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Due to the importance of the drive system reliability, several diagnosticmethods have been investigated for the SSTPI-IM association in
the literature. Based on the normalized currents and the current vector slope, this paper investigates a fuzzy diagnostic method for this
association.'e fuzzy logic technique is appealed in order to process the diagnosis variable symptoms and the faulty IGBTinformation.
Indeed, the design, inputs, and rules of the fuzzy logic are distinct compared with the other existing diagnostic methods.'e proposed
fuzzy diagnostic method allows the best efficient detection and identification of the single and phase OCF of the SSTPI-IM association.
Accordingly, after the fault detection and identification using this proposed FLC diagnostic method, a reconfiguration step of IGBT
OCFs must be applied in order to compensate for these faults and ensure the drive system continuity.'is reconfiguration is based on
the change of the SSTPI-IM topology to the FSTPI-IM topology by activating or deactivating the used relays. Several simulation results
utilizing a direct RFOC controlled SSTPI-IM drive system are investigated, showing the fuzzy diagnostic and reconfigurationmethods’
performances, their robustness, and their fast fault detection during distinct operating conditions.

1. Introduction

Given the reliability and efficiency, the SSTPI-IM association
has been used in several industrial applications such as
medical andmilitary applications, renewable energy sources,
robotics, and electric vehicles [1–3]. Due to the complexity of
these systems, many faults can facilely occur.'e occurrence
of these faults can shut down the whole system, which can
cause loss of continuity and energy. Consequently, special
attention must be taken into account in the development of
diagnostic methods for these defects.

In this paper, we focus only on the fault appearance in
the switches of the SSTPI. Generally, the switch faults can be
classified into three faults, which are OCF, intermittent fault,
and SCF. In the SCF case, the IM cannot be more functional,
and necessary system maintenance must be done. In this
failure situation, a hardware safety circuit is presented in [4].
However, in the OCF case, a diagnosis method should be
utilized in order to protect the drive system against

secondary failures. It should be noted that the OCF, which is
the subject of this paper, cannot shut down the drive system
directly.

In 1976, the analytical redundancy method based on
fault diagnosis and detection model is presented in [5].
Taking into consideration the technological evolution,
several researchers began to develop new diagnostic
methods for the SSTPI-IM association. A diagnostic method
based on the analysis of the instantaneous frequency and
current vector trajectory applied in a PWM-VSI in order to
detect and isolate the switch fault is presented in [6]. Fur-
thermore, based on the later proposed diagnostic method, an
improved method, which can detect and identify multiple
OCFs in a PWM-VSI, is presented in [7].

Several methods have been investigated based on Park’s
vector approach and the average current [8–12]. In [13], a
new fault detection based on the DWT-NN technique is
presented. Besides, a robust real-time diagnostic method for
single and simultaneous OCF in sensorless vector-controlled
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IM drives is presented in [14]. 'e authors in [15] have
proposed a robust OCF diagnostic method in VSI-PMSM
drives, which can detect and identify multiple IGBT OCFs.
Furthermore, a diagnostic method based on an SMO and a
half-bridge switching model is presented and applied in
MMC [16]. In [17], in order to detect and identify the OCF,
an FFT diagnostic method is used. Moreover, a real-time
instant voltage error diagnostic method is presented in [18].
In order to detect, identify, and compensate the OCF, the
authors in [19] have presented a fault-tolerant control and
diagnosis method in MMC.

Among the presented diagnostic methods, one can
highlight that some diagnostic methods can detect and
identify a single OCF, and some diagnostic methods can
detect and identify multiple OCFs. Expecting the single and
multiple OCFs, there is a possibility of false alarms using the
existed diagnostic methods during speed and load varia-
tions. Considering the above diagnostic methods, these false
alarms can shut down all drive systems and cause power
losses. In conclusion, in order to detect and identify precisely
these faults without false alarms, the FLC theory is applied to
precisely fuzzify the diagnosis of variable symptoms. FLC
theory is utilized in a variety of applications, including drive
systems, robotics, photovoltaic and wind energy, hybrid
vehicles, and medical applications. In order to avoid the
disadvantage of T-S (Takagi Sugeno) state estimation and to
stabilize the nonlinear system, a combination of LMI (linear
matrix inequality) and fuzzy model is presented in [20].
Moreover, the topic of T-S FTS (finite-time synchroniza-
tion) for fuzzy complex dynamical networks with coupling
delays through sampled-data control is discussed and pre-
sented in [21, 22]. Taking into account the organization
evaluation efficiency and performance, a ranking framework
based on FLC is presented in [23]. Also, the ranking of
educational institutions based on fuzzy logic rule base is
discussed and presented in [24].

