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Let G = G, x G, X --- X G,, be the strong product of simple, finite connected graphs, and let ¢: N — (0, co) be an increasing
function. We c0n51der the action of generalized maximal operator M‘é on £ spaces. We determine the exact value of £P-quasi-
norm of M for the case when G is strong product of complete graphs, where 0 < p < 1. However, lower and upper bounds of

¢P-norm have been determined when 1 < p < co. Finally, we computed the lower and upper bounds of M G

product of arbitrary graphs, where 0 < p<1.

1. Introduction

We review some of the standard facts on graphs and metric
on the graphs. All the graphs considered in this paper are
simple, finite, and connected. Let G (V (G), E (G)) be a graph,
where V (G) is the set of vertices and E (G) is the set of edges
of G. The vertices which are at distance one from any vertex
x € V(QG) are called neighbors of x. The set of neighbors of
x € V(QG) is denoted by N (x). The degree of any vertex
x € V(Q) is the cardinality of the set N (x) and is denoted
by dg(x). The distance between two vertices x and y
denoted by d(x, ) is the length of the shortest path between
x and y. For more details on graph theory, we refer the
readers to [1-3]. The metric (graph metric)
dg: V(G) x V(G) — R on graph G is defined as

d¢ (x, y) = distance between x and y, (1)

where x,y € V(G). This metric space (G,d) is called
geodesic metric space. For any function f: V(G) — R, the

||p when G is strong

Hardy-Littlewood maximal operator Mg: &/ — €F [4-7]
is defined as

Y ol

1
Mx
of(@ = suP B(¢, 1) o

where B(q,7) ={s € V(G): d;(g,s)<r} is the ball with
center g € V (G) and radius r on a graph G. It contains all the
vertices of G which are at distance atmost  from the vertex g.
It is clear from the definition that if # = 0, then |B(g,r)| = 1,
and if r > 1, then |B(g, r)| = 2. The values of metric function
dg are natural numbers and radius r > 0; therefore, equation
(2) can be written as

Mg f(q) = > Ifwl. 3)

1
GN |B( )| weB(g,r)

The fractional maximal operator [8] on graphs is defined
as
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l%t/n)f(q) T Z |f(w)|, (4)

GN |B( )| weB(q,r)

where 0<t<n. If t=0, then equation (4) reduces to
equation (3). For 0< p<oco, the &/ norm of the Har-
dy-Littlewood maximal operator is defined as

izl
Il 1lee

where || flly = (Loev () f (5)19) 7.
For every function f: V(G) — R, the generalized
maximal operator M¢: P — ¢P [9, 10] is defined as

M{f(g) =m Yol (e

weB(g,r)

IM&]l = sup (5)

N ¢(IB(q, ol

where ¢: N — (0, 00) is an increasing function. Note that
if we take ¢ (x) = x in equation (6), then we get the classical
Hardy—L1ttlewood maximal operator Mg, and if we take
¢(x) = () in equation (5), then we get equation (4).

Let Kn be complete graph on n vertices. For any vertex
q € V(K,), the ball B(gq,r) with center g and radius r is
defined as

{a}, forr =0,

Blan= { V(K,), forr>1. @

Therefore, the generalized maximal operator on com-
plete graph K,, takes the form

M = max v
k f(@ (DIf(q)I ¢(n) EV%{)If( )
(8)
For any vertex i € V (G), the Kronecker delta function is
defined as
1, g=1i
4, () —{ 9)
0, g#i.

Soria and Tradacete [6] estimated the norm of maximal
operator M, in the following form.

216G Lr,€G, -
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Proposition 1 (see [6])
(i) If 0<P<1, then
— 1\ (/p)
], =(1+"27) (10)

nb

(ii) If 1 < p < 0o, then
n—1\0p
<1+ - ) s"MKn“ps(l

For more details on this topic of research, see
[4, 8, 10-13]. The main motivation of this paper is from
[4-7, 10].

