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/is research is chiefly concerned with the stability and Hopf bifurcation for newly established fractional-order neural networks
involving different types of delays. By means of an appropriate variable substitution, equivalent fractional-order neural network
systems involving one delay are built. By discussing the distribution of roots of the characteristic equation of the established
fractional-order neural network systems and selecting the delay as bifurcation parameter, a novel delay-independent bifurcation
condition is derived. /e investigation verifies that the delay is a significant parameter which has an important influence on
stability nature and Hopf bifurcation behavior of neural network systems. /e computer simulation plots and bifurcation graphs
effectively illustrate the reasonableness of the theoretical fruits.

1. Introduction

It is widely known that neural network systems own great
application value in plenty of areas such as disease treatment,
pattern recognition, intelligent control, biology, information
processing, control technique, and so on [1–6]. In real world,
time delay usually occurs in lots of neural networks and
biological systems since there is delay of information
transmission of distinct neurons and the response of diverse
biotic populations. /erefore, grasping the effect of delay on
the dynamic law for many dynamical models is a key topic in
contemporary science. Generally speaking, the delay fre-
quently leads to the disappearance of stability and the ap-
pearance of bifurcation, chaotic behavior, and a lot of other
dynamic characteristics. So, a number of researchers pay
much attention to various neural networks, and lots of
excellent results have been reported. For instance, Lin and
Zhang [7] considered the global asymptotic synchronization
of delayed BAM neural networks by means of the LMI
method and matrix measure method. Ding et al. [8]
established a sufficient criterion guaranteeing the global
robust exponential stability of BAM neural networks

involving discrete delay and the distributed delay under
uncertainty by applying an appropriate Lyapunov–Kra-
sovskii function. In the work of Hou et al. [9], the authors
dealt with the stability issue of discrete-time uncertain
models concerning Markov jump and delay. In 2021, Zhou
[10] investigated the global exponential dissipativity for
recurrent neural networks involving proportional delays.
For more works on this subject, one can see [11–13].

It should be noted that all the involved publications
mentioned above only focus on integer-order neural net-
works concerning delays and are not concerned with the
fractional-order form. /e research on fractional-order
differential equation has remained a relatively slow devel-
opment situation because of the lack of theoretical body of
knowledge and realistic background. Until recently, frac-
tional-order differential dynamical system has aroused
widespread interest from many scholars since it owns great
application prospect in a lot of fields such as control
technique, various physical waves, neural network models,
biological systems, and so on [14, 15]. Many scholars argue
that that fractional-order differential model can more effi-
caciously characterize the actual situation in object world

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 8685444, 17 pages
https://doi.org/10.1155/2021/8685444

mailto:xcj403@126.com
https://orcid.org/0000-0001-5844-2985
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8685444


than the traditional integer-order differential model since it
has preferable memory trait and hereditary property [16].
Recently, a lot of scholars have dedicated themselves to the
study on dynamical behavior for fractional-order differential
models. In particular, the research on fractional-order
neural networks concerning delays has aroused widespread
interest of many researchers and a lot of results on frac-
tional-order neural networks concerning delays have been
published (see [17–19]).

Delay-induced bifurcation is an important topic in
neural network area. Over the past few decades, a number of
works on delay-induced bifurcation of integer-order neural
networks have been reported and the basic bifurcation
theory is sound. It is a pity that the study onHopf bifurcation
for fractional-order neural networks is relatively rare. In
recent years, some researchers pay much attention to Hopf
bifurcation of fractional-order delayed neural networks and
some good results have been achieved. For instance, Xu et al.
[20] made a detailed analysis on the stability and the onset of
Hopf bifurcation for fractional-order BAM neural networks
involving time delays. Djilali et al. [21] discussed the

Turing–Hopf bifurcation for a fractional-order diffusive
mussel-algae model. Hu et al. [22] investigated the Hopf
bifurcation and chaos for a fractional-order memristor-
based chaotic circuit system involving delays. Xu et al. [23]
dealt with Hopf bifurcation of fractional-order BAM neural
network models involving multiple delays. For more studies
on this aspect, one can see [24, 25].

