29].

An objective of the paper is to utilize the multivariate
Gegenbauer polynomials as the basis function for an ef-
fective surrogate model for the structural reliability analysis.
-e high-dimensional Gegenbauer polynomials are first
presented to define the multivariate chaos terms. Combined
with a variety of stopping criteria to realize the sparse re-
gression, an effective surrogate model that mimics the true
but computationally demanding performance function is
determined for the structural reliability analysis.

-e rest of the manuscript is organized as follows:
Section 2 briefly summarizes the mathematic properties of
the Gegenbauer polynomials, and the multivariate basis
functions are further formulated by the chaotic multipli-
cation of univariate functions. Section 3 presents several
stopping criteria for a robust sparse regression result. Nu-
merical examples in Section 4 are presented to demonstrate
potential applications of the proposed sparse regression
model, and conclusions are summarized in Section 5.

2. The multivariate Gegenbauer Polynomials

A reliable sparse regression result for a structural perfor-
mance function depends largely on the multivariate basis
functions to span the approximation space. -e paper
presents utilizing the chaotic multivariate Gegenbauer
polynomials. -erefore, the section starts to introduce
mathematical characteristics of the univariate Gegenbauer
polynomials, and multivariate basis functions are further
derived via the chaotic multiplication of one-dimensional
polynomials.

2.1. !e Gegenbauer Polynomial. -e Gegenbauer polyno-
mials have been widely treated as a group of basis functions
for the numerical approximation in engineering realities
[30]. In mathematics, G

(β)

k (x) (k � 0, 1, . . .) are defined as
pairwise orthogonal polynomials for x ∈ [− 1, 1]. -ey are
particular solutions of the Gegenbauer differential equation
[31]:

1 − x
2

 y″ − (2β + 1)xy′ + k(k + 2β)y � 0, (1)

which can be further degenerated as the Legendre and
Chebyshev differential equation, and the Legendre and the
Chebyshev polynomials are two special cases of the
Gegenbauer polynomials as shown in numerical
simulations.

Besides, the Gegenbauer polynomial G
(β)

k (x) can be
expressed via the generating function as well [32]:

1

1 − 2xt + t
2

 
β � 
∞

k�0
G

(β)

k (x)t
k
, (2)

and the recurrence relation of the orthogonal polynomials is
given as
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G
(β)
0 (x) � 1,

G
(β)
1 (x) � 2βx,

kG
(β)

k (x) � 2x(k + β − 1)G
(β)

k− 1(x) − (k + 2β − 2)G
(β)

k− 2(x) (k≥ 2).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Mathematically, the orthogonality ofG
(β)

k (x) is governed
by


x
w(x)G

(β)

k (x)G
(β)

l (x)dx � Ck(β)δkl. (4)

Herein, w(x) � (1 − x2)β− 1/2 denotes the weight function
x ∈ [− 1, 1], and δmn represents the Kronecker delta symbol.
-is is further used to define the normalization constant
Ck(β):

Ck(β) �
π21− 2βΓ(k + 2β)

k!(k + β)[Γ(β)]
2 (k � 0, 1, . . .), (5)

in which the symbol Γ(·) denotes the Gamma function.
Given the parameter β � 1/2, 1.0, 2.0, and 3.0, the first six

realizations of the Gegenbauer polynomial (i.e. k � 0, . . . , 5)
are presented in Figure 1. -e Legendre and the Chebyshev
polynomials are two special cases of the Gegenbauer poly-
nomial, which will be utilized to build multivariate basis
functions for a sparse approximation result of the perfor-
mance function g(X) in structural reliability analysis.

2.2. !e multivariate Gegenbauer polynomial. Structural
reliability analysis is always evaluated based on a multi-
variate performance function g(X), and the multivariate
Gegenbauer polynomials will be derived for a numerical
approximation of the performance function.