The paper is structured as follows. Section 2 contains the
definitions which are helpful to prove the main results.
Section 3 contains the main results; we find the exact value of
| M ﬁll p for the case 0 < p <1 and give lower and upper bound
when 1< p<oo. An example is given to show that these
bounds are not optimal. Finally, Section 4 concludes the
study.

n—1\1p
+ ) _oan
n

2. Preliminaries

Let G, G,, ..., G,, be m graphs; then, their strong product
G =G, xG, x---xG,, is a graph having vertex set,
V(G) ={(upuy, .. .suy): u; € G Vi =1,2,...,m},  (12)

and the edge set, which is defined in the following manner;
there will be an edge between (u,u,,...,u,) and
(v, vy, - .05 vy, in G if

(a) u; =v; and (u;,v)) € E(G)), j#i
(b) u; #v; and (u;,v;) € E(G;), Vi

Example 1. Let K, be complete graph on two vertices. The
strong product K = K, x K, x K, of three K, graphs is
shown in Figure 1.

Let G be the strong product of m graphs. Then, for every
function f: V(G) —> R, we can consider the generalized
maximal operator M P — P as

vaeGm|f(V1’ Voo m)l

,U,,) = Max

Mgf(ul,uz,... na

where Bg = B(u;,r),i=1,2,...,m. Thenorm ||M2||p of the
generalized maximal operator is defined as
¢
s "MGf " 1767 p
[l = sup =7
I,

(14)

gb('BGl' ><|BG2| X oo X'BGmD

(13)

where ")f"p (Z\/l € GIZVZ €G, va € G,,,'f(vl’VZ’ cre
v,)IP) !

LetK =K, x K, x---xK, bethestrongproductofm
complete graphs with n;,n,,...,n,, vertices, respectively;
then,
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{(u,uy,...,u,)}, forr=
B(u,,r)x B(u,,r)x---xB(u, ,r) = (15)
(w1,7) % B(u,7) (t407) {V(K), forr>1.
For every function f:V(K)— R, the generalized
maximal operator takes the form
¢(1) lf( Up Uy, .. "um)|’
M f (uy, s, .. . u,,) = max ) (16)
Fvpvas e v)
¢(n1 X n2 X X nm) 1/1;”1 VZ;nz vmg:(nm| . " I
Note that the operator M(‘5 is the smallest in the 3, Main Results

pointwise ordering among all M G=G,xG,x-xG,» Where each G;
is a graph with , vertices fori = 1,2, ..., m. That s, for every

nonnegative  function f  and  every  vertex
(uy,uy, ..., u,,) € G, we have that
M f (s thyy s uy) SMES (upsthyy . ouy).  (17)
In particular, if 0 < p < 0o, then
¢|P ¢ ||P
[kl = [l (18)

For any vertex (u,u,,...
delta function is defined as

Vm) = 8141 (Vl)'8u2 (VZ) ce 8u

,U,,) € V(K), the m Dirac

o (Vn)-

(19)

(ul,uz,...,um) (vl’ vZ’ ]

It is easy to check that

This section details the steps to find the quasi- norm of MY,
for the case 0 < p<1, and to find bounds of IIMKII for the
case of 1 < p < co. Also, we estimate the bounds of ||M G|| p for
0 < p < 1. Moreover, some examples are presented to support
the results.

Lemma 1. Let G be the strong product of m graphs, and
Q: 69 — ¢P be a sublinear operator, with 0< p<1. Then,

e, = max Qr .

p (U114t )€V (G) “ ((OETARTI P (21)
Proof. Since ||r(u1,u2,.4.,um)”p =1, therefore "Q”P. >
max(ul,uz’wum)ev((;)IIQI‘(ul,uZ,_“,um)IIP. To prove the other in-

equality, let h: V(G) — R, with IIhIIP <1, that is,

h= Z Z Z a(ul,uz,u.,u,,,)r(ul,u2 ..... um)’

