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Modelling some diseases with large mortality rates worldwide, such as COVID-19 and cancer is crucial. Fractional differential
equations are being extensively used in such modelling stages. However, exact analytical solutions for the solutions of such kind of
equations are not reachable. +erefore, close exact solutions are of interests in many scientific investigations. +e theory of
stability in the sense of Ulam and Ulam–Hyers–Rassias provides such close exact solutions. So, this study presents stability results
of some Caputo fractional differential equations in the sense of Ulam–Hyers, Ulam–Hyers–Rassias, and generalized
Ulam–Hyers–Rassias. Two examples are introduced at the end to show the validity of our results. In this way, we generalize several
recent interesting results.

1. Introduction and Preliminaries

Fractional calculus provides a powerful tool in both
theoretical frameworks and practical aspects. In many
disciplines, fractional modelling is much more suitable
than the classical one. +is is because of the nice mod-
elling tools that are available only in fractional calculus
(see e.g., [1, 2]). In particular, fractional calculus has been
used extensively in the modelling stages in the fields of
economics, chemistry, aerodynamics, physics, and poly-
mer rheology. It should be remarked also that a certain
kind of fractional derivative has been used recently to
model Ebola virus (see [3]) and HIV (see [4]). Fractional
differential equations with Caputo and Caputo–Fabrizio
derivatives are used recently by the authors in [5] for the
model of cancer-immune system.

+e stability issue has gained substantially important
attention in several research fields through applications.
+ere are many kinds of stability; one of them is the stability
introduced by Ulam in 1940. Since then, the problem is
known as Ulam–Hyers stability or simply Ulam stability (see
e.g., [6], for more details). Its applications for many types of
equations have been investigated by many researchers. For

more details on this concept, the readers can see the in-
teresting works [7–10]. +e stability problem that is intro-
duced by Ulam can be stated as follows.

Assume that G1 is a group and (G2, χ) a metric group.
Given some ε∗ > 0, does there exist δ∗ > 0 such that if
F: G1⟶ G2 satisfies

χ F x1x2( 􏼁, F x1( 􏼁F x2( 􏼁( 􏼁< δ∗, (1)

for all x1, x2 ∈ G1, then a homomorphism F∗: G1⟶ G2
exists such that

χ F x1( 􏼁, F
∗

x1( 􏼁( 􏼁< ε∗, (2)

for all x1 ∈ G1?

Ulam’s problem has been extended in many directions
for interesting settings. In particular, Rassias (see [11])
generalized Ulam’s result for Banach spaces. +e nice result
of Rassias reads as follows (see [11]).

Theorem 1. Consider Banach spaces B and B∗, and suppose
a mapping Υ : B⟶ B∗ such that the function t↦Υ(tx)

from R into B∗ is continuous for each fixed x ∈ B. Assume
that there are some β≥ 0 and ω ∈ [0, 1), fulfilling
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Υ x1 + x2( 􏼁 − Υ x1( 􏼁 − Υ x2( 􏼁
����

����≤ β x1
����

����
ω

+ x2
����

����
ω

􏼐 􏼑, x1, x2 ∈ B∖ 0{ }.

(3)

Then, a unique solution exists Υ∗: B⟶ B∗ of the
Cauchy equation (F(x1 + x2) � F(x1) + F(x2)) with

Υ x1( 􏼁 − Υ∗ x1( 􏼁
����

����≤
2β x1

����
����
ω

2 − 2ω
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, x1 ∈ B∖ 0{ }. (4)

The theorem of Rassias (see [11]) is nowadays known as
the Hyers–Ulam–Rassias stability.

Throughout the study, we denote the set of reals by R,
the set of nonzero reals by R∗, and the set of complex
numbers by C, and we fix an interval I ≔ [], ] + T] for some
reals ], T with T> 0.

Definition 1. Let 􏽥λ> 0, χ ∈ C. +e Mittag–Leffler function
(MLF) (see e.g., [2]) E􏽥λ

is defined as

E􏽥λ
(χ) ≔ 􏽘

∞

n�0

χn

Γ(􏽥λn + 1)
. (5)

Similar to the exponential function, the function h(s) �

E􏽥λ
(M(s − c)

􏽥λ) satisfies CD
􏽥λ
c,sh(s) � Mh(s) and I

􏽥λ
c h(s) �

(1/M)(h(s) − 1), where M ∈ R∗.

Remark 1. Authors in [12–15] obtained some stability re-
sults by using the MLF.

Now, we present the notion of generalized metric as
follows. Let Z be a nonempty set.

