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In this paper, a family of statistical models, namely, a new exponential-X family is proposed. A subcase of the introduced family,
called the new exponential-Weibull (NE-Weibull) model, is studied. (e NE-Weibull model is very competent and possesses
heavy-tailed properties. (e maximum likelihood estimators of its parameters are derived. (e consistency and efficiency of these
estimators are assessed in a brief simulation study. Finally, the effectiveness of the NE-Weibull distribution is illustrated by
modeling real insurance claims data. (e practical analysis shows that the NE-Weibull distribution outclassed other distributions
and it can be a better choice for modeling data in the finance sector.

1. Introduction

(e extreme value phenomena such as financial returns and
other related events can be modeled effectively by extreme
value methods. (e heavy-tailed (HT) distributions have
been proven to be substantial in modeling HT and extreme
value data. Researchers have shown a deep concern in the
financial sector to study new HT distributions. Among the
applicability of the statistical distributions in the applied
area, the HT distributions have received much attention for
modeling financial phenomena. Most of the data sets in the
financial sector possesses HT behavior with long right tail
(see Lane [1]; Cooray and Ananda [2]; Wang et al. [3]; Ahn
et al. [4]; Jelenković and Tan [5]; Forbes andWraith [6]; Guo
[7]; Punzo et al. [8]; Bhati and Ravi [9]; Punzo [10]; Ke et al.
[11]; Dos Reis et al. [12]; and Niu et al. [13]).

Recently, different copulas and new approaches of in-
troducing HT distribution have been studied due to the
importance of HT distributions in the financial sector (for
example, Bladt et al. [14]; Tikhomirov [15]; Lugosi and
Mendelson [16]; and Yousri et al. [17]). For more infor-
mation about the usefulness of statistical distributions, one

can refer to studies by Ramos et al. [18, 19]; He et al. [20];
Alfaer et al. [21]; Afify et al. [22]; and Al Mutairi et al. [23].

A statistical distribution with SF (survival function), say
M(x;Δ) � 1 − M(x;Δ), is said to be a HT model, if its SF
verifies

lim
x⟶∞

exp(ηx)[1 − M(x;Δ)] �∞, (1)

for all η> 0. For more details, see the study by Resnick [24].
An interesting characteristic of the HT distributions is

the regularly varying behavior. A statistical distribution is
said to possess the regularly varying behavior, if it satisfies

lim
x⟶∞

1 − M(qx;Δ)

1 − M(x;Δ)
� q

b
, (2)

where b ∈ 0,∞{ }, and it is also known as an index of regular
variation.

(e statistical models possessing such property are very
prominent models for modeling HT phenomena in the fi-
nancial sector [25]. Furthermore, actuaries are very inter-
ested in looking for new flexible HTmodels (see Nadarajah
and Bakar [26]; and Ahmad et al. [27]).
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Alzaatreh et al. [28] proposed a prominent approach
called the T-X family method. Let u(t) represent the PDF
(probability density function) of T, where T is a RV (random
variable) belonging to [δ1, δ2] and −∞≤ δ1 < δ2 <∞. Sup-
pose that O[H(x;Δ)] is a function of H(x;Δ) of a RV-X and
it has the following conditions:

(i) O[H(x;Δ)] ∈ [δ1, δ2]
(ii) O[H(x;Δ)] is a differentiable function as well as

monotonically increasing
(iii) O[H(x;Δ)]⟶ δ1 for x⟶ −∞ and

O[H(x;Δ)]⟶ δ2 for x⟶∞

(e CDF (cumulative distribution function) of the T-X
distributions is

M(x;Δ) � 
O[H(x;Δ)]

δ1
u(t)dt, x ∈ R, (3)

where O[H(x;Δ)] fulfills the aforementioned conditions.
(e corresponding PDF of equation (3), say m(x;Δ), re-
duces to

m(x;Δ) �
z

zx
O[H(x;Δ)] u O[H(x;Δ)]{ }. (4)

More details about the T-X approach can be found in the
work of Ahmad et al. [29]. By implementing the T-X
method, the survival distribution family [30] can be obtained
via the CDF:

M(x;Δ) � 1 − 
O[H(x;Δ)]

δ1
u(t)dt, x ∈ R, (5)

where H(x;Δ) � 1 − H(x;Δ), representing the SF of X.
In this study, a new exponential-X (NE-X) family is

proposed based on equation (3). Suppose T ∼ exp(1); then,
its respective CDF is

U(t) � 1 − exp(−t), t≥ 0. (6)