It is worth noticing that in many cases, the study on
bifurcation of fractional-order delayed neural networks is
only concerned with discrete delay. Considering that in
neural network systems, there are numerous parallel paths
involving many diverse axon sizes and lengths [26], it is very
important for us to introduce continuous distributed delays
into neural networks to depict the signal transmission of
neurons. In order to grasp the impact of the distributed delay
on Hopf bifurcation for neural networks concerning time
delay, plenty of authors have dedicated themselves to all
kinds of neural networks involving distributed delays (see
[27, 28]). In 2016, Karaoğlu et al. [29] analyzed the following
neural networks concerning mixed delays:

dv1(t)

dt
� −v1(t) + c11h11 

t

−∞
H(t − s)v1(s)ds  + c12h12 v2 t − η2( ( ,

dv2(t)

dt
� −v2(t) + c21h21 v1 t − η1( (  + c22h22 

t

−∞
H(t − s)v2(s)ds ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where vl(t), (l � 1, 2), stands for the state of the lth
neuron at time t, cij, (i, j � 1, 2), denotes the connection
weight and is real constant, ηl > 0, (l � 1, 2), denotes the
delay, and H(.) denotes nonnegative bounded delay kernel
defined on [0,∞), which reflects the impact of the past states
on the present dynamics [29]. Usually, the kernel function
takes the following two forms:

(1) 
t

−∞H(μ)dμ � 1, H(μ) � βe− β(t− μ), β> 0.
(2) 

t

−∞H(t − μ)dμ � 1, H(μ) � βe− βμ, β> 0.

In [29], Karaoğlu et al. took kernel function as case (2).
By means of stability criterion and Hopf bifurcation theory

of delayed differential equation, Karaoğlu et al. obtained a
sufficient condition to guarantee the stability and the onset
of Hopf bifurcation of system (1). In addition, with the aid of
center manifold theorem and normal form theory, the
concrete formula to determine bifurcation nature is given.

Motivated by the discussion above, our concern is the
stability and Hopf bifurcation for fractional-order neural
networks involving discrete delays and distributed delays.
On the basis of the work of Karaoğlu et al. [29], in this work,
we modify system (1) as the following fractional-order
version:

dv
ρ
1(t)

dt
ρ � −v1(t) + c11h11 

t

−∞
H(t − s)v1(s)ds  + c12h12 v2 t − η2( ( ,

dv
ρ
2(t)

dt
ρ � −v2(t) + c21h21 v1 t − η1( (  + c22h22 

t

−∞
H(t − s)v2(s)ds ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where 0< ρ< 1 is a constant, vl(t), (l � 1, 2), stands for
the state of the lth neuron at time t, cij, (i, j � 1, 2),
denotes the connection weight and is real constant,
ηl > 0, (l � 1, 2), denotes the delay, and H(.) denotes

nonnegative bounded delay kernel defined on [0,∞),
which reflects the impact of the past states on the present
dynamics [29], and the kernel function H(.) takes
form (2).
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/e novelty of this paper lies in constructing novel
fractional-order neural networks including fractional-order
and integer-order equations by applying an appropriate
variable substitution. Up to now, there are very few pub-
lications on this topic.

In order to establish the prime results of this work, the
following assumptions are needed:

(A1) hkl ∈ C, hkl(0) � 0, (k, l � 1, 2).
(A2) η1 + η2 � η.

/is paper is organized as follows. Section 2 gives some
essential theories on fractional-order differential equation.
Section 3 gives the bifurcation results for system (2) with
kernel function (2). Section 4 carries out computer simu-
lation to sustain the reasonableness of the derived main
results. /is research ends in Section 5.

2. Basic Theory on Fractional-Order
Differential Equation

In this segment, we will make some preparations on some
necessary theories on fractional-order differential equation.

Definition 1 (see [30]). Define Caputo-type fractional-order
derivative as follows:

D
ρ
w(ζ) �

1
Γ(κ − ρ)


ζ

ζ0

w
(κ)

(v)

(ζ − v)
ρ−κ+1dv, (3)

where w(ζ) ∈ ([ζ0,∞), R), Γ(v) � 
∞
0 ζv− 1

e− ζdζ , ζ ≥ ζ0,
κ ∈ Z+, κ − 1≤ ρ< κ.