Definition 2. A mapping ϑ: Z × Z⟶ [0,∞] is called a
generalized metric on Z if and only if ϑ satisfies the
following:

G1 ϑ(ξ1, ξ2) � 0 if and only if ξ1 � ξ2
G2 ϑ(ξ1, ξ2) � ϑ(ξ2, ξ1) for all ξ1, ξ2 ∈ Z

G3 ϑ(ξ1, ξ3)≤ ϑ(ξ1, ξ2) + ϑ(ξ2, ξ3) for all ξ1, ξ2, ξ3 ∈ Z

+e notion of stability in the sense of Ulam–Hyers (UH),
Ulam–Hyers–Rassias (UHR), and generalized UHR of
fractional differential equations can be introduced as follows
(see e.g., [16]). We consider the following fractional dif-
ferential equation:

H t, κ,
C

D
􏽥λ
],tκ(t)􏼠 􏼡 � 0, (6)

and the following three inequalities:

H t, κ,
C

D
􏽥λ
],tκ(t)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε, (7)

H t, κ,
C

D
􏽥λ
],tκ(t)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ϱ(t), (8)

H t, κ,
C

D
􏽥λ
],tκ(t)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ εϱ(t), (9)

We define the stability of (6) as follows.

Definition 3. Equation (6) is called stable in the sense of UH
if for a given ε> 0 and a function κ which satisfies (7), and
there exists a solution κ0 of (6) such that

κ t1( 􏼁 − κ0 t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ cε. (10)

Definition 4. Equation (6) is called UHR stable if, for some
ε> 0 and a function κ satisfying (9), there exists a solution κ0
of (6) such that

κ t1( 􏼁 − κ0 t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ cεϱ t1( 􏼁, (11)

where ϱ(t1) is some positive, nondecreasing, and continuous
function.

Definition 5. Equation (6) is called generalized UHR stable
if, for some ε> 0 and a function κ satisfying (8), there exists a
solution κ0 of (6) such that

κ t1( 􏼁 − κ0 t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ cϱ t1( 􏼁. (12)

+e theorem below represents a basic well-known fixed
point theory (see [17]). +is theorem plays a fundamental
role in our study.

Theorem 2. Assume that (P, R) is a metric space that is
generalized completely. Let M: P⟶ P be a strictly con-
tractive operator. If there is an integer u≥ 0 with
R(Mu+1d, Mud)<∞ for some d ∈ P, therefore,

(a) liml⟶+∞Mld � d∗, where d∗ is the unique fixed
point of M in

P
∗ ≔ d1 ∈ P: R M

u
d, d1( 􏼁<∞􏼈 􏼉. (13)

(b) If d1 ∈ P∗, then R(d1, d∗)≤ (1/(1 − 􏽥K))R(Md1, d1).

Define the space X as X ≔ C(I,R).

Lemma 1. Define a metric d: X × X⟶ [0,∞] in such a
way that

d κ1, κ2( 􏼁 � inf 􏽥D ∈ [0,∞]:
κ1(s) − κ2(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E􏽥λ
􏽥η(s − ])

􏽥λ
􏼒 􏼓

≤ 􏽥Dβ(s), s ∈ I

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(14)

where 􏽥η> 0 and β ∈ C(I, (0, +∞)). ?en, (X, d) is a gen-
eralized complete metric space.

Remark 2. Note that the authors in [18] proved the existence
and uniqueness of global solutions using the norm:

‖κ‖c � supl∈[0,ϑ]

‖κ(l)‖

E􏽥λ
cl

􏽥λ
􏼒 􏼓

, for κ ∈ C [0, ϑ],R
d

􏼐 􏼑.
(15)

+is contribution is considered as a generalized version
of the interesting results in [19–21]. Our contribution is
original for many reasons. First, the metric used is a function
of the Mittag–Leffler function. Second, the obtained results
are in a complete generalized metric space. +ird, the tool
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used is a version of Banach fixed point theory. +e main
purpose of this study is to study the stability of the following
initial value problem:

C
D

􏽥λ
],ωy(ω) � G(ω, y(ω)),

y(]) � y],

(16)

in the sense depicted in Definitions 3–5, where 􏽥λ ∈ (0, 1),
CD

􏽥λ
],ω is the Caputo fractional derivative, and

G: I × R⟶ R is a given function. It should be noted that
the solution of the initial value problem (16) is given by

y(ω) � y] +
1
Γ(􏽥λ)

􏽚
ω

]
(ω − ς)

􏽥λ− 1
G(ς, y(ς))dς. (17)

2. Stability Results

In this section, we present our main results. In other words,
we prove that, under certain conditions, functions that
satisfy (16) approximately (in some sense) are close (in some
way) to the solutions of (16). We have done this in both UH
sense and also in UHR sense. +e following theorem rep-
resents the stability of (16) in the sense of UHR.