Define an index vector θ � [θ1, . . . , θd]T with each in-
tegral θk ∈ [0, p]. -en, the degree of a d-variate chaotic
Gegenbauer polynomial ϕθ(x) can be measured by the
length of the index vector, that is, |θ| � 

d
k�1 θk. Specifically,

the total number (N) of chaotic terms in the polynomial set
ϕθ(x)  is determined by parameters d and the polynomial
order p as

N �

d + p

p

⎛⎝ ⎞⎠ �
(d + p)!

d!p!
, (6)

and the vector-indexed multivariate Gegenbauer polyno-
mials are defined via the chaotic multiplication of the
univariate functions:

ϕi(x), i � 0, . . . , N − 1  :� ∪
|θ|≤p



d

k�1
G

(β)

θk
xk( , (7)

wherein G
(β)

θk
(xk) represents the θkth-order univariate

polynomial presented in Section 2.1.
Figure 2 presents the bivariate Gegenbauer polynomials

with parameters β � 1/2 and the polynomial degree p � 4.
For other high-dimensional cases, one can refer to the
tensor-product formulation in equation (7). Note that each
two pair of multivariate Gegenbauer polynomials are or-
thogonally defined, given that

〈ϕi(x), ϕj(x)〉 � 
x
W(x)ϕi(x)ϕj(x)dx � C0δij (i, j � 0, . . . , N − 1), (8)

wherein W(x) represents a d-dimensional weighting
function W(x) � 

d
k�1 (1 − x2

k)β− 1/2 as x ∈ [− 1, 1]d whereas
C0 denotes a normalization constant.

To illustrate the orthogonal characteristic, the original
index vector of an arbitrary two orders of the chaotic

polynomials are recovered as θ(i) � [θ(i)
1 , θ(i)

2 , . . . , θ(i)
d ]T and

θ(j) � [θ(j)
1 , θ(j)

2 , . . . , θ(j)

d ]T, respectively. Following this no-
tation, the inner product in equation (8) is realized as

〈ϕi(x), ϕj(x)〉 � 
Ω

W(x)ϕθ(i) (x)ϕθ(j) (x)dx

� 
d

k�1


xk

w xk( G
(β)

θ(i)

k

xk( G
(β)

θ(j)

k

xk( dxk � 
d

k�1
Cθ(i)

k

(β)δθ(i)

k
θ(j)

k

.

(9)

Note that ∀θ(i)
k ≠ θ

(j)

k and ϕi(x)≠ϕj(x) as k � 1, . . . , d

and i, j � 0, . . . , N − 1.
Define the normalized univariate Gegenbauer

polynomial:

G
(β)

θk
(x) �

1
������
Cθk

(β)
 · G

(β)

θk
(x) for each integer θk ∈ [0, p]( .

(10)
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Substituting G
(β)

θk
(x) to equation (8), one can obtain the

normalized multivariate set ϕ0(x), . . . , ϕN− 1(x) , whose
elements have the property of
〈ϕi(x), ϕj(x)〉 � δij (i, j � 0, . . . , N − 1), (11)

and its second-norm can be defined as
ϕi(x)

����
����2 � 1 (i � 0, . . . , N − 1). (12)

Note that the normalized multivariate Gegenbauer
polynomials ϕi(x) (for i � 0, . . . , N − 1) will be used as the
basis functions in subsequent sparse approximations, and

the normalized polynomial will be denoted as ϕi(x) for the
sake of simplicity.

Besides the normalization issue, a linear transformation
of the parameter x is required to match the definition do-
main of input random variables:

zi �
aU − aL

2
xi +

aL + aU

2
asxi ∈ [− 1, 1] and i � 1, . . . , d( ,

(13)

and parameters aL and aU are empirically defined as
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Figure 1: -e first six orders of the Gegenbauer polynomial with various realizations of the parameter β � 1/2, 1.0, 2.0, and 3.0. (a) β � 1/2:
the Legendre polynomial. (b) β� 1: the Chebyshev polynomial. (c) β� 2.0. (d) β� 3.0.
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aL � F
− 1 μi − kσi( ,

aU � F
− 1 μi − kσi( ,

⎧⎨

⎩ (14)

wherein F− 1(·) represents the inverse cumulative distribu-
tion function (iCDF) of the random variable Xi associated
with the mean μi and the standard deviation σi.

-e parameter k is expected to connect with the trun-
cated probability in equation (14). If Xi is a Gaussian var-
iable, the truncated probability Pr[Xi ≤ aL] + Pr[Xi ≥ aU]

will be less than 0.3% and 0.01%, respectively, as k � 3 and 4.
-erefore, the linear transformation in equation (13) with
the parameter k � 4 will be utilized in numerical examples to
tackle nonuniformly distributed and skewed random
variables.