0, foru;#v,, forsome j, (22)
F(u o )(Vl, Vorevns Vm) = A 1 €Gy 1,€G, Uy, €Gypy
prm 1, foru;=v,Vi=12,...,m
(20) Wlth , Zul €G, Zyzecz to ZuMEGmla.(ul,uz AAAAA um)lp <1 USlng
Holder’s inequality for 0 < p <1, it follows that
||Qh||g = Z Z Z |Qh(v1,v2,...,vm)|P
v,€G, v,€G, v, €G,,
p
= Z Z tt Z Z Z Z a(ul,uz,...,um)r (ul,uz,...,um) (Vl’ Voseeos Vm)
v,€G, v,€G, V,,€G,, u €G u, €G, u,, € G,
p
< Z e Z Z a Uy, Uyl Qar U Uy, U, (Vl’ VZ’ A Vm)
172 m 172 m
v,€G; v,€G, v €G,, |u, € G, u, €G, u, €G,,
r (23)
< Z Z R Z z Z R Z '61 (ul,uz,...,um)‘Qr(ul,uz ,,,,, um)(vl’VZ’ cee ’Vm)|
v, €G; v,€G, v, €G,, u1€G| u,€G, u,,€G,,
p p
= Z Z e Z a(ul,uz,.4.,um)| Z e 'Qr(ul,uz) ..,um) (vl’ Varee o Vm)‘
u, €Gy u,€G, u,,€G,, v,€G; v,€G, v, €G,,
p p
=2 2 2 e 1O
u,€Gy u,€G, u,,€G,,
p
< max Qr .
(ul,uz,”.,um)eV(G) (ul,uz,...,um) p




4 Mathematical Problems in Engineering

1,3,6
X X =
1,4,6
2 4 6
K, K, K, Ky
FIGURE 1: Strong product of three K, graphs.
It completes the proof. O andif1<p<oo, then
Theorem 1. If0< p<1, then
(1/p)
el - 1 (m xnyx---xmn,)—1 (24)
K ) oP ’
po\¢P (1) ¢P(n xnyx---xn,)
1 N (ny xnyx---xn,)-1 p)
¢P (1) ¢F(ny xnyx---xn,)
(n, xny x -+ xn, )’
s"M§"P£max< b Y, (25)
87 (m X xmy)
— (17p)
{ L (e xmg) = 1) (o xmy xxmy) )
¢P (1) ¢ (ny xmy x - xn,,) ‘
Proof. Let f: V(K) — R bea function such that ||f||p =1. u; € V(K, ), u, € V(K,), ..., u, €V(K, ). Then, for
Define m Dirac delta function I, , ., ) where 0<p<oo, we have
p » (1/p)
¢ ¢
||MKF (ul’uZ"“’um)“P = <<MKF (ul,uz,n.,um) (ul’ Upsoos um)) + Z z e Z (MI(p(r(ul,uz,“.,um) (Vl’ Vaseeos Vm)) >
Vi#FUy VoFUy Vi Flhyy (26)

_( Lo (n1><n2><--~><nm)—l)(llp)

@GP (1) @P(n Xmy X -+ Xn,)

As ||F||p =1, so we have, for 0< p <00, For 0< p<1, using Lemma 1, we have

( 1 (nl><n2x--.xnm)—1>(1/P)S"Mﬁ"1). o ( 1 +(nlxnzx---xnm)_l)(l/p)=|'Mﬁ|'p. (28)

¢P(1)+ O (ny xny x---xn,) P (1) ¢F(ny xnyx---xn,)
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Now, we will prove upper bound for 1< p < co:

ped,-( 5 % 3

u €Bg, u,€Bg, u,,€Bg,,

max«l¢(1) |f (uys vy, .ty

(29)

1 (1/p)
¢(”1Xn2><"'><nm) Z Z Z |f(V1>V2,...,vm)|p}> )

v1€Bg, v,€Bg,

After applying Holder’s inequality, we have

e <o 3

Vm€Bg,,

(17p)
1 —
Z Z max{(pp(l)lf(ul,uz,...,um)lp,¢P(nlanx‘uxn )(nlxnzx...x;qm)(? 1)}) .

u)€Bg, u€Bg, u
(30)
If (|f(u1,u2,...,um)|f’/¢1’(1))s((nlan X If(If(ul',uz',...,u;n)lp/gbp(l))>((nlxnzx-nxnm)(}’_l)/
coxn )Py P(n; xn, x---xn,)) for all vertices, then P (n, xn, x---xn,,)) for some (uy,uy,..., u,) €V (K), then
m m m
we have we have
(1/p)
” ¢'| (ny, xny x---xn,)’ (31)
P (ny xny x - xn,) '
-1 (l/p)
) o (X x o) = 1) (m oy )
M yUps o e ey
” K|'pg<¢p(1)|f(ul & uM)I ’ ¢F (ny xny x---xm,,)
(32)
_ (1/p)
< 1 +((nlXnZX"'Xnm)_l)(nlanx"'xnm)(p K g
“\¢r () ¢F (ny xny x - xn,,) ’

which completes our arguments.