Linking this to equation (6), the PDF is

u(t) � exp(−t). (7)

By using u(t) and
O[H(x; β,Δ)] � −log((1 − Hβ(x;Δ))/eHβ(x;Δ)) in equation
(3), the CDF of the NE-X family is as follows:

M(x; β,Δ) � 1 −
1 − H

β
(x;Δ)

e
Hβ(x;Δ)

 , β> 0, x,Δ ∈ R, (8)

where H(x;Δ) is a baseline CDF with parametric space
Δ ∈ R. Next, in Propositions 1 and 2, we are going to prove
that the expression provided in equation (8) is a CDF.

Proposition 1. For the M(x; β,Δ) defined in equation (8),
limx⟶−∞M(x; β,Δ) � 0 and limx⟶∞M(x; β,Δ) � 1.

Proof.

lim
x⟶∞

M(x; β,Δ) � lim
x⟶−∞

1 −
1 − H

β
(x;Δ)

e
Hβ(x;Δ)

  

� 1 −
1 − H

β
(−∞;Δ)

e
Hβ(−∞;Δ)

 

� 1 −
1 − 0

e
0  � 0,

lim
x⟶∞

M(x; β,Δ) � lim
x⟶∞

1 −
1 − H

β
(x;Δ)

e
Hβ(x;Δ)

  

� 1 −
1 − H

β
(∞;Δ)

e
Hβ(∞;Δ)

 

� 1 −
1 − 1

e
  � 1.

(9)

□

Proposition 2. 9e CDF M(x; β,Δ) is right continuous and
differentiable.

Proof.

d
dx

M(x; β,Δ) � m(x; β,Δ). (10)

From the results proved in Propositions 1 and 2, we
arrive at the conclusion that the function M(x; β,Δ) defined
in equation (8) is differentiable, right continuous, and a
compact CDF. Moreover, taking into account the differ-
entiability property of M(x; β,Δ) for all x ∈ R, we have the
following theorem. □

Theorem 1. Let κ1(x) � eHβ(x;Δ) + Hβ(x;Δ) − 1 and
κ2(x) � eHβ(x;Δ). With the condition v2(x)≠ 0, if κ1(x) and
κ2(x) are differentiable, then the quotient (κ1(x)/κ2(x)) is
differentiable for all x ∈ R and

d
dx

κ1(x)

κ2(x)
  �

κ1′(x)κ2(x) − κ1(x)κ2′(x)

κ22(x)
. (11)

Proof. See “Proof of Quotient Rule.”
Taking into account the right continuity of M(x; β,Δ),

we have the following theorem. □

Theorem 2. If H(x;Δ) is a right continuous function, so is
M(x; β,Δ).

Proof. Assume that limx⟶a+ H(x;Δ) � H(a;Δ) for all
a ∈ sup(H(x;Δ)). Hence, we have

lim
x⟶a+

e
Hβ(x;Δ)

+ H
β
(x;Δ) − 1  � e

Hβ(a;Δ)
+ H

β
(a;Δ) − 1,

lim
x⟶a+

e
Hβ(x;Δ)

� e
Hβ(a;Δ)

.

(12)

Since sup(M(x; β,Δ)) � sup(H(x;Δ)),
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lim
x⟶a+

M(x; β,Δ) � M(a; β,Δ), (13)

for each a ∈ sup(M(x; β,Δ)). (erefore, M(x; β,Δ) is right
continuous.

As we mentioned earlier that the regularly varying tail
behavior (RVTB) is a very crucial property to characterize
the HT distributions, now we provide the mathematical
treatment of RVTB of the NE-X family. □

Theorem 3. If H(x;Δ) is a regularly varying distribution, so
is M(x; β,Δ).

Proof. Suppose limx⟶∞((1 −Hβ(bx; β,Δ)) /(1 − Hβ (x; β,

Δ))) � g(b) is finite for all b> 0. (en, using equation (8), we
have

lim
x⟶∞

M(bx; β,Δ)

M(x; β,Δ)
� lim

x⟶∞

1 − H
β
(bx;Δ)

1 − H
β
(x;Δ)

×
e

Hβ(x;Δ)

e
Hβ(bx;Δ)

� lim
x⟶∞

1 − H
β
(bx;Δ)

1 − H
β
(x;Δ)

×
e

Hβ(∞;Δ)

e
Hβ(b.∞;Δ)

.