3. The Gegenbauer Polynomial-Based Sparse
Surrogate Model

Structural reliability simulations are always realized based
on a multivariate performance function and its surrogate
model. Once the surrogate model is numerically available,
the subsequent reliability analysis can be alternatively re-
alized by the brutal Monte Carlo simulation. Note that the
total number of functional evaluations is limited to the
development of the surrogate model g(·), rather than all
random samples. As a comparison, the original random
simulation based on g(X) will require NMCS ≥ 100/PF

samples [33]. -e large number of model repetitions implies
a huge amount of computational cost. -erefore, the paper
proposes utilizing the chaotic Gegenbauer polynomials to
build the surrogate model at first, and the total number of
mechanistic model reevaluations will be only limited to the
number of numerical operations to develop the surrogate
model, rather than directly carrying out the physical model-
based random simulations.

Conventional response surface models usually contain
hundreds or even thousands of polynomial terms for a
robust estimation result.-e global sensitivity analysis result
has shown that a relatively small number of component

functions is capable of accurately approximating a complex
performance function g(·); that is, a sparse approximation is
available for the structural reliability analysis. Based on the
consideration, the section presents utilizing the chaotic
Gegenbauer polynomial-based sparse model to mimic the
true performance function. -e principle polynomials
among all potential explanatory elements are detected based
on a small number of model simulation results. To begin
with, a standard procedure for the surrogate model devel-
oped based on the statistical regression method is briefly
summarized as follows.

3.1. !e Regression-Based Surrogate Model. To begin with,
the set ζ � x(1), . . . , x(n)  consists of n realizations of input
random vector X generated based on a low-discrepancy
sequence, for example, the Sobol’, the Helton, or the
Hammersley algorithm, whereas the corresponding reali-
zations of the chaotic Gegenbauer polynomial set ϕi(x) 

N− 1
i�0

are expressed in a matrix form as

ξ �

ϕ0 x(1)(  ϕ1 x(1)(  · · · ϕN− 1 x(1)( 

ϕ0 x(2)(  ϕ1 x(2)(  · · · ϕN− 1 x(2)( 

⋮ ⋮ ⋱ ⋮

ϕ0 x(n)(  ϕ1 x(n)(  · · · ϕN− 1 x(n)( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×N

. (15)

Following the theory of multivariate “linear” regression
[34], a response surface model for the performance function
g(·) can be obtained as

y � 
N− 1

i�0
biϕi(x) + ε. (16)

Note that the vector b � [b0, b1, . . . , bN− 1]
T consists of

all regression coefficients that are attached to explanatory
variables ϕi(x) 

N− 1
i�0 . In addition, the residual error is

expressed as

r � y − ξb. (17)
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Figure 2: Bivariate Gegenbauer polynomials defined by parameters β � 1/2 and the polynomial degree p � 4.
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Here, the model response vector y � [g(x(1)), . . . , g(x(n))]T

comprises total n realizations of the mechanistic model by
continuously feeding each element of the training dataset ζ.
And the unknown regression coefficients b can be expressed
in terms of the training dataset ξ as

b � ξTξ 
− 1
ξTy. (18)

-erefore, once the training matrix ξ defined in equation
(15) and corresponding structural response samples y are
numerically available, the least-square minimization based
on the 2-norm of the residual error vector r allows deriving
an empirical surrogate model noted in equation (16) for
reliability analysis of the structural system.

3.2. A Sparse Regression Model Based on the OMP Algorithm.
A fundamental problem in structural reliability analysis
signal processing is to develop a reliable sparse surrogate
model for multivariate input uncertainties. -e orthogonal
matching pursuit (OMP) algorithm for the signal processing
is presented with the basis dictionary defined by the chaotic
Gegenbauer polynomials.

Given a realization of the polynomial parameter p, the
full dictionary set can be initialized as ϕ(0) � [ϕ0(x), ϕ1
(x), . . . ,ϕN− 1(x)]T, together with principle components
ψ(0) � ∅. Based totally on n training samples in ζ generated
based on the Halton or the Sobol’ low-discrepancy scheme,
the corresponding model responses y and the polynomial
matrix ξ in equation (15) are prepared for subsequent model
evaluations. Specifically, the residual error is initialized as
r(0) � y, whereas the significant elements in ξ will be
χ(0) � ∅.