The graph of the result of Theorem 1 is shown in Fig-
ure 2, where ¢ (x) = x,n; Xn, X --- X n,, is from 4 to 10, and
p=2and p=3.

3D solution region for Theorem 1 is shown in Figure 3,
where ¢(x) = x, n; xn, x--- xn,, is from 4 to 12, and p is
from 1 to 10.

The graph presented in Figure 3 shows the results of
Theorem 1 that are not optlmal It is quite difficult task to
calculate the exact value of |M 1<|| for the case 1< p<o0.
The following example explains the situation. O

Example 2. The estimates we obtained in Theorem 1 for 1<
P <00 is not optimal in general. For example, if we take graph
K, xK, and ¢(x)=x. Consider the function f: {(1,3),
(1,4), (2,3), (2,4)} — R. We suppose that |f(1,3)|=|f
(L= (2.3)], Mg 4k, f(1,3) =My ok f(1,4) = My g,
F(2,3)=Clf (L3+1f(L4)N/4), and My . f(2,4)=|f

(2,4)|. Then, |f (2,4)|=]f (1,3)|. If we denote (|f (1,3)|/|f
(2,4)]) by A, then, for every 0< p<oco, we have

[Mi 11, _(3(3|f(1,3)| L1 (L )Y +If(1,4)lp>“”’)
171, 31f (L3P +|f(1,4)°
331 +1)P + 42\ P
! 302 +1 ’
(33)
which leads to
1 330+ 1)P + 42\ VP
il 34
M5 ik, . 4(08351 ] . (34)

It is easy to see that, for 1< p <00, the supremum is
attained at the unique root A, € (0,1) of the equation
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p=2 p=3
o 1.6 _ 1.4
< o <
ET L B P £ . o o o o o o
4] g 14 o —6—0——0—9 g E 12 7 . ¢ y
ES 12 - - - - - - - : : : EZ
g2 o o o o o o o 2T 1 *e—0—0o 0 —0o —0—@
22, R R I - G
- -
Z2E8% 08 R
éé * 06 “,;T E% %
£g 2£58 04
s 5 0.4 ] E.
E% .
£ £ 0.2 g °© 02
Z & Z. o
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of vertices Number of vertices
—@— Lower bond —@— Lower bond
—&— Upper bond —@— Upper bond
(a) (b)
FIGURE 2: Estimation for p =2 and p = 3.
1.9
1.8
1.7 ﬂ
1.6 —
1.5
1.4 —
1.3
1.2 —
1.1 —
1.0 —
tos 10
n 12 2 3 5 6 7 8 9 10
p
FIGURE 3: 3D view of estimation forn=4...12 and p=1...10.
-1 P pyp-1
1 AT (BA+ )P + 480
(1+30P " = . (35)

9\ +3

In particular, if we take p = 2, then we get A = 0.246, and
from equation (34), we get ||M§ZxKZ I, = 1.151. If we cal-
culate it from Theorem 1, we get 1.090 < IIMI"<Zsz l,<1.323.
This shows that the estimation in Theorem 1 is not optimal
in general for 1 < p < co. Now, in the next theorem, we find
the estimates of G.

Theorem 2. Let G be the strong product of m graphs and
0< p<1; then, we have

(ny xny x---xn,) -1 )
¢F (ny xmy x -+ x )

1
(¢P<1)+

1
<foatl, < (7

(ny xnyx---xn,) - 1>(1/p)
¢F (2m)
(36)

Proof. Lower bound is trivial. For the upper bound, let
(uy,uy, ..., u,,) € V(G) and consider the m Dirac delta
function I'¢, ,,, ., ). Then, we have
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"Mgr(ul,uz,.”, ) !

¢
U, p = ((MGF (u,,uz,.“,um) (ul’ Ups oot ’um)>

viFUy VFU,

- ﬁ+z y .y

vi#U; vy #U, Vi Flly,

As each G; is connected, |Bg|>2 for each i and radius

r > 1. Hence,
< 1 +
Mp=\ P (1)

By using Lemma 1, we obtain
(1/p)
nlxnzx---nm)—l> (39)

o, < (o +

If we take ¢ (x) = x and m = 1, then Theorems 1 and 2,
respectively, yields the same results obtained in [9]. This
shows that the results presented in this paper are the gen-
eralized form of the results in [6].