Lemma 1 (see [31, 32]). Consider the following system:

dρu(t)

dt
ρ � g(t, u(t)), u(0) � u0, (4)

where ρ ∈ (0, 1] and g(t, u(t)): R+ × Rn⟶ Rn. Denote u0
as the equilibrium point of (4). 5en, u0 is locally asymp-
totically stable if every eigenvalue μ of (zg(t, u)/zu)|u�u0
satisfies |arg(μ)|> ρπ/2.

Lemma 2 (see [33]). Consider the following system:

dρ1B1(t)

dt
ρ1 � q11B1 t − η11(  + q12B2 t − η12( +, · · · , +q1kBk t − η1k( ,

dρ2B2(t)

dt
ρ2 � q21B1 t − η21(  + q22B2 t − η22( +, · · · , +q2kBk t − η2k( ,

⋮

dρkBk(t)

dt
ρk

� qk1B1 t − ηk1(  + qk2B2 t − ηk2( +, · · · , +qkkBk t − ηkk( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where ρh ∈ (0, 1), (h � 1, 2, . . . , k). Set

Δ(s) �

s
ρ1 − q11e

− sη11 −q12e
− sη12 · · · −q1ke

− sη1k

−q21e
− sη12 s

ρ2 − q22e
− sη22 · · · −q2ke

− sη2k

⋮ ⋮ ⋱ ⋮

−pk1e
− sηk1 −qk2e

− sηk2 · · · s
ρk − qkke

− sηkk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

5e zero solution of system (5) is said to be asymptotically
stable if every root of det(Δ(s)) � 0 owns negative real parts.

Give the system:

dρ1B1(t)

dt
ρ1 � q11B1(t) + q12B2(t)+, · · · , +q1kBk(t),

dρ2B2(t)

dt
ρ2 � q21B1(t) + q22B2(t)+, · · · , +q2kBk(t),

⋮

dρkBk(t)

dt
ρk

� qk1B1(t) + qk2B2(t)+, · · · , +qkkBk(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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where ϱh ∈ (0, 1], (h � 1, 2, . . . , k). 5e characteristic
equation of system (7) takes the following form:

det

s
ρ1 − q11 −q12 · · · −q1k

−q21 s
ρ2 − q22 · · · −q2k

⋮ ⋮ ⋱ ⋮

−qk1 −qk2 · · · s
ρk − qkk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (8)

Suppose that ψj � αj/βj, αj, βj ∈ Z+, (αj, βj) � 1 and β
is the lowest common multiple of βj of ψj, j � 1, 2, . . . , k.

Lemma 3 (see [33]). We say that the zero solution of system
(7) is locally asymptotically stable if every root λs of the
following equation:

det

λβψ1 − q11 −q12e
− sη12 · · · −q1k

−q21 λβψ2 − q22 · · · −q2k

⋮ ⋮ ⋱ ⋮

−qk1 −qk2 · · · λβψk − qkk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (9)

obeys |arg(λ)|> (π/2β).

3. Bifurcation Study for Neural Networks (2)

In this segment, we will discuss the stability behavior and the
emergence of Hopf bifurcation for neural networks (2). Let

v3(t) � 
t

−∞
H(t − s)v1(s)ds � 

t

−∞
βe

β(t− s)
v1(s)ds,

v4(t) � 
t

−∞
H(t − s)v2(s)ds � 

t

−∞
βe

β(t− s)
v2(s)ds,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

and then

dv3(t)

dt
� 

t

−∞
βe

β(t− s)
v1(s)ds 

′
� −βv3(t) + βv1(t),

dv4(t)

dt
� 

t

−∞
βe

β(t− s)
v2(s)ds 

′
� −βv4(t) + βv2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

/us, system (2) becomes the following equivalent form:

dv
ρ
1(t)