Theorem 3. Assume G: I × R⟶ R is continuous and
satisfies

G ω, κ1( 􏼁 − G ω, κ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ LG κ1 − κ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (18)

for all ω ∈ I, κi ∈ R, i � 1, 2, and for some LG > 0. If an ab-
solutely continuous function x: I⟶ R satisfies

C
D

􏽥λ
],ωx(ω) − G(ω, x(ω))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε(ω), (19)

for all ω ∈ I, where ε> 0 and ϱ(ω) is a positive, nonde-
creasing, and continuous function, then there is a solution x∗

of (16) such that

x(ω) − x
∗
(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

LG + δ
δ

􏼠 􏼡

ME􏽥λ
LG + δ( 􏼁T

􏽥λ
􏼒 􏼓

Γ(􏽥λ + 1)
, εϱ(ω),

(20)

where

M � sups∈[],]+T]

(s − ])
􏽥λ

E􏽥λ
LG + δ( 􏼁(s − ])

􏽥λ
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (21)

and δ is any positive constant.

Proof. Define the metric d on X in this way:

d x1, x2( 􏼁 � inf D ∈ [0,∞]:
x1(ω) − x2(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E􏽥λ
LG + δ( 􏼁(ω − ])

􏽥λ
􏼒 􏼓

≤Dϱ(ω), ∀ω ∈ I

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (22)

Now, define the operator A: X⟶ X such that

(Ay)(ω) ≔ x(]) +
1
Γ(􏽥λ)

􏽚
ω

]
(ω − s)

􏽥λ−1
G(s, y(s))ds.

(23)

It is easy to see that d(Ay0, y0)<∞, and
y ∈ X: d(y0, y)<∞􏼈 􏼉 � X, ∀y0 ∈ X.

Now, we prove that the operator A is a strictly con-
tractive operator:

Ay1( 􏼁(ω) − Ay2( 􏼁(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ≤ 􏽚
ω

]

(ω − ς)
􏽥λ− 1

Γ(􏽥λ)
G ς, y1(ς)( 􏼁 − G ς, y2(ς)( 􏼁􏼈 􏼉dς

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1
Γ(􏽥λ)

􏽚
ω

]
(ω − ς)

􏽥λ− 1
G ς, y1(ς)( 􏼁 − G ς, y2(ς)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dς

≤ LG 􏽚
ω

]
(ω − ς)

􏽥λ− 1 y1(ς) − y2(ς)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(􏽥λ)
dς

≤
LG

Γ(􏽥λ)
􏽚
ω

]
(ω − ς)

􏽥λ− 1 y1(ς) − y2(ς)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E􏽥λ
LG + δ( 􏼁(ς − ])

􏽥λ
􏼒 􏼓

E􏽥λ
LG + δ( 􏼁(ς − ])

􏽥λ
􏼒 􏼓dς

≤
LGd y1, y2( 􏼁

Γ(􏽥λ)
􏽚
ω

]
(ω − ς)

􏽥λ− 1ϱ(ς)E􏽥λ
LG + δ( 􏼁(ς − ])

􏽥λ
􏼒 􏼓dς, for allω ∈ I.

(24)
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Since ϱ is nondecreasing, therefore,

Ay1( 􏼁(ω) − Ay2( 􏼁(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
LGd y1, y2( 􏼁

Γ(􏽥λ)
ϱ(ω) 􏽚

ω

]
(ω − ς)

􏽥λ− 1
E􏽥λ

LG + δ( 􏼁(ς − ])
􏽥λ

􏼒 􏼓dς

≤
LGd y1, y2( 􏼁

LG + δ
E􏽥λ

LG + δ( 􏼁(ω − ])
􏽥λ

􏼒 􏼓 − 1􏼒 􏼓ϱ(ω)

≤
LGd y1, y2( 􏼁

LG + δ
E􏽥λ

LG + δ( 􏼁(ω − ])
􏽥λ

􏼒 􏼓􏼒 􏼓ϱ(ω), for allω ∈ I,

(25)

so that

d Ay1,Ay2( 􏼁≤
LG

LG + δ
d y1, y2( 􏼁, (26)

which means that the operator A is a strictly contractive
operator. Now, since we have

C
D

􏽥λ
],ωx(ω) − G(ω, x(ω))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ εϱ(ω), (27)

then,

|x(ω) − Ax(ω)|≤
ε
Γ(􏽥λ)

􏽚
ω

]
(ω − ς)

􏽥λ− 1ϱ(ς)dς, (28)

which implies that

|x(ω) − Ax(ω)|

E􏽥λ
LG + δ( 􏼁(ω − ])

􏽥λ
􏼒 􏼓

≤
ε
Γ(􏽥λ + 1)

ϱ(ω)
(ω − ])

􏽥λ

E􏽥λ
LG + δ( 􏼁(ω − ])

􏽥λ
􏼒 􏼓

≤
εM
Γ(􏽥λ + 1)

ϱ(ω).