We have graph for the result of Theorem 2 in Figure 4,

(n, xny x---xn,) -

¢P (2™)

||]VIgr (1t

(38)

where p = 0.5, ¢(x) = x, and n; X n, X --- x n,,, is from 4 to
10.

Some particular examples to support the result of
Theorem 2 are given below. O

Example 3. Let W5 be a wheel graph on five vertices and
consider the strong product K, x W of K, with W. Take
¢(x)=x, f =T, and p = 1. Then, ||M§2Xw5|| = 2.100.

Let V(K,) ={1,2} and V(W;) = {3,4, 5,6, 7}, where 7 is
the central vertex of W.. Now, 6 ¢ Ny, (3)and 5 ¢ Ny, (4).
Then, the strong product K, x W has a vertex set

V(K2 X Ws) = {(1’ 3)> (1>4)’ (1> 5)’ (1’ 6): (1’ 7)’ (2: 3)>
(2,4), (2,5), (2,6), (2,7)}.
(40)
Note that K, x W5 has 37 edges and d ; ) (K, X W5) =

d (57 (Ky x Ws) =9, while all other vertices of this graph
have degree 7. Hence,

(1, for{(1,3)},

1
x —, for{(1,6), (1,7), (2,6), (2,7)},
M3 v Tz =1 10 or{(1,6), (1,7), (2,6), (2,7)}

1
—,  otherwise,
L8
(41)

with |M% vl

r(l 4) ” - ||MK2><W5F(1 5) ” ||MK2><W F(I,G) " " KZXWSF(2,3) " -
r(2’6) ” = 2.025

(1,3l = 2.025. Tt is easy to see that ||MK o

IME . T el = IME aw, T 25l = IME v,

¢(|BG1’ ><'BG2| X

1)(1/P)

7
» (1/p)
fY Y ; {Mgr(ul%wum)(Vl,vz,...,vm)} >
Vi Fy,
P (1/p)
Zz Z (u,uz um wl;wz,...,w )
><|BGm|>w1 w,
(37)
Also,
( 1’ for{(l) 7)})
L forf2,7)
—, for{(2,7)},
Micow,Lan =1 10 (42)

1
g otherwise,

with |M% . Tl = 2.100, IME .y To)ll = 2.100, and
1M o £2°100.

Example 4. Consider the graph used in Example 3. Take

¢(x)=x* f =T, and p = 1. Then, ||MI< awsll = 1.135. We
have
(1, for {(1,3)},
e L for{(1,6), (1,7), (2,6), (27},
Mszwir(m) =17 100

1
—,  otherwise,
L 64
(43)
. 2 2 2
with [ME 4y Tyl = 1118 and My Tl = 1My .

x2 x2 x2
r(1,5) = ”MKZXWS r(l,é) I= ”A/Iszw5 r(2,3) = "MszwS r(2,4) =

2 2
M aw. T 2l = 1M . T (20l = 1.118.
In a similar way, we have

(1, for {(1,7)},
2 L for {(2,7)}
Mzzstr(m) =1 100’ R (44)
1 .
—,  otherwise,
64
with ||MK W 17)|| 1.135 and ||M1< W, Lol =1.135.

This 1mp11es tf’nat IIM Koxvs | =1.135.

Example 5. Let S; be star graph on three vertices and
consider the strong product K, x K, x S;. Take ¢ (x) = x,
f =T, and p =1 Then, [Mg ,k s | = 2.250.

Let V(K,) = {1,2}, V(Kz) = {3 4} and V(S;) = {5,6,7}
with 7 as a central vertex of S;. Then, the strong product
K, x K, x §; is a graph with vertex set
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p=05

_ = N W
v v S e 3

Norm of hardy-littlewood maximal
operator on product of two graphs

o

6 7 8 9 10

Number of vertices

—@— Lower bond
—— Upper bond

FIGURE 4: Estimation for p = 0.5.