dt
ρ � −v1(t) + c11h11 v3(t)(  + c12h12 v2 t − η2( ( ,

dv
ρ
2(t)

dt
ρ � −v2(t) + c21h21 v1 t − η1( (  + c22h22 v4(t)( ,

dv3(t)

dt
� −βv3(t) + βv1(t),

dv4(t)

dt
� −βv4(t) + βv2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

By virtue of (A1), one easily knows that system (12) has a
unique zero equilibrium point./e linear system of equation
(12) near the zero equilibrium point takes the following
expression:

dv
ρ
1(t)

dt
ρ � −v1(t) + ϱ11v3(t) + ϱ12v2 t − η2( ,

dv
ρ
2(t)

dt
ρ � −v2(t) + ϱ21v1 t − η1(  + ϱ22v4(t),

dv3(t)

dt
� −βv3(t) + βv1(t),

dv4(t)

dt
� −βv4(t) + βv2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where ϱkl � cklhkl
′(0), (k, l � 1, 2). /e characteristic

equation for (13) is given by

det

s
ρ

+ 1 −ϱ12e
− sη2 −ϱ11 0

−ϱ21e
− sη1 s

ρ
+ 1 0 −ϱ22

−β 0 s + β 0

0 −β 0 s + β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (14)

Let ρ � (ζ/ξ), where ζ, ξ ∈ Z+ and (ζ, ξ) � 1. Denote
λ � s(1/ξ). If η � 0, which implies that η1 � η2 � 0. /en,
equation (14) takes the following form:

det

s
ρ

+ 1 −ϱ12 −ϱ11 0

−ϱ21 s
ρ

+ 1 0 −ϱ22
−β 0 s + β 0

0 −β 0 s + β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (15)
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Lemma 4. For system (12), if η � 0 and each root λ of
equation (15) satisfies |arg(λ)|> (π/2ξ), then the zero equi-
librium point of system (12) is locally asymptotically stable in
Lyapunov sense.

Proof. It is easy to see that if η � 0, then the characteristic
equation (14) can be changed into equation (15). Applying
Lemma 3, we can conclude that Lemma 4 is true.

By equation (14), we obtain

s
2ρ+2

+ ϵ1s
2ρ+1

+ ϵ2s
2ρ

+ 2s
ρ+2

+ ϵ3s
ρ+1

+ ϵ4s
ρ

+ s
2

+ ϵ5s + ϵ6
+ ϵ7s

2
+ ϵ8s + ϵ9 e

− 2sη
� 0,

(16)

where

ϵ1 � 2β,

ϵ2 � β,

ϵ3 � β ϱ11 − ϱ22 + 4( ,

ϵ4 � 2β + β2ϱ11 − β2ϱ22,

ϵ5 � β ϱ11 − ϱ22 + 2( ,

ϵ6 � β + β2 ϱ11 − ϱ22( ,

ϵ7 � −ϱ12ϱ21,

ϵ8 � −2βϱ12ϱ21,

ϵ9 � −β2ϱ12ϱ21.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Suppose that s � iσ � σ(cos(π/2) + i sin(π/2)) is the
root of equation (16); then, we have

σ2ρ+2 cos
(2ρ + 2)π

2
+ i sin

(2ρ + 2)π
2

  + ϵ1σ
2ρ+1 cos

(2ρ + 1)π
2

+ i sin
(2ρ + 1)π

2
 

+ ϵ2σ
2ρ

(cos ρπ + i sin ρπ) + 2σρ+2 cos
(ρ + 2)π

2
+ i sin

(ρ + 2)π
2

 

+ ϵ3σ
ρ+1 cos

(ρ + 1)π
2

+ i sin
(ρ + 1)π

2
  + ϵ4σ

ρ cos
ρπ
2

+ i sin
ρπ
2

  − σ2 + iϵ5σ + ϵ6

+ −ϵ7σ
2

+ iϵ8σ + ϵ9 (cos 2 ση − i sin 2ση) � 0.