(14)

Since limx⟶∞H(x;Δ) � 1, we have

lim
x⟶∞

M(bx; β,Δ)

M(x; β,Δ)
� lim

x⟶∞

1 − H
β
(bx;Δ)

1 − H
β
(x;Δ)

×
e

e

� lim
x⟶∞

1 − H
β
(bx;Δ)

1 − H
β
(x;Δ)

� g(b),

(15)

for b> 0; thus, M(x, β,Δ) is a regularly varying distribution.
Linking this to equation (8), the PDF represented by

m(x; β,Δ) is

m(x; β,Δ) �
βh(x;Δ)H

β− 1
(x;Δ)

e
Hβ(x;Δ)

2 − H
β
(x;Δ) , x ∈ R.

(16)

(e RV with PDF (16) is represented by
X ∼ NE-X(x; β,Δ).

(e SF, M(x; β,Δ), and HRF (hazard rate function),
w(x; β,Δ), of X are

M(x; β,Δ) �
1 − H

β
(x;Δ)

e
Hβ(x;Δ)

 , x, ∈ R,

w(x; β,Δ) �
βh(x;Δ)H

β− 1
(x;Δ)

1 − H
β
(x;Δ)

2 − H
β
(x;Δ) , x ∈ R,

(17)

respectively. In the next section, we discuss a subcase of the
NE-X family, called the new exponential-Weibull (NE-
Weibull) distribution. □

2. NE-Weibull Distribution

(is section deals with the NE-Weibull distribution as a
subcase of the NE-X family. Suppose that X ∼ Weibull(α, c)

with CDF, H(x;Δ) � 1 − exp(−cxα), and PDF,
h(x;Δ) � αcxα− 1 exp(−cxα), where Δ � (α, c). By inserting
the CDF of the Weibull model in equation (8), the CDF and
PDF of the NE-Weibull distribution take the forms

M(x; β,Δ) � 1 −
1 − 1 − exp −cx

α
(  

β

exp 1 − exp − cx
α

(  
β

 
, x≥ 0, α, c, β> 0,

m(x; β,Δ) �
αcβx

α− 1 exp −cx
α

(  1 − exp −cx
α

(  
β− 1

exp 1 − exp − cx
α

(  
β

 
2 − 1 − exp −cx

α
(  

β
 .

(18)

Some possible PDF behaviors for the NE-Weibull dis-
tribution are shown in Figure 1. From Figure 1, it is obvious
that as the values of α and β increase, the NE-Weibull model
becomes a HT distribution.

As mentioned above, different PDF shapes of the NE-
Weibull model for various values of β, c � 1, and α are
sketched in Figure 1. When α, β< 1, the NE-Weibull
distribution behaves similar to the exponential distribu-
tion exp(c). For β> 1, the NE-Weibull distribution cap-
tures the characteristics of Wei(α, c). (e NE-Weibull
model, however, has certain benefits over the Weibull
distribution. For instance, it has heavier tails than the
Weibull distribution and provides closer fit to data in the
finance sector.

Some possible HRF behaviors for the NE-Weibull dis-
tribution are shown in Figure 2. (e NE-Weibull

distribution provides increasing, unimodal, decreasing, and
bathtub HRF shapes.

3. Properties

Here, we provide a concise treatment of the mathematical
properties of NE-X distribution. (ese properties include
QF (quantile function), moments, SK (skewness), and KUR
(kurtosis). Furthermore, different plots for the SK and KUR
are also provided.

3.1. Quantile Function. Suppose X denotes the NE-X family
with CDF presented in equation (8); then, the QF of NE-X
distributions, Q(u), is

xu � Q(u) � M
− 1

(u) � H
− 1

(t), (19)
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where t is the solution of
H(x;Δ) + Hβ(x;Δ) + log(1 − u) − 1.

3.2.Moments. Now, we introduce the moments of the NE-X
distributions which can further be used to obtain other
characteristics.

(e rth moment of the NE-X family reduces to

μr
′ � 
∞

−∞
x

r
m(x; β,Δ)dx. (20)

By putting equation (16) in (20), we obtain

μr
′ � β

∞

−∞
x

rh(x;Δ)H
β− 1

(x;Δ)

exp H
β
(x;Δ) 

2 − H
β
(x;Δ) dx

� β
n

i�0
21− i

(−1)
i

n

i

⎛⎝ ⎞⎠ 
∞

−∞
x

rh(x;Δ)H
β+iβ− 1

(x;Δ)

exp H
β
(x;Δ) 

dx

� β
n

i�0


∞

j�0
21− i

(−1)
i+j

n

i

⎛⎝ ⎞⎠κr,i,j,β,

(21)

where κr,i,j,β � 
∞
−∞ xrh(x;Δ)Hβ+iβ+jβ− 1(x;Δ)dx. For

r � 1, 2, 3, 4, we obtain the first four moments of the NE-X
family.