For a realization of the iterative counter k≥ 1, one could
implement the OMP-based sparse regression analysis as
follows:

(1) Detect the most principle polynomial ϕi∗(x) ∈ ψ(k− 1)

based on the following criterion:

i
∗

� argmax ξT
i r(k− 1)



 (as i � 0, . . . , N − 1), (19)

wherein the symbol ξi � [ϕi (x(1)), ϕi (x02),
. . . ,ϕi(x(n))]T denotes an ith column of the poly-
nomial matrix ξ that is evaluated based on n samples
of the input random vector X. -erefore, the poly-
nomial index parameter for an i∗th significant
polynomial will be updated as ψ(k) � ψ (k − 1) ∪
ϕi∗(x)  and χ(k) � χ(k− 1) ∪ ξi∗ , respectively.
Meanwhile, the explanatory dictionary is revised by
excluding the element ϕi∗(x), that is, ϕ(k) � ϕ(k − 1)⊖
ϕi∗(x)  for subsequent iterations.

(2) Update the model result by calculating the coeffi-
cients b(k) � [χT

(k)χ(k)]
− 1χT

(k)y, which determines the
model after a kth iteration as

y(k) � ψT
(k)

b(k). (20)

Note that the residual error will be r(k) � (I − A)y,
and A � χ(k)[χT

(k)χ(k)]
− 1χT

(k), and the symbol I de-
notes an n × n identity matrix.

(3) Evaluate the sparse regression model in equation
(20) based on stopping criteria listed in Table 1. Or
else, set k � k + 1 and repeat Steps 1–3 till the largest
realization of the iterative counter Nmax � rank(ξ).

It is observed that the OMP algorithm is a stepwise
forward greedy algorithm to select principle components. In
this regard, a main issue for the sparse regression can stop
the greedy selection process at “a right time.” However,
stopping rules of the greedy algorithm are mainly defined by
mathematical characteristics of the residual error. Typical
realizations include the ℓ2 and ℓ∞ measures, that is,
‖r(k)‖2≤ ε1 and ‖ψT

(k)r(k)‖∞≤ ε2, wherein, parameters εi (as
i � 1, 2) denote the predefined error thresholds. In addition,
a relative-error-based measure can also be used:

r(k− 1) − r(k)

����
����∞

r(k)

����
����∞
< ε3, (21)

which is evaluated by two successive residual errors r(k− 1)

and r(k) (as k � 1, 2, . . .) in model iterations. Note that the
ℓ∞-norm used here is much more strict than criteria based
on the ℓ2 norm.

Rather than the hard stopping criteria that are evaluated
directly based on the residual error term r(k), an F-value-
based soft stopping criterion can be further used to exclude
incorrectly identified component functions. -is is because
the multivariate Gegenbauer polynomials might not be
exactly orthogonally defined with each other due to the
truncated simulation domain Ω � ∪ iΩi as shown in
equation (14). It is highly possible that the residual error r(k)

cannot be exactly represented by the remaining polynomial
set after a kth iteration. -is is the motivation to utilize an
F-test-based procedure to exclude spurious basis functions
and maintain the high sparsity of the response surrogate
model.

Recall that the covariance matrix for regression coeffi-
cients β(k) is estimated as

Cov β(k)  � σ2 χT
(k)χ(k) 

− 1
, (22)

wherein σ2 denotes the variance of the error term ϵ, and its
unbiased estimator is

σ2 �
rT

(k)y
n − M

, (23)

Herein, the integers n and m represent the total number of
training samples and polynomial elements in β(k), respec-
tively. -en, an F-statistics for the significant test of re-
gression coefficients are defined as

Fj �
b
2
j

Cov b(k)  
jj

for each bj ∈ b(k) and j � 1, . . . , M ,

(24)
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which will be used to detect the most insignificant coefficient
bj∗ with the minimum F-value:

j
∗

� argmin Fj, j � 1, . . . , M . (25)

Together with the significant level β∗ in numerical ex-
amples, the F-value-based “soft” stopping criterion will be
numerically implemented depending on the following cases:

Case 1: Fj∗ <Fβ∗(1, n − M) and i∗ � j∗. -is implies
that the null hypothesis H0:

βi∗ � 0  cannot be
rejected based on the F test for the βi∗ th regression
coefficient, and the surrogate model
y(k− 1) � ϕ(k− 1)

β(k− 1) is the sparse regression result for
the performance function g(·).
Case 2: Fj∗ <Fβ∗(1, n − M) but i∗ ≠ j∗. One needs to
update the significant polynomial set ϕ(k) by excluding
the spurious principle component ϕj∗(x) and recal-
culate regression coefficients β(k) for afterward sig-
nificant tests.