An FLC diagnostic method that differs from other
existing fault diagnostic strategies is suggested in order to
enhance the fault detection and identification of IGBT OCFs
against false alarms during speed and load variations. Based
on the proposed FLC diagnostic method, single OCF and
phase OCF can be detected and identified. 'is novel di-
agnostic method is based on the measured motor currents.
'e diagnosis variables are processed with FLC theory and
the faulty switch information can be determined. It should
be noted that, as compared to previous approaches, the
suggested FLC diagnostic method simplifies the fault
reconfiguration step. Indeed, in order to compensate for the
switch OCF, a step of SSTPI-IM reconfiguration must be
found. 'is reconfiguration strategy is based on the change
of the SSTPI-IM topology to the FSTPI-IM topology by
using a relay without redundant leg [25–27]. By using this
novel FLC diagnostic method and reconfiguration strategy,
the simulation results prove to confirm their high efficiency
and performance in terms of detection and identification of
the single OCF and phase OCF without power losses and
false alarms during speed and load variations.

2. IGBT OCF Detection and Identification by
Using Measured Currents

'e given system in this work is made up of the following
components as presented in Figure 1: grid, rectifier made up
of six diodes, continuous bus, inverter, and IM. It should be
noted that the SSTPI switches are controlled using a direct
RFOC technique.

'e proposed diagnostic method is based on the nor-
malized currents and the current slope as presented in
Figure 2. 'is method avoids the use of another extra
hardware or sensors, which implies the low cost of its
implementation.

It is well known that this method is found on Clarke’s
transformation as presented by
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where Ias, Ibs, and Ics are the measured stator currents.
According to Clarke’s transformation, the vector mod-

ulus is given by
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In order to be robust versus the variations of the op-
erating conditions, the normalized currents are presented by
the following equation:
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In
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, (4)

where n represents the three phases (as, bs, and cs) and In

denotes the balanced sinusoidal stator current as presented
by

In �

Ias � Imax sin wst( 􏼁

Ibs � Imax sin wst −
2π
3

􏼒 􏼓

Ics � Imax sin wst +
2π
3

􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (5)

where Imax represents the maximum amplitude and ws

represents the stator pulsation.
'e vector modulus based on equations (3) and (5) is

expressed by
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Accordingly, the normalized currents are given by
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〈|InN|〉, which represent the average absolute values of In

independently of the maximum amplitude, are presented by

〈 InN

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌〉 � ws 􏽚
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0
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In conclusion, the diagnosis variables (“en”) are pre-
sented by the following equation:

en � δ −〈 InN

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌〉, (9)

where δ represents the average absolute value of In in healthy
operating conditions, which is equal to 0.5198.

In the OCF case, the diagnosis variables en take specific
signatures different from those in the healthy case (zero
values) depending on the type of fault applied. It can be
highlighted that these diagnosis variables only give infor-
mation about the faulty leg. To completely detect and
identify all fault types, the information of the normalized
currents average values must be added. To by-pass the
drawbacks of the false alarms during speed and load vari-
ations, the proposed diagnostic method is also based on the
diagnosis variable “m” dedicated from the current slope
vector information, which is given by

ψ �
Iαk

Iβk

, (10)

where Iαk and Iβk represent the Clarke currents at the time
kTs with Ts denoting the sampling time.

Furthermore, the deviation angle “ϕ” is presented by

ϕ � arctan(ψ). (11)

'erefore, “〈|ϕ|〉” is presented by the following
equation:

Grid 

T1 T2

T4 T6 

Induction
motor

Vdc/2

Vdc/2

T3 

T5 

Figure 1: Schematic diagram of the SSTPI-IM drive system (reproduced from M. A. Zdiri et al. 2019 (under the Creative Commons
Attribution License/public domain)).
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Figure 2: Scheme of the proposed diagnostic method (reproduced from M. A. Zdiri et al. 2019 (under the Creative Commons Attribution
License/public domain)).
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Finally, the diagnosis variable m is obtained from the
following equation:

m � 〈|ϕ|〉 − c, (13)

where c represents the average absolute value of the devi-
ation angle in the healthy case which is approximately equal
to 0.785.