Using the expressions of the moments, we obtain the
mathematical form of the SK and KUR measures. (e SK
and KUR of the NE-Weibull distribution can be calculated,
respectively, via the expressions

SK �
μ3
μ3/22

,

KUR �
μ4
μ22

.

(22)

(e effects of β, α, and c on the SK, KUR, variance, and
mean of the NE-Weibull distribution are displayed in
Figures 3–5.

4. Estimation

Within this section, we derive the maximum likelihood
estimators (MLEs) of the NE-Weibull parameters. Consider
x1, x2, . . . , xn as the values of a sample from the NE-Weibull
distribution with parameters β and Δ. (e log-likelihood
(LL) function ℓ(β,Δ) of the NE-Weibull distribution takes
the form

ℓ(β,Δ) � k log β + 
k

i�0
log h xi;Δ( 

+(β − 1) 
k

i�0
log H xi;Δ(  − 

k

i�0
H

β
xi;Δ( 

+ 
k

i�0
log 2 − H

β
xi;Δ(  .

(23)

(e partial derivatives of the LL function are

z

zβ
ℓ(β,Δ) �

n

β
+ 

k

i�0
log H xi;Δ(  − 

k

i�0
log H

β
xi;Δ(   H

β
xi;Δ( 

− 
k

i�0

log H
β

xi;Δ(   H
β

xi;Δ( 

2 − H
β

xi; ξ( 
,

z

zΔ
ℓ(β,Δ) � (β − 1) 

k

i�0

zH xi;Δ( /zΔ
H xi;Δ( 

− β
k

i�0

H
β− 1

xi;Δ( zH xi;Δ( 

zΔ

+ 

k

i�0

zh xi;Δ( /zΔ
h xi;Δ( 

− β

k

i�0

H
β− 1

xi;Δ( zH xi;Δ( /zΔ
2 − H

β−1
xi;Δ( 

.

(24)

Equating (z/zβ)ℓ(β,Δ) and (z/zΔ)ℓ(β,Δ) to zero and
simultaneously solving them yield the MLEs (β, Δ) of (β,Δ).

5. Simulation Study

Here, we implement the Monte Carlo simulation approach
to address the MLE behavior in estimating the NE-Weibull
parameters. (e NE-Weibull distribution can be simulated
by using equation (8). Let U follow the standard uniform
distribution; hence, the quantile function reduces to

H(x;Δ) +(H(x;Δ))
θ

+ log(1 − u) − 1. (25)

(e simulation is done for (i) α � 0.5, β � 1.2, c � 1, (ii)
α � 1.2, β � 0.8, c � 0.9, and (iii) α � 0.8, β � 0.5, c � 1.1.

(e simulation results are obtained by utilizing the R

software with the algorithms (root Solve) and “LBFGS − B”
with optim. (e results obtained are based on K � 500
replications for samples of size k, where k � 10, 20, . . . , 500.
Statistical tools such as biases and mean square errors
(MSEs) are obtained as assessing tools. (ese tools are
calculated as follows:
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bias(Λ) �
1
500



500

i�1
(Λ − Λ),

MSE(Λ) �
1
500



500

i�1
(Λ − Λ)

2
,

(26)

where Λ � (β,Δ).
(e summary measures (SMs) of the three simulated sets

of data are provided in Table 1, whereas the histograms, box
plots, kernel density estimator, and estimated CDF of the
NE-Weibull model are provided in Figures 6–8. (e sim-
ulation results are visually displayed in Figures 9–11.

6. Data Modeling in the Finance Sector

Here, we illustrate the importance of the NE-Weibull dis-
tribution in modeling insurance claims data from the fi-
nancial sector. We also calculated the risk measures such as
VaR (value at risk) and TVaR (tail value at risk) for this data.