Otherwise, go to Step 3 till the counting variable k

reaches its upper bound Nmax � rank(ξ).
In summary, all considered hard and soft stopping

criteria are listed in Table 1. In numerical simulations, a total
of eight cases about realizations of parameters εi and α∗ will

be considered, that is, ε1 � 0.1, 0.05 (Cases 1 and 2), ε2 �

0.1, 0.05 (Cases 3 and 4), ε3 � 0.1, 0.05 (Cases 5 and 6), and
α∗ � 0.05, 0.01 (Cases 7 and 8) given a realization of εi and
α∗. Together with several examples in the literature, potential
applications of the Gegenbauer polynomial-based surrogate
model for structural reliability analysis will be demonstrated
below.

4. Numerical Assessments of the Gegenbauer
Polynomial-Based Surrogate Model

-is section examines the performance of the chaotic
Gegenbauer polynomial-based sparse regression method for
structural reliability analysis based on several examples in
the literature. In this regard, an accuracy measure of the
surrogate model is defined as

regression error �


NTest
i�1 g x(i)

  − g x(i)
  

2


NTest
i�1 g x(i)

  − y 
2 , (26)

wherein the mean value of the model response is estimated
as y � 1/NTest 

NTest
i�1 g(x(i)) based on NTest realizations of

the input random vector X. In addition, a model sparsity
indicator is defined as

ratio of sparsity �
the number of detected significant terms(M)

total number of elements in ϕ0(x), . . . ,ϕN− 1(x) 
× 100%, (27)

and a small value of the ratio of the sparsity (RoS) (e.g.,
≤20%) is expected in engineering realities to reduce the total
number of training samples for structural reliability analysis.

4.1. !e Ishigami function. -e mathematical example in-
vestigates the numerical performance of the chaotic
Gegenbauer polynomial in sparse regressions analysis by
considering the Ishigami function:

g(X) � sin X1(  + a sin X2(  
2

+ b sin X1( X
4
3. (28)

All input variables Xi are i.i.d. uniform random variables
within the interval [− π, π], and constants a and b are as-
sumed as 7.0 and 0.1, respectively, in the literature. Note that
the full model consists of 286 terms for the highest poly-
nomial order p � 10.

Since the analytical result of the Ishigami function is
available, a numerical experiment is carried out to examine
the effect of various stopping criteria for uncertainty analysis
of the Ishigami function. With 200 random realizations of
the input vector X, the proposed algorithm is followed to
determine dominant basis functions and the corresponding
sparse regression model.

Figure 3 presents simulation results of the regression error
(Re) and the ratio of sparsity (RoS) for various realizations of the
polynomial parameter β ∈ [− 0.8, 0.8] for X1 and X2, whereas
investigated stopping criteria in Table 1 will be investigated.-is
allows one to determine a better stopping criterion for small
realizations of the structural performance function. Results have
justified that the polynomial parameter β can determine di-
vergent surrogate models in terms of the approximation error
and the sparsity ratio. Specifically, realizations β � − 0.6 and
− 0.69 determine theminimal error and the sparsity ratio results
for the uniform random variables, respectively. Besides, an
increase in the absolute value of |β| will generally increase the
global errors and the sparsity ratio. In this regard, the Che-
byshev polynomial determined by the parameter β � 0 will be
further examined for various structural reliability problems.

Specifically, the effect of the parameter β on the
numerical accuracy of the surrogate model is further
investigated by considering β varying from − 0.2 to 0.2
with an incremental Step 0.05. Results in Figure 4 show
that there are no significant differences among prediction
error results, which are less than 3 × 10− 6 for all reali-
zations cases, yet the cases β � − 0.05 and β � 0 can de-
termine relatively smaller sparsity, that is, ≤6.7%.

Table 1: Stopping criteria used in numerical simulations.

Hard rules Soft rule

‖r(k)‖2≤ ε1 ‖ψT
(k)r(k)‖∞≤ ε2 ‖r(k− 1) − r(k)‖∞/‖r(k)‖∞≤ ε3 Fj∗ <Fα∗

Mathematical Problems in Engineering 7



-erefore, the case β � 0 will be used to check various
stopping criteria in Table 1 as follows.