(18)

By virtue of equation (18), one gets

Q1 cos 2ση + Q2 sin 2ση � Q3,

Q2 cos 2ση − Q1 sin 2ση � Q4,
 (19)

where

Q1 � ϵ9 − ϵ7σ
2
,

Q2 � ϵ8σ,

Q3 � −σ2ρ+2 cos
(2ρ + 2)π

2
− ϵ1σ

2ρ+1 cos
(2ρ + 1)π

2
− ϵ2σ

2ρ cos ρπ − 2σρ+2 cos
(ρ + 2)π

2
− ϵ3σ

ρ+1 cos
(ρ + 1)π

2
− ϵ4σ

ρ cos
ρπ
2

+ σ2 − ϵ6,

Q4 � −σ2ρ+2 sin
(2ρ + 2)π

2
− ϵ1σ

2ρ+1 sin
(2ρ + 1)π

2
− ϵ2σ

2ρ sin ρπ − 2σρ+2 sin
(ρ + 2)π

2
− ϵ3σ

ρ+1 sin
(ρ + 1)π

2
− ϵ4σ

ρ sin
ρπ
2

− ϵ5σ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

By (19), we have

cos 2ση �
Q1Q3 + Q2Q4

Q
2
1 + Q

2
2

, (21)

and

Q
2
1 + Q

2
2 � Q

2
3 + Q

2
4. (22)

In equation (20), denote
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α1 � −cos
(2ρ + 2)π

2
,

α2 � −ϵ1 cos
(2ρ + 1)π

2
,

α3 � −ϵ2 cos ρπ,

α4 � −2 cos
(ρ + 2)π

2
,

α5 � −ϵ3 cos
(ρ + 1)π

2
,

α6 � −ϵ4 cos
ρπ
2

,

α7 � −sin
(2ρ + 2)π

2
,

α8 � −ϵ1 sin
(2ρ + 1)π

2
,

α9 � −ϵ2 sin ρπ,

α10 � −2 sin
(ρ + 2)π

2
,

α11 � −ϵ3 sin
(ρ + 1)π

2
,

α12 � −ϵ4 sin
ρπ
2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

and then (20) becomes

Q1 � ϵ9 − ϵ7σ
2
,

Q2 � ϵ8σ,

Q3 � α1σ
2ρ+2

+ α2σ
2ρ+1

+ α3σ
2ρ

+ α4σ
ρ+2

+ α5σ
ρ+1

+ α6σ
ρ

+ σ2 − ϵ6,

Q4 � α7σ
2ρ+2

+ α8σ
2ρ+1

+ α9σ
2ρ

+ α10σ
ρ+2

+ α11σ
ρ+1

+ α12σ
ρ

− ϵ5σ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

According to (22) and (24), we get

ς1σ
4ρ+4

+ ς2σ
4ρ+3

+ ς3σ
4ρ+2

+ ς4σ
4ρ+1

+ ς5σ
4ρ

+ ς6σ
3ρ+4

+ ς7σ
3ρ+3

+ ς8σ
3ρ+2

+ ς9σ
3ρ+1

+ ς10σ
3ρ

+ ς11σ
2ρ+4

+ ς12σ
2ρ+3

+ ς13σ
2ρ+2

+ ς14σ
2ρ+1

+ ς15σ
2ρ

+ ς16σ
ρ+4

+ ς17σ
ρ+3

+ ς18σ
ρ+2

+ ς19σ
ρ+1

+ ς20σ
ρ

+ ς21σ
4

+ ς22σ
2

+ ς23 � 0,
(25)

where
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ς1 � α21 + α27,
ς2 � 2 α1α2 + α7α8( ,