6.1. Insurance Claims Data. (e insurance claims data
represents the initial claims of the unemployment insur-
ances per month from 1971 to 2018 [20]. (e data set can
also be retrieved from https://data.worlddatany-govns8z-
xewg.
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Figure 1: Visual display of m(x; β,Δ).
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(e summary statistics for the insurance claims data are
reported in Table 2. Corresponding to this data, the histo-
gram, box plot, and total time test (TTT) plots are provided
in Figure 12. Figure 12 shows that the insurance claims data
is unimodal, right-skewed, and HT.

(eNE-Weibull distribution is applied to fit the financial
data, and it is compared with theWeibull, W-Loss (Weibull-
Loss), NHT-Weibull (new heavy-tailed Weibull), Ku-Wei-
bull (KumaraswamyWeibull), and B-Weibull (betaWeibull)
distributions. (e CDFs of these models are as follows:

(i) Weibull model:

H(x) � 1 − exp −cx
α

 , x≥ 0. (27)

(ii) W-Loss model:

H(x) � 1 −
β exp −cx

α
 

β + cx
α , x≥ 0. (28)

(iii) NHT-Weibull model:

H(x) �
β 1 − exp −cx

α
 ( 

β − exp − cx
α

 ( 
2, x≥ 0. (29)

(iv) Ku-Weibull model:

H(x) � 1 − 1 − 1 − exp −cx
α

 ( 
a

 
b
, x≥ 0. (30)

(v) B-Weibull model:

H(x) � I 1−e−cxα( )(x; a, b), x≥ 0. (31)
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Figure 2: Different HRF plots of the NE-Weibull model.
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Figure 3: Plots of SK, KUR, variance, and mean of the NE-Weibull distribution for c � 2 and different values of α and β.
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6 Mathematical Problems in Engineering



To decide about the best fitting of the applied distri-
butions, certain criteria are taken into account.(ese criteria
are as follows:

(i) (e AIC is

2p − 2ℓ(Θ). (32)

(ii) (e BIC is

p log(k) − 2ℓ(Θ). (33)

(iii) (e HQIC is

2p log(log(k)) − 2ℓ(Θ). (34)

(iv) (e CAIC is

2pk

k − p − 1
− 2ℓ(Θ). (35)

Here, ℓ(Θ) denotes the LL function, Θ is a parametric
space, p represents the model parameters, and k is the
number of selected samples. In addition to the criteria
measures, three goodness-of-fit tests with its corresponding
p values are also considered. (ese tests are given by the
following:

(i) (e Anderson–Darling (AD) test statistic is

AD � −k −
1
n



k

j�1
(2j − 1) log H xj  + log 1 − H xk−j+1   ,

(36)
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Figure 5: Plots of SK, KUR, variance, and mean of the NE-Weibull distribution for α � 2 and different values of β and c.

Table 1: SMs of the simulated data sets.

Simulated data Min. 1st Qu. Median Mean 3rd Qu. Max.
Data set 1 0.0000 0.0390 0.1926 1.1191 0.9717 63.2960
Data set 2 0.0000 0.1388 0.3475 0.5469 0.7188 3.4976
Data set 3 0.0000 0.0070 0.0707 0.3364 0.3125 9.1907
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Figure 6: Kernel density estimator, box plot, histogram, and fitted CDF of the NE-Weibull distribution for simulated data set 1.
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where xj is the jth observation in k samples, cal-
culated after sorting the data in the ascending order.

(ii) (e Cramer–von Mises (CM) test statistic is

CM �
1
12k

+ 
k

j�1

2j − 1
2k

− H xj  
2
. (37)

(iii) (e Kolmogorov–Smirnov (KS) test statistic is

KS � supx Hn(x) − H(x) , (38)

where supx represents the supremum of the set of
distances and Hn(x) indicates the empirical CDF.
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Figure 7: Kernel density estimator, box plot, histogram, and fitted CDF of the NE-Weibull distribution for simulated data set 2.
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(e LL function is optimized, and the goodness-of-fit
measures are calculated using the algorithm method
“BFGS” via optim() R-function [31]. (e MLEs of the

fitted models with standard errors are listed in Table 3.
Tables 4 and 5 show the goodness-of-fit values for the
considered models.
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Table 2: SMs of the insurance claims data.

Min. 1st Qu. Median Mean 3rd Qu. Max.
49.26 82.71 100.02 109.18 129.74 308.35

x

x

Fr
eq

ue
nc

y

Box plot

TTT plot

r/n

G
(r

/n
)

150

100

50

0
50 100 150 200 250 300

50

100

150

200

250

300

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 12: Histogram, TTT, and box plots for the insurance claims data.