-e polynomial parameter is further fixed as β � 0,
numerical results of the regression error and the sparsity
ratio are estimated for various stopping criteria in Figure 5.
It is observed that the global regression error and sparse ratio
are much higher than the average result for the hard stop
criterion ‖ψT

(k)r(k)‖‖∞ with the threshold parameter
ε2 � 0.05 (Case 4) and the F-value-based soft rule with the
parameter α∗ � 0.05 (Case 7). Specifically, the largest re-
gression error and the sparse ratio results are observed for

Case 2, that is, ‖r(k)‖2≤ 0.05. In general, the optimum result
is determined by the hard rule ‖ψT

(k)r(k)‖‖∞≤ 0.1 (Case 4)
and the soft criterion Fα∗ � 0.05 (Case 7) for the Ishigami
example. -e criteria will be further examined by a high-
dimensional uncertain model as follows.

4.2.!eHigh-Dimensional Function. To further examine the
performance of the proposed Gegenbauer polynomial-based
regression method for uncertainty analysis of high-dimen-
sional models, the example considers the multivariate
function:
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Figure 3:-e isoline for the median values of the regression error (Re) and the sparsity ratio as β1, β2 ∈ [− 0.8, 0.8]). (a)-e regression error.
(b) -e sparsity ratio.
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g(X) � 3 −
5
d



d

k�1
kXk +

1
d



d

k�1
kX

3
k + ln

1
3d



d

k�1
k X

2
k + X

4
k ⎡⎣ ⎤⎦.

(29)

Herein, Xi are uniform i.i.d. variables within the region
[1, 2], and various realizations of the dimensionality pa-
rameter d are considered.

To examine the performance of the proposed sparse
regression approach for a problem with various dimensions
of the input random vector X, the dimensionality parameter
d is generally assumed as 10 and 20. Combining the poly-
nomial parameter β � 0 and various stopping criteria,
Figures 6 and 7 summarize simulation results for the global
regression error and the sparsity ratio associated with the
dimensionality parameters d � 10 and 20.

Results have shown that the stop criterion
‖ψT

(k)r(k)‖‖∞≤ 0.1 (Case 4) and the F statistic-based criteria
in Cases 7 and 8 are able to determine relatively small results
of the regression error and the sparsity ratio. Specifically, the
criterion (Case 2), that is, ‖r(k)‖2≤ 0.05, cannot determine
the surrogate model as accurate as other rules if d � 20.
Consider a better balance of the global error and the sparsity
ratio achieved by the hard criteria ‖ψT

(k)r(k)‖‖∞≤ 0.1 and the
soft rule Fj∗ <Fα∗ ; they will be used to build the surrogate
model for structural reliability analysis in the following
simulations.

To further examine the utility of various polynomials in
the model approximation, the Chebyshev polynomial of the

first kind, that is, the polynomial parameter β � − 1/2, is
further used to build a surrogate model of the high-di-
mensional function. Results in Figure 8 have shown that the
proposed regression method is rather effective for the high-
dimensional problem, for example, the dimensionality pa-
rameter d≥ 15. -e corresponding sparsity ratio is less than
10%, and the regression errors are in the magnitude of 10− 5.
-e high accuracy ensures the numerical effectiveness of the
surrogate model for structural reliability simulations.

Figure 9 finally presents numerical results for the re-
sponse probability density function of the high-dimensional
function. With 500 Sobol’ sequences to build the sparse
model at first, the brutal-force MCS is fully realized based on
the surrogate model g(X). -e close agreement of simu-
lation results between the surrogate and the true models has
confirmed the high accuracy of the proposed approach.

4.3. Reliability Analysis of a Steel Frame Structure. -e ex-
ample further demonstrates potential applications of the
proposed Gegenbauer polynomial-based sparse regression
method for reliability analysis of a two-bay six-story steel
frame. As depicted in Figure 10, random variables of the
frame structure include the modulus of elasticity E, the
moment of inertia I, and structural external loads
Pi(i � 1, . . . , 6). -e probabilistic characteristics of input
random variables are summarized in Table 2, whereas the
performance function is defined as the structural maximal
interstorey drift over the limit u0 � 11 cm:

g(X) � u0 − Dmax(X)

� u0 − max dA(X) − dD(X)


, dB(X) − dE(X)


, dC(X) − dF(X)


 .
(30)

Herein, Dmax denotes the maximal interstorey drift, whereas
d(·) represents the nodal lateral displacements that are ex-
plicitly evaluated based on a finite element (FE) model of the
steel frame structure.