ς3 � α22 + α28 + 2 α1α3 + α7α9( ,

ς4 � 2 α2α3 + α8α9( ,

ς5 � α23 + α29,
ς6 � 2 α1α4 + α7α10( ,

ς7 � 2 α1α5 + α2α4 + α7α11 + α8α10( ,

ς8 � 2 α1α6 + α2α5 + α3α4 + α7α12 + α8α11 + α9α10( ,

ς9 � 2 α2α6 + α3α5 + α8α12 + α9α11( ,

ς10 � 2 α3α6 + α9α12( ,

ς11 � α24 + α210 + 2α1,
ς12 � 2 α2 + α4α5 + α10α11(  − α7ϵ5,

ς13 � α25 + α211 + 2 α3 − α1α6 − α8ϵ5 + α10α12 + α4α6( ,

ς14 � 2 α5α6 + α2ϵ6 + α11α12 − α9ϵ5( ,

ς15 � α26 − 2α3ϵ6 + α12,
ς16 � 2α4,
ς17 � 2 α5 − α10ϵ5( ,

ς18 � 2 α6 − α4ϵ6 − α11ϵ5( ,

ς19 � −2 α5ϵ6 + α12ϵ5( ,

ς20 � −2α6ϵ6,
ς21 � 1 − ϵ27,

ς22 � −2ϵ7 + ϵ25 − ϵ28 + 2ϵ7ϵ9,

ς23 � ϵ26 − ϵ29.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Denote

S(σ) � ς1σ
4ρ+4

+ ς2σ
4ρ+3

+ ς3σ
4ρ+2

+ ς4σ
4ρ+1

+ ς5σ
4ρ

+ ς6σ
3ρ+4

+ ς7σ
3ρ+3

+ ς8σ
3ρ+2

+ ς9σ
3ρ+1

+ ς10σ
3ρ

+ ς11σ
2ρ+4

+ ς12σ
2ρ+3

+ ς13σ
2ρ+2

+ ς14σ
2ρ+1

+ ς15σ
2ρ

+ ς16σ
ρ+4

+ ς17σ
ρ+3

+ ς18σ
ρ+2

+ ς19σ
ρ+1

+ ς20σ
ρ

+ ς21σ
4

+ ς22σ
2

+ ς23.
(27)

Now the following assumption is given.

(A3) ς23 < 0, where ς23 is defined by (26). □

Lemma 5. If (A3) holds, then equation (16) possesses at least
a pair of purely imaginary roots.

Proof. Clearly, S(0) � ς23 < 0 and lim σ⟶∞S(σ) � +∞;
then, equation (25) possesses at least one positive root. /at

is to say, equation (16) possesses at least a couple of purely
imaginary roots.

We cannot easily derive the solution of equation (25)
since the powers of equation (25) are fractional number.
/us, we will change the powers of equation (25) to integer
powers. Let y � σ(1/ξ); then, σ � yξ . In view of equation (25),
one has

ς1y
4ζ+4ξ

+ ς2y
4ζ+3ξ

+ ς3y
4ζ+2ξ

+ ς4y
4ζ+ξ

+ ς5y
4ζ

+ ς6y
3ζ+4ξ

+ ς7y
3ζ+3ξ

+ ς8y
3ζ+2ξ

+ ς9y
3ζ+ξ

+ ς10y
3ζ

+ ς11y
2ζ+4ξ

+ ς12y
2ζ+3ξ

+ ς13y
2ζ+2ξ

+ ς14y
2ζ+ξ

+ ς15y
2ζ

+ ς16y
ζ+4ξ

+ ς17y
ζ+3ξ

+ ς18y
ζ+2ξ

+ ς19y
ζ+ξ

+ ς20y
ζ

+ ς21y
4ξ

+ ς22y
2ξ

+ ς23 � 0.

(28)
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With the aid of computer, we can derive the roots of
equation (28). Assume that equation (28) possesses the positive
root (say yj); then, equation (25) possesses the positive root
σj � y

ξ
j. Assume that equation (28) owns k positive roots

yj, j � 1, 2, . . . , k. By (21), one gets

ηn
j �

1
2σj

arccos
Q1Q3 + Q2Q4

Q
2
1 + Q

2
2

+ 2nπ ,

j � 1, 2, . . . , k; n � 0, 1, 2, · · · .