In conclusion, the three diagnosis variables (en, sn, and
m) are obtained as follows:
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'e threshold values (kf, kd, ks, kp, and kg) can be
analyzed through the study of the diagnosis variable be-
haviors under healthy and faulty cases [25]. In this work, 27
possible faulty IGBT combinations are addressed in Table 1,
where F represents the number of each fault (F� [1 27]).

In this paper, the diagnosis variables (en, sn, and m) are
used only to detect and identify single OCF and phase OCF.
Consequently, in order to ameliorate the robustness and to
precisely detect and identify these faults without false alarms
during speed and load variations, the used diagnosis vari-
ables must be processed based on the FLC theory.

3. FLC Theory-Based Diagnostic Method

'e FLC theory-based diagnostic method is found on the
symptoms of the three diagnosis variables under distinct
operating conditions. Indeed, the twelve fault symptoms
(N, O, P, D, LL, L, H, HH, SS, S, B, and BB) of the three
diagnosis variables ought to be fuzzed using this FLC
method. Furthermore, the following section explains this
proposed method in more detail.

3.1. Reasoning of the FLC 'eory-Based Diagnostic Method.
'e proposed diagnostic procedure is found on the
knowledge of the heuristic and analytical symptoms of the
SSTPI behavior under distinct operating conditions. In this
paper, the input of the proposed FLC diagnostic method is
the symptoms of the diagnosis variables (en, sn, and m). 'e

heuristic knowledge in this proposed diagnostic method is
expressed in the form of rules (if then). Moreover, the twelve
symptom variables (en, sn, and m) are fuzzified as

En ∈ N, 0,P,D{ }

Sn ∈ LL, L,H,HH{ }.

M ∈ SS, S,B,BB{ }

⎧⎪⎪⎨

⎪⎪⎩
(17)

'e FLC theory bloc is presented in Figure 3, where
F ∈ [1 27] as illustrated in Table 1. Indeed, the mem-
bership functions of the three diagnosis variables are il-
lustrated in Figure 4.

In the same context, the outputs of the proposed FLC
diagnostic method must be also fuzzified based on the
membership functions as presented in Figure 5. It is to be
highlighted that the fuzzy sets of the inputs and output
variables are computed based on trapezoidal and triangular
MFs. For example, the output fuzzy set is expressed as
follows:

μD−F �

x − a

b − a
, a≤ x≤ b,

1, x> b,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

where a, b, and x ∈ [0 1].
After the fuzzification procedure, the value 0 indicates

the healthy case; however, the values between 0 and 1 in-
dicate the faulty case. Accordingly, this proposed fuzzy
method can detect and locate the IGBT OCFs without false
alarms during speed and load variations which prove their
high performance and robustness.

3.2. Extraction of the Fuzzy Rules. Considering the infor-
mation given in Table 1, the extraction of the fuzzy rules can
be determined easily. Generally, the FLC system is composed
of fuzzification, fuzzy inference, and defuzzification, as il-
lustrated in Figure 6 [28].

For more details, the fuzzification, fuzzy inference, and
defuzzification are explained as follows:

(i) Fuzzification: the fuzzification is based on the MFs,
which represents the mapping of the normalized
input to the fuzzy variables

(ii) Fuzzy inference: the FLC bloc rules (if then) are
characterized by a fuzzy implication linking the
input and output fuzzy variables. In this proposed
FLC diagnostic method, a fuzzy inference of type
Mamdani is used

(iii) Defuzzification: defuzzification denotes the con-
version procedure of the fuzzy output to the crisp
values. In this paper, the used defuzzification
method is the COA method

Accordingly, the fuzzy rules can be well defined as
follows:

(i) If Eas � P and Ebs �N and Ecs �N and Sas � L and
M � S, then D−1� Fault
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Table 1: IGBT OCF detection and identification (reproduced from M. A. Zdiri et al. 2019 (under the Creative Commons Attribution
License/public domain)).

F Faulty IGBTs Eas Ebs Ecs Sas Sbs Scs M

1 T1 P N N L S
2 T4 P N N H S
3 T2 N P N L B
4 T5 N P N H B
5 T3 N N P L B
6 T6 N N P H B
7 T1, T4 D SS
8 T2, T5 D BB
9 T3, T6 D BB
10 T1, T2 P P N L L H S
11 T4, T5 P P N H H L S
12 T1, T3 P N P L H L S
13 T4, T6 P N P H L H S
14 T2, T3 N P P H L L BB
15 T5, T6 N P P L H H BB
16 T1, T5 LL HH S
17 T2, T4 HH LL S
18 T1, T6 LL HH S
19 T3, T4 HH LL S
20 T2, T6 LL HH B
21 T3, T5 HH LL B
22 T1, T2, T6 P P N LL L HH S
23 T4, T5, T3 P P N HH H LL S
24 T1, T3, T5 P N P L HH LL S
25 T4, T6, T2 P N P H LL HH S
26 T2, T3, T4 N P P HH LL L B
27 T5, T6, T1 N P P LL HH H B