V (K, x K, x85) ={(1,3,5), (1,3,6), (1,3,7), (1,4,5), (1,4,6), (1,4,7), (2,3,5), (2,3,6), (2,3,7), (2,4,5), (2,4,6), (2,4,7)}.

Note that there are 50 edges in this graph and
d(137) (KX Ky X 83) =d 1 47 (Ky x Ky X 83) =d 537 (K, X
K, x83) = d (547 (K, x Ky xS;) = 11, while all the other
vertices of the graph have degree 7. We have

(1, for{(1,3,5)},

1
-, for{(1,4,5), (2,3,5), (2,4,5)},
Mﬁzszxs3r<1,3,5> =18 ( ) a )}

otherwise,

L 12

(46)
with  [M¥ .k «s, T35l =2.042. It is easy to see that
||MK2szx53r(1,3,6)|I = ||M§2><szs3r(1,4,5) = "Mﬁzszxssr(lA,é) I
= ||M)IC<2><K2><S3F(2,3,5) ":”Mﬁlegxsg(zﬁ,s)||: ||Mz2xK2><S3 La4s)
= ||M§2X1<2X531"(2)4,6) | =2.042.

Also,
(1, for{(1,3,7)},

1
, for{(1,4,7), (2,3,7), (2,4,7)},
Mﬁzszst(m) =1 12 « h( h( )}

1
—,  otherwise,
L 8
(47)

with ”MfoszS}F(l,SJ)":2'250- Similarly, "Mﬁzszx%

1—‘(1,4,7)" = ||M§2><K2><s3r(2,3,7)” = ||Mﬁ2><K2><S3r(2,4,7)” = 2.250.
This implies that ||M}“<2X1<2Xs3 [ = 2.250.

Example 6. Consider the graph used in exalng )le 4,
1+In
¢(x)=1+In(x), f=T, and p=1; then, ||MK+XK’2CX53||
4.459.
Here, we have

(45)
1, for {(1,3,5)},
1
1+1n (x) ——, for{(1,4,5), (2,3,5), (2,4,5)},
MK-Z:Kjxssr(l,.%,S) =4 1+In(8)
—————, otherwise,
L+In(12y ooeree
(48)
. 1+In(x) _ s 1+In(x)
with "MszKzle({(l,S,S) | =4.271. Slm:larly, |M KoK, xS,
1+ 1+
Lsell = ||MK2:K;C><53 Liasll = ||]V[1<2:1<fxs3 Tl =
1+In(x) _ 1+In(x) 1+In(x)
||MK2>?K)ZC><S3F(235) = ||MK2:K)ZC><S3F(236) = ||M1<2:1<fxs3r(2,4,5)”
_ L+In (
= ”MKJ;:fos;(us)” =4.271.
Now,
1, for {(1,3,7)},
1+] —, for{(1,4,7),(2,3,7), (2,4,7)},
M1<+2:1(<:)xs3r(1,3,7) =4 1+In(12)
1 .
——————  otherwise.
1+1n(8)

(49)

141 1+In (x)
So, ||MKJ;:K’;Xs3F(137)||—4459 Similarly, ||MKJ;:K’:X&
1+l _ 1+In(x)
1—‘(1,4,7)” ||MK2>I<1K2><SSF(237)" ||MK2:<1K32€X$3 (2,4’7)" =4.459. =
141
M ;Ig;s} | =4.459.
If we take the same conditions which we used in ex-
amples 3-6 in the result of Theorem 2, then we get

1.900 < ||ME GyxG, | <3.250, 1.090 < IIM"ZXG [ <1.563,1.917 <

IME, «6,xc, I <2.375, and 4.156 < ||Mg;‘;GxXG | <4.572. This
imphes that the examples 3-6 verify the result of Theorem 2.

4. Conclusion

In this paper, we have considered the action of generalized
maximal operator on &P spaces and calculated the quasi-
norm IIMKII for 0< p<1. We gave the lower bound and
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upper bound for the quasi-norm IIMﬁllp, where 1< p<o00.
Finally, we have proved that ((1/¢? (1)) + ((n; x 1, X -+ - X
n,) — 1P (n, xny x - xn 1)) VP and ((1/¢? (1))+ ((n,x
ny, X ---Xn,)—1/¢f (2m) WP are the lower bound and
upper bound, respectively.
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