(29)

Let

η0 � η(0)
j0 min

j�1,2,...,k
η0j , σ0 � σ|η�η0. (30)

Next the following assumption is given:

(A4)V11V21 + V12V22 > 0, where

V11 � (2ρ + 2)σ2ρ+1
0 cos

(2ρ + 1)π
2

+ ϵ1(2ρ + 1)σ2ρ0 cos ρπ + 2ρϵ2σ
2ρ−1
0 cos

(2ρ − 1)π
2

+ 2(ρ + 2)σρ+1
0 cos

(ρ + 1)π
2

+ ϵ3(ρ + 1)σρ0 cos
ρπ
2

+ ϵ4ρσ
ρ−1
0 cos

(ρ − 1)π
2

+ ϵ5 + ϵ8 cos 2σ0η0 + 2ϵ7 sin 2σ0η0,

V12 � (2ρ + 2)σ2ρ+1
0 sin

(2ρ + 1)π
2

+ ϵ1(2ρ + 1)σ2ρ0 sin ρπ + 2ρϵ2σ
2ρ−1
0 sin

(2ρ − 1)π
2

+ 2(ρ + 2)σρ+1
0 sin

(ρ + 1)π
2

+ ϵ3(ρ + 1)σρ0 sin
ρπ
2

+ ϵ4ρσ
ρ−1
0 sin

(ρ − 1)π
2

+ 2σ0 − ϵ8 sin 2σ0η0 + 2ϵ7 cos 2σ0η0,

V21 � 2σ0 ϵ9 − ϵ7σ
2
0 cos 2σ0η0 + 2σ20ϵ8 sin 2σ0η0,

V22 � 2σ20ϵ8 cos 2σ0η0 − 2σ0 ϵ9 − ϵ7σ
2
0 sin 2σ0η0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

□
Lemma 6. Suppose that s(η) � χ1(η) + iχ2(η) is the root of
equation (16) near η � η0 that satisfies χ1(η0) � 0,

χ2(η0) � σ0; then, one obtains Re[ds/dη]η�η0 ,σ�σ0 > 0.

Proof. By means of equation (16), one derives

(2ρ + 2)s
2ρ+1

+ ϵ1(2ρ + 1)s
2ρ

+ 2ρϵ2s
2ρ− 1

+ 2(ρ + 2)s
ρ+1

+ ϵ3(ρ + 1)s
ρ

+ ϵ4ρs
ρ− 1

+ 2s + ϵ5 
ds

dη
+ 2ϵ7s + ϵ8( e

− 2sηds

dη

− 2e
− 2sη ds

dη
η + s  ϵ7s

2
+ ϵ8s + ϵ9  � 0,

(32)

which implies

ds

dη
 

− 1

�
V1(s)

V2(s)
−
η
s
, (33)

where

V1(s) � (2ρ + 2)s
2ρ+1

+ ϵ1(2ρ + 1)s
2ρ

+ 2ρϵ2s
2ρ− 1

+ 2(ρ + 2)s
ρ+1

+ ϵ3(ρ + 1)s
ρ

+ ϵ4ρs
ρ− 1

+ 2s + ϵ5 + 2ϵ7s + ϵ8( e
− 2sη

,

V2(s) � 2se
− 2sη ϵ7s

2
+ ϵ8s + ϵ9 .

⎧⎪⎨

⎪⎩

(34)
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Figure 1: Continued.
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Figure 1: Continued.
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/erefore,

Re
ds

dη
 

−1

η�η0, σ�σ0

� Re
V1(s)

V2(s)
 

η�η0 , σ�σ0

�
V11V21 + V12V22

V
2
21 + V

2
22

.

(35)

By virtue of (A4), we get

Re
ds

dη
 

−1

η�η0 , σ�σ0

> 0. (36)

/e proof finishes.
Based on the exploration above, the following results can

be easily established. □

Theorem 1. If assumptions (A1)–(A4) are satisfied and all
the roots λ of equation (15) satisfy |arg(λ)|> (π/2ξ), then the
zero equilibrium point of system (2) is locally asymptotically
stable when η lies in [0, η0) and a Hopf bifurcation arises near
the zero equilibrium point when η � η0.