10 Mathematical Problems in Engineering



(e fitted PDF and CDF of the NE-Weibull model are
provided in Figure 13, showing that the right-skewed HTdata
can be adequately fitted by the NE-Weibull distribution. (e
Kaplan–Meier survival (KMS) and PP (probability-probability)
plots of the NE-Weibull distribution are sketched in Figure 14.

6.2. VaR and TVaR for Insurance Claims Data. Now, we
calculate the VaR and TVaR measures for the Weibull and

proposed NE-Weibull distributions based on the MLEs and
the data provided in Section 6.1. (e results of the VaR and
TVaR of the NE-Weibull and Weibull distributions are
presented in Table 6. We also display these results graphi-
cally in Figure 15.

A model having higher values for the TVaR and VaR is
considered a HT distribution. (e numerical results in
Table 6 and their graph in Figure 15 show that the NE-
Weibull is a HT model.

Table 3: Estimated parameters for the insurance claims data.

Distribution α c β a b

NE-Weibull 1.283 (0.012) 0.005 (0.001) 8.689 (0.610)
Weibull 1.486 (1.096) 0.001 (0.095)
W-Loss 1.564 (1.075) 0.041 (0.076) 12.765 (0.963)
NHT-Weibull 1.316 (0.964) 0.025 (0.049) 10.498 (0.875) 31.713 (3.791)
Ku-Weibull 0.984 (0.076) 0.052 (0.017) 64.933 (0.063) 0.657 (0.167)
B-Weibull 1.090 (0.058) 0.031 (0.000) 40.704 (10.392) 0.592 (0.139)

Table 4: Discrimination criteria of the competitive models for the insurance claims data.

Distribution AIC BIC CAIC HQIC
NE-Weibull 5519.460 5532.523 5519.502 5524.555
Weibull 6169.574 6178.290 6169.634 6172.975
W-Loss 5585.738 5596.708 5585.984 5590.767
NHT-Weibull 5546.007 5564.756 5546.083 5553.865
Ku-Weibull 5601.734 5619.152 5601.805 5608.527
B-Weibull 5602.555 5602.625 5619.972 5609.348

Table 5: Goodness-of-fit criteria of the competing distributions for insurance claims data.

Distribution CM AD KS p value
NE-Weibull 0.146 0.674 0.016 0.668
Weibull 0.974 2.094 0.896 0.129
W-Loss 0.196 0.895 0.027 0.538
NHT-Weibull 0.175 0.795 0.023 0.618
Ku-Weibull 0.200 1.037 0.037 0.383
B-Weibull 0.221 1.121 0.035 0.471
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Table 6: VaR and TVaR results for the NE-Weibull and Weibull distributions.

Distribution Parameters Level of significance VaR TVaR

NE-Weibull
α � 1.283
c � 0.005
β � 8.689

0.700 145.8537 153.9659
0.750 153.5376 179.2175
0.800 168.5360 198.7654
0.850 192.3638 218.7189
0.900 209.8965 231.9876
0.950 224.0768 249.0786
0.975 239.7853 268.0298
0.999 253.6358 287.0948

Weibull α � 1.486
c � 0.001

0.700 70.3462 89.7568
0.750 77.7643 101.8539
0.800 83.8743 115.7943
0.850 98.3245 135.8764
0.900 120.5643 156.9875
0.950 142.6750 179.9876
0.975 176.7656 201.9875
0.999 202.6752 230.9786
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Figure 15: Graphical presentation for the values of the VaR and TVaR.
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7. Final Comments

During the last couple of years, the study and modeling of
extreme value data has gained increased interest in nu-
merous areas, particularly in the hydrology and finance
sector. Recent studies have shown the importance and
potential of the HT distributions in various areas for ana-
lyzing real data sets, especially in the finance sector. In this
article, a new interesting HT extension of the Weibull dis-
tribution, called the NE-Weibull distribution, is proposed
using the NE-X approach. (e MLEs of the NE-Weibull
parameters β and Δ are obtained. To show the applicability
of the NE-Weibull model, a real-life insurance claims data
from the financial sector is considered. Based on certain
tests, it is showed that the NE-Weibull model offers an
adequate fit to the insurance claims data than the Weibull,
W-Loss, NHT-Weibull, Ku-Weibull, and B-Weibull. On the
other hand, the numerical results for the VaR and TVaR
measures showed that the NE-Weibull model is a HT dis-
tribution as compared to the classical Weibull distribution.
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