FLC

D_F

Eas

Ebs

Ecs

Sas

Sba

Scs

M

Figure 3: FLC theory bloc.
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Figure 4: Membership functions of the proposed FLC theory. (a) μEn, (b) μSn, and (c) μM.
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(ii) If Eas � P and Ebs �N and Ecs �N and Sas �H and
M � S, then D−2� Fault

(iii) If Eas �N and Ebs � P and Ecs �N and Sbs � L and
M �B, then D−3� Fault

(iv) ⋮
(v) If Eas �N and Ebs � P and Ecs � P and Sas � LL and

Sbs �HH and Scs �H and M �B, then D−27� Fault

Based on these fuzzy rules, the switch faults can be
precisely located and detected without false alarms. It is to be
underlined that the proposed fuzzy diagnostic method is
effective in the reconfiguration step in order to compensate
for the fault.

4. Reconfiguration Strategy under IGBT OCFs

In order to compensate the IGBT OCFs after the fault de-
tection using the proposed FLC diagnostic method, we
proposed a reconfiguration strategy for the SSTPI-IM as-
sociation. 'is strategy is based on using relays without a
redundant leg. Furthermore, the implementation of this
strategy is easy and low expansive.

In this paper, we focus only on the single and phase OCF.
For these faulty cases, the reconfiguration is ensured based
on the change of the SSTPI topology to FSTPI topology.
Moreover, Figure 7 details well this strategy with respect to
an OCF appearance in the third leg of the SSTPI. Referring
to Figure 7, the relay “RD” ensures the compensation of the
faulty leg; however, the relay “RR” ensures the reconfigu-
ration of the system in order to maintain its continuity. It is
worth highlighting that, in the healthy case, the relay RD is
ON (activated) while the relay RR is OFF (deactivated).

'e reconfiguration bloc is described in further detail as
follows:

(i) If D−F ≠ 0, then FR� 1
(ii) Else FR� 0

“FR” represents the fault reconfiguration variable. When
FR� 0 (healthy case), the relay RD is ON and the relay RR is
OFF; however, when FR� 1 (faulty case), the relay RD is
OFF and the relay RR is ON in order to compensate for the
fault.

5. Simulation Results

To confirm the high performance of the proposed FLC
diagnostic method and the reconfiguration strategy, the
simulation results are verified through MATLAB/Simulink.
Furthermore, the direct RFOC strategy is applied to the
SSTPI-IM association with the following IM parameters as
illustrated in Table 2. Figure 8 presents the direct RFOC
strategy used in this proposed diagnostic method.

For all healthy and faulty cases, the load torque and the
reference speed have been taken equal to 1.75N.m and
200 rad/sec, respectively. Based on the study of all diagnosis
variable behaviors under various operating conditions
provided in [25], the threshold values kf, kd, ks, kp, and kg

are equal to 0.06, 0.275, 0.28, -0.408, and 0.161, respectively.
After the FLC diagnostic processes, the fault’s information
can be determined using this proposed diagnostic method.

Concerning the principle of the FLC diagnostic method,
Figure 9 illustrates the FLC system of the proposed method.
It is to be highlighted that the FLC used in this work is of
Mamdani type. For more explanation, Figure 10 presents the
fuzzy rule details analyzing the single and phase OCF.

In the healthy case, the IM phase currents are sinusoidal
and perfectly balanced as presented in Figure 11. Further-
more, the IM current’s information is suitable and can be
used by the proposed FLC diagnostic method since there has
less harmony distortion rate. Indeed, the FLC process is used
also in faulty cases in order to determine the faults infor-
mation.'is information is important in the reconfiguration
step in order to compensate for the fault.

5.1. Single Switch OCF. Figure 12 illustrates the simulation
results of the three-phase IM currents considering an OCF
appearing in the switch T1 at the instant T� 0.7 sec.