Remark 1. Karaoğlu et al. [29] studied the stability behavior
and Hopf bifurcation for integer-order neural network
models concerning distributed delays and discrete delays. In
this paper, we mainly deal with the stability behavior and
Hopf bifurcation for fractional-order neural networkmodels
concerning distributed delays and discrete delays. /e re-
search method of Karaoğlu et al. [29] cannot be directly
utilized to handle the fractional-order one. Based on this
idea, we think that the study complements the research of
Karaoğlu et al. [29].

Remark 2. Although many authors have studied the Hopf
bifurcation issue of delayed fractional-order neural net-
works, all the equations of delayed fractional-order neural
networks are fractional-order cases. In our study, neural
network system (2) involves integer-order operator and
fractional-order operator. So, there are many differences in
research method. Furthermore, so far, there are only very
few publications concerning this topic. Based on this idea,

we believe that our research enriches the bifurcation theory
of fractional-order differential equation.

4. Simulation Figures

Consider the system as follows:

dv
ρ
1(t)

dt
ρ � −v1(t) − 0.5tanh v3(t)(  − 1.8tanh v2 t − η2( ( ,

dv
ρ
2(t)

dt
ρ � −v2(t) + 1.5tanh v1 t − η1( (  + 1.7tanh v4(t)( ,

dv3(t)

dt
� −0.5v3(t) + 0.5v1(t),

dv4(t)

dt
� −0.5v4(t) + 0.5v2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

Obviously system (37) possesses a unique zero equi-
librium point. Choose ρ � 0.78 � 39/50 which implies that
ζ � 39, ξ � 50. By virtue of Matlab software, we derive σ0 �

2.113, η0 � 0.41, ϵ23 � −0.4317, V11 � 0.3368, V12 �

0.4251, V21 � −0.3128, V22 � 0.5035./en,V11V21 + V12
V22 � 0.1087> 0. In addition, all the roots (λ) of equation
(15) satisfy |arg(λ)|> (π/2ξ). /us, all conditions in /eo-
rem 1 are fulfilled. So, the zero equilibrium point of system
(37) is locally asymptotically stable state when η lies in
[0, 0.41). To verify this fact, we choose η � 0.38< η0 � 0.41.
/e software simulation figures are given in Figure 1. It
follows from Figure 1 that four neuron states v1, v2, v3, and
v4 are to be closed to 0. Figure 1 includes 14 subfigures
(Figures 1(a)–1(n)). Different subfigures show the relation of
corresponding variables. If η crosses η0 � 0.41, then the
delayed-induced Hopf bifurcation arises near (0,0,0,0). To
verify this fact, we choose η � 0.5> η0 � 0.41. /e software
simulation figures are given in Figure 2. Figure 2 includes 14
subfigures (Figures 2(a)–2(n)). Different subfigures show the
relation of corresponding variables. It follows from Figure 2
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Figure 1: /e stable behavior of system (37) when η � 0.38< η0 � 0.41.
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Figure 2: Hopf bifurcation phenomenon of system (37) when η � 0.5> η0 � 0.41.
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that four states of four neurons will display the periodic
oscillatory behavior. Furthermore, the bifurcation graphs are
given in Figures 3–6, which show that the bifurcation value is
0.41 intuitively.

5. Conclusions

As is known to us, the stability behavior and Hopf bifur-
cation nature of many different neural networks are im-
portant topics in delayed dynamical systems. In this present
study, the stability behavior and the emergence of Hopf
bifurcation for fractional-order neural networks involving
different types of delays have been investigated in detail.
Making use of a suitable variable substitution, novel
equivalent fractional-order forms of the involved delayed
neural network models are built. Taking advantage of sta-
bility theory and bifurcation knowledge of fractional-order
differential equation, a novel delay-independent bifurcation
criterion for the fractional-order neural networks involving

different types of delays is presented. /e investigation in-
dicates that time delay plays a significant role in stabilizing
and controlling Hopf bifurcation for the involved fractional-
order delayed neural networks. /e research method can
help us deal with the Hopf bifurcation issue of many other
neural networks involving distributed delays in the near
future. In this paper, we only consider the effect of the sum of
two delays η1 and η2 on bifurcation of the involved system.
In the coming work, we will deal with the impact of two
different delays η1 and η2 on bifurcation of the involved
system.
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