To determine the failure probability of the steel frame
structure, the Gegenbauer polynomial with the parameter
β � 0 is used to develop a sparse surrogate model with the
polynomial order p � 3 and the sample size n � 500. Note
that a similar result based on the parameter β � 1/2 is de-
termined, yet omitted here for the sake of brevity.

Figure 11(a) depicts numerical results for the empirical
PDF of the structural maximum roof drift, and 500 samples
are sufficient to determine a surrogate model to mimic the
true performance function. -e POE result pictured in
Figure 11(b) provides the estimation of the structural failure
probability as 1.44 × 10− 2, which is fairly close to the
benchmark result 1.49 × 10− 2 in [35].

To further evaluate the robustness of the proposed ap-
proach, 100 repetitions of the sparse regression analysis have
been implemented, and the corresponding results for the
structural failure probability are summarized in Figure 12.
Since each round of the sparse regression analysis only
requires 500 nonintrusive model runs. It has exhibited the

high efficiency of the proposed approach for the structural
reliability analysis, whereas the small standard deviation
result (3.74 × 10− 4) confirms the robustness of the proposed
method as well.

4.4. Reliability Analysis of a Bar Structure with Spatially
Varying Stochastic Material Properties. -is section illus-
trates an application of the proposed approach by consid-
ering a bar structure with spatially varying Young’s modulus.
As depicted in Figure 13, a bar structure with unit length and
cross-sectional area (i.e., L � 1 and A � 1) is subjecting
axially distributed load P(x) � x. Specifically, the modulus
of elasticity E is model via a homogeneous Gaussian random
field:

Cov x, x′(  � σ2E exp −
x − x′




δ
 withx, x′ ∈ [0, L], (31)

which is the exponential covariance function and symbols x

and x′ represent any two positions along the bar. -e pa-
rameters σE � 0.1 unit and δ denote the standard deviation
and correlation length of the Gaussian random field,
respectively.
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Figure 7: Results for the regression error and the sparsity ratio for the case d � 20. (a) -e regression error. (b) -e sparsity ratio.
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Figure 5: Results for the regression errors and the sparse ratio. (a) -e regression error. (b) -e ratio of the sparsity.
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Figure 6: Results for the regression error and the sparsity ratio for the case d � 10. (a) -e regression error. (b) -e sparsity ratio.
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Table 2: Random variables of the steel frame structure.

Symbol Variable Unit Mean value COV Distribution
X1 Eb N/m2 2 × 1010 0.10 Log-normal
X2 Ib m4 1 × 10− 3 0.10 Log-normal
X3 Ec N/m2 2 × 1010 0.10 Log-normal
X4 Ic m4 1.5 × 10− 3 0.10 Log-normal
X5 P1 N 2.5 × 104 0.25 Normal
X6 P2 N 2.8 × 104 0.25 Normal
X7 P3 N 2.9 × 104 0.25 Normal
X8 P4 N 3.0 × 104 0.25 Normal
X9 P5 N 3.1 × 104 0.25 Normal
X10 P6 N 3.2 × 104 0.25 Normal
-e subscripts b and c represent beam and column, respectively. COV: the coefficient of variation.
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Following the theory of the Karhunen–Loève expansion,
the material random field is numerically parameterized
based on its first-d eigenpairs {λi, ϕi(x)} (i � 1, . . . , d) [36]:

E(x) ≈ μE(x) + 
d

i�1

��
λi


ϕi(x)Xi, (32)

wherein Xi denote independent standard Gaussian random
variables, whereas the mean value of the random field is
constantly assumed as μE(x) � 1.0.

Failure events for reliability analysis of the bar structure
are defined by the maximum axial displacement Dmax(X)

over a threshold value of 0.40:

failure events � 0.40 − Dmax(X) ≤ 0 . (33)

Here, random vector X � [X1, . . . , Xd]T comprises all
Gaussian random variables in equation (32) for numerical
discretization of the random field.