Indeed, Figure 13 represents the simulation results of the
diagnosis variables En, normalized current average values Sn,
diagnosis variable M, and fuzzy variable (D − 1) considering
an OCF appearing in IGBT T1 at T� 0.7 sec. Based on
Figure 13(a), one can underline that when the T1 OCF
occurs, the variable of the faulty phase Eas immediately
increases; however, the two other diagnosis variables de-
crease immediately according to Table 1. Furthermore, a
decrease of the normalized current average values Sas and
the diagnosis variable M is obtained. Based on the obtained
information of the FLC bloc inputs, the fuzzy variable D − 1
differs from zero (the healthy scenario) at the instant
T� 0.7095 sec.

In conclusion, it can be confirmed that the OCF in IGBT
T1 is detected and identified by the proposed FLC diagnostic
method at T� 0.7095 sec.

5.2. Single Phase OCF. Figure 14 represents the simulation
results of the IM currents considering an OCF appearing in
the first phase “a” at the instant T� 0.71 sec. Furthermore,
Figure 15 shows the simulation results of the diagnosis
variables En, normalized currents average values Sn, diag-
nosis variable M, and fuzzy variable D − 7 considering the
same faulty case.

Table 2: Induction motor parameters. Reproduced from M. A.
Zdiri et al. 2019 (under the Creative Commons Attribution License/
public domain).

Rated power (kW) 1.1
Rated line voltage (volt) 600
Supply frequency (Hz) 50
Rated speed (rpm) 2820
Rated load torque (N.m) 3.5
Number of pole pairs 1
Stator resistance (Ω) 6.863
Rotor resistance (Ω) 7.67
Stator inductance (H) 0.708
Rotor inductance (H) 0.708
Mutual inductance (H) 0.684
Moment of inertia (kg.m2) 0.0033
Friction factor (N.m.s/rad) 0.0035
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Based on Figure 15, the fuzzy variable D − 7 is different
from zero at the instant T� 0.7168 sec when the diagnosis
variable Eas will be high to the threshold value kd and the
diagnosis variable M will be low to the threshold value kp as
presented in Table 1.

In conclusion, one can conclude that the single phase
OCF is detected and identified by the proposed FLC diag-
nostic method at the instant T� 0.7168 sec. One can confirm
that the proposed diagnostic method needs only 0.0068 sec
to detect and identify the IGBT OCFs which proves their
high performance in terms of rapid fault detection compared
to other diagnostic methods.

It should be noted that the suggested FLC diagnostic
method is successful in terms of fault reconfiguration when
compared to other existing diagnostic methods.

5.3. FLC Diagnostic Method Performance under Load and
Speed Variations. 'is section is aimed to present the ro-
bustness of the proposed FLC diagnostic method against the
false alarms caused by the variations of the speed and load.
To do so, load torque and speed variations versus time have
been taken into account as addressed in Figure 16.

Figure 17 shows the simulation results of the IM phase
currents under speed and load variations, which are perfectly
balanced. Furthermore, Figure 18 shows the simulation
results of the diagnosis variables En, the variables Sn, the
diagnosis variableM, and the fuzzy variable under speed and
load variations. Referring to Figure 18, one can confirm that
En are lower than the obtained thresholds of ± 0.06, the
diagnosis variable M is in the defined range of [−0.1 0.1], and
the fuzzy variable is equal to zero even with these variations.
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Figure 9: A simulation model of the FLC bloc.
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In conclusion, one can notice the high performance and
robustness of the proposed FLC diagnostic method even
under speed and load variations in terms of avoiding false
alarms. Moreover, the fuzzy variable is equal to zero even
under these variations, which makes it easier to obtain the
fault reconfiguration information.

5.4. Fault Detection and Reconfiguration. 'e IM phase
currents under an OCF case appearing in IGBT T3 at
T� 0.7 sec, a reconfiguration case, and a compensation case
are presented in Figure 19. Moreover, the simulation results
of the SSTPI-fed IM drive considering the healthy, faulty,
and compensation cases of the diagnosis variables En,
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Figure 10: Bloc diagram of the rules of the proposed FLC diagnostic method.
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Figure 11: 'ree-phase IM currents under healthy case.
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Figure 12: Simulation results of the three-phase IM currents under a single switch OCF in IGBT T1.
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Figure 13: Continued.
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normalized currents average values Sn, diagnosis variable M,
and FR and fuzzy variable D − 5 are illustrated in Figure 20.

Indeed, the T3 IGBT OCF is detected and identified by
the proposed FLC diagnostic method when the fuzzy var-
iable D − 5 takes a nonzero value, which corresponds to the
instant equal to 0.707 sec. Hence, in order to compensate for
this fault and maintain the drive system continuity, a step of
fault reconfiguration must be applied.

When the fuzzy variable is distinct to the zero value, the
reconfiguration variable FR is equal to “1” in order to ac-
tivate or deactivate the used relays. In this fault case, the
reconfiguration strategy is applied by eliminating the faulty
leg and ensuring the connection between the fault motor
phase and the DC bus middle point. Indeed, the relay RD is
deactivated; however, the relay RR is activated in order to
maintain the drive system continuity. Furthermore, this
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Figure 13: Simulation results of the SSTPI-fed IM drive considering an OCF appearing in T1 at T� 0.7 sec. (a) Diagnosis variables En,
(b) normalized currents average values Sn, (c) diagnosis variable M, and (d) fuzzy variable (D − 1).
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Figure 14: Simulation results of the three-phase IM currents under a single phase OCF in T1 and T4.
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reconfiguration step is the same for an OCF appearance in
the third phase. After the reconfiguration step, one can
confirm that the compensation step is realized when the
fuzzy variable returns to zero. It can be underlined that, after
the fault compensation, the continuity of the drive system is
ensured without power losses.

In conclusion, the proposed FLC diagnostic and
reconfiguration methods need only 0.007 sec and 0.33 sec in
order to ensure the drive system continuity without power
losses, which proves their high performance and effective-
ness in terms of fault detection, identification, and
compensation.
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Figure 15: Simulation results of the SSTPI-fed IM drive considering an OCF appearing in T1 and T4 at T� 0.71 sec. (a) Diagnosis variables
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Figure 16: Simulation results of the speed and load variations versus time.

Load
variation

Speed
variation

0.4 0.6 0.80.2
Time (sec)

–15

–10

–5

0

5

10

15

M
ot

or
 p

ha
se

 cu
rr

en
ts 

(A
)

Ics

Ibs

Ias

Figure 17: Simulation results of the IM phase currents under speed and load variations.
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Figure 18: Simulation results of the SSTPI-fed IM drive considering load and speed variations. (a) Diagnosis variables En, (b) normalized
currents average values Sn, (c) diagnosis variable M, and (d) fuzzy variable.
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Figure 19: Simulation results of the IM phase currents under the healthy, faulty, and compensation cases.
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6. Conclusion

A novel FLC diagnostic method for the SSTPI-IM drive
system has been proposed. 'is proposed method is based
on the measured currents, which avoids the utilization of
extra hardware or sensors. In this paper, we focus only on the
single OCF and phase OCF appearing in the SSTPI-IM
association controlled by the direct RFOC strategy. 'ese
faults are detected and identified by using a fuzzy variable,
which proves the ability to precisely avoid false alarms
during speed and load variations.

After the fault detection and identification based on the
fuzzy variable, a fault reconfiguration must be applied to the
SSTPI-IM association in order to compensate for the fault
and assure the drive system continuity. Indeed, this
reconfiguration strategy is found on the change of the
SSTPI-IM topology to the FSTPI-IM topology based on
using relays without a redundant leg. It can be underlined
that, by using this proposed FLC diagnostic and reconfi-
guration methods, the drive system continues to operate in
healthy operating conditions without power losses.

Finally, the simulation results prove to confirm the high
performances and effectiveness of the proposed methods in
terms of detection, identification, and compensation of the
faults without false alarms and power losses. Furthermore,
the proposed FLC diagnostic and reconfiguration methods
need approximately 0.009 sec and 0.33 sec, respectively, to
detect, identify, and compensate the IGBT OCFs. 'e

suggested work can be expanded in light of future directions
to other photovoltaic power converters using the combi-
nation of fuzzy logic and neural network.

Abbreviations

SSTPI: Six-switch three-phase inverter
FSTPI: Four-switch three-phase inverter
OCFs: Open circuit faults
IGBTs: Insulated gate bipolar transistors
RFOC: Rotor flux oriented control
IM: Induction motor
SCF: Short circuit fault
PWM: Pulse with modulation
VSI: Voltage source inverter
FTC: Fault-tolerant control
FFT: Fast Fourier transform
FDM: Fault detection method
SMO: Sliding mode observer
MMC: Modular multilevel converter
DWT: Discrete wavelet transform
NN: Neural network
MF’s: Membership functions
COA: Centroid of area.

Data Availability

No data were used.

0.80.6 0.7
Time (sec)

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

M

(c)

Fault
compensation

0.707 0.733 0.80.65
Time (sec)

0

0.2

0.4

0.6

0.8

1

D
 –

 5

D – 5
FR

(d)
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