With various realizations of the correlation length pa-
rameter, that is, δ � 0.1, 1.0, 10, and 100, numerical reali-
zations of the elasticity random field are presented in
Figure 14. Note that ten random variables will be enough to
represent more than 95% of the original variability. -is
implies that the random vector X consists of ten standard
Gaussian random variables. In addition, a large value of the
correlation length parameter (e.g., δ � 100) increases the

statistical dependency between positions of the random
modulus elasticity E(x). -is allows one to examine the
numerical performance of the proposed approach in dealing
with dependent input uncertainties.

To implement, the sparse regression method with the
polynomial order p � 3 and 500 Sobol’ sequences is
employed to develop a surrogate model for the structural
maximal axial displacement Dmax(X). Results for PDFs of
Dmax(X) are presented in Figure 15 for various realizations
of the correlation length parameter δ. It is observed that the
response variability is directly related to the parameter δ in
the random field model, and the case δ � 100 determines the
largest variation of the structural response quantity.

Based on the structural performance function defined in
equation (33), Table 3 summarizes the structural failure
probability for various realizations of the correlation length
parameter δ. -e close agreement between the estimation
and benchmark results has verified the high accuracy and
numerical efficiency of the sparse regression method.

Figure 16 further summarizes simulation results for the
sparsity ratio and the global regression error of the surrogate
model. -e sparsity ratio result is dramatically decreased
with an increase of the correlation parameter δ. A larger
value of the parameter δ implies numerical realizations of
the Young’s Modulus at two different locations are strongly
correlated. -e statistical dependency will increase the

L
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Figure 13: A bar structure under distributed axial load.
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structural failure probability as presented in Figure 16(b).
Note that a small variation result for the structural failure
probability further verifies the robustness of the proposed

Gegenbauer polynomial-based regression method for reli-
ability analysis of a structural model with dependent input
uncertainties.
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Figure 16: Results for the robustness analysis of the Gegenbauer polynomial-based surrogate model with parameter β � 0. (a) -e sparsity
ratio. (b) Structural failure probability.
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Figure 15: Results for the response distribution of the maximum axial displacement of the bar structure with various correlation length
parameters. (a) -e sparse surrogate model with the parameter β� 0. (b) -e sparse surrogate model with the parameter β� 1/2.

Table 3: Structural failure probability for various values of the correlation length parameter (b).

-e correlation length parameter
b � 0.1 b � 1.0 b � 10 b � 100

MCS 3.20 × 10− 4 3.09 × 10− 2 4.63 × 10− 2 4.81 × 10− 2

Sparse model: β � 0 2.60 × 10− 4 3.10 × 10− 2 4.66 × 10− 2 4.85 × 10− 2

Sparse model: β � 0.5 2.60 × 10− 4 3.11 × 10− 2 4.66 × 10− 2 4.84 × 10− 2
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5. Conclusion

Structural reliability analysis is typically evaluated based on a
multivariate performance function that defines small failure
probabilities. It is significant to develop a surrogate model to
mimic the true performance function as the brutal-force
MCS based on the realistic model might be computationally
intensive. -is paper presents utilizing the Gegenbauer
polynomials to constitute the explanatory dictionary,
whereas principle component functions are adaptively se-
lected via the OMP-based sparse regression algorithm. Due
to the regression bias introduced by utilizing random
samples, an excluding procedure to detect spuriously
component functions is proposed based on the F statistics.
Simulation results have shown that the Gegenbauer poly-
nomial-based regression method can determine reliable
estimation results for the investigated performance function.
Small regression errors and the high sparsity of the surrogate
model have demonstrated potential applications of the
adaptive sparse regression algorithm for structural reliability
analysis.
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[33] G. Schuëller, “Computational stochastic mechanics: recent
advances,” Computers & Structures, vol. 79, no. 22-25,
pp. 2225–2234, 2001.

[34] D. C. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, New York, NY, USA, 7th edition, 2009.

[35] H. Dai, H. Zhang, and W. Wang, “A new maximum entropy-
based importance sampling for reliability analysis,” Structural
Safety, vol. 63, pp. 71–80, 2016.

[36] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A
Spectral Approach, Springer-Verlag, New York, NY, USA,
1991.

16 Mathematical Problems in Engineering

https://encyclopediaofmath.org/wiki/Ultraspherical_polynomials
https://encyclopediaofmath.org/wiki/Ultraspherical_polynomials