(29)

+erefore,
d(x,Ax)≤ ε

M

Γ(􏽥λ + 1)
. (30)

By employing +eorem 2, there is a solution x∗ of (16)
such that

d x, x
∗

( 􏼁≤ ε
LG + δ

δ
􏼠 􏼡

M

Γ(􏽥λ + 1)
, (31)

so that

x(ω) − x
∗
(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

LG + δ
δ

􏼠 􏼡

ME􏽥λ
LG + δ( 􏼁T

􏽥λ
􏼒 􏼓

Γ(􏽥λ + 1)
, εϱ(ω),

(32)
for all ω ∈ I.

+e following theorem represents the stability of (16) in
the sense of UH. □

Theorem 4. Assume G: I × R⟶ R is continuous and
satisfies

G ω, κ1( 􏼁 − G ω, κ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ LG κ1 − κ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀ω ∈ I, κi ∈ R, i � 1, 2.

(33)

If an absolutely continuous function x: I⟶ R satisfies

C
D

􏽥λ
],ωx(ω) − G(ω, x(ω))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε, (34)

for all ω ∈ I and some ε> 0, then there is a solution x∗ of (16)
such that

x(ω) − x
∗
(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε

LG + δ
δ

􏼠 􏼡

ME􏽥λ
LG + δ( 􏼁T

􏽥λ
􏼒 􏼓

Γ(􏽥λ + 1)
,

(35)

where

M � sups∈[],]+T]

(s − ])
􏽥λ

E􏽥λ
LG + δ( 􏼁(s − ])

􏽥λ
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (36)

and δ is any positive constant.

Proof. +e proof is similar to +eorem 3. □

Remark 3. It should be noted that, in our analysis, we do not
assume any condition on the constant LG, unlike the case of
+eorem 4.1 in [20], where the condition 0< (LGr

􏽥λ/(Γ(􏽥λ +

1)))< 1 was a basic condition.
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Remark 4. Note that our results of the UH stability are some
generalizations of the results obtained in [19].

+e following theorem represents the stability of (16) in
the sense of generalized UHR.

Theorem 5. Assume G: I × R⟶ R is continuous and
satisfies

G ω, κ1( 􏼁 − G ω, κ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤LG κ1 − κ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (37)

for all ω ∈ I, κi ∈ R, i � 1, 2, and for some LG > 0. If an ab-
solutely continuous function x: I⟶ R satisfies

C
D

􏽥λ
],ωx(ω) − G(ω, x(ω))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ϱ(ω), (38)

for all ω ∈ I, where ϱ(ω) is a positive, nondecreasing, and
continuous function, then there is a solution x∗ of (16) such
that

x(ω) − x
∗
(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

LG + δ
δ

􏼠 􏼡

ME􏽥λ
LG + δ( 􏼁T

􏽥λ
􏼒 􏼓

Γ(􏽥λ + 1)
ϱ(ω),

(39)

where

M � sups∈[],]+T]

(s − ])
􏽥λ

E􏽥λ
LG + δ( 􏼁(s − ])

􏽥λ
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (40)

and δ is any positive constant.

Proof. +e proof is similar to +eorem 3. □

Remark 5. Notice that, in our study of the generalized UHR
stability, we do not assume any condition on LG, unlike the
case in +eorem 3.1 in [20].

Remark 6. Note that, in [19], the authors obtained stability
results for differential equations with integer-order deriv-
atives, while in our case, it is for fractional-order derivatives.
In this sense, we generalized the interesting results in [19].

3. Examples

Two illustrative examples are given to show the validity of
results.

Example 1. Consider equation (16) for 􏽥λ � 0.6, ] � 0, T � 9,
and G(ω, κ) � ω2 sin(κ).

We have

ω2 sin κ1( 􏼁 − ω2 sin κ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 81 κ1 − κ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀ω ∈ [0, 9], κ1, κ2 ∈ R.

(41)
+en, LG � 81.
Suppose that x satisfies

C
D

0.6
0,ωx(ω) − ω2 sin(x(ω))

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ 0.01(ω + 2), (42)

for all ω ∈ [0, 9].

Here, ε � 0.01 and ψ(ω) � ω + 2. Using +eorem 3,
there is a solution x∗ of the fractional differential equation
and M> 0 such that

x(ω) − x
∗
(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.01M(ω + 2), ∀ω ∈ [0, 9]. (43)

Example 2. Consider equation (16) for 􏽥λ � 0.4, ] � 0, T � 2,
and G(ω, κ) � ω4 cos(κ).

We have

ω4 cos κ1( 􏼁 − ω4 cos κ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 16 κ1 − κ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀ω ∈ [0, 2], κ1, κ2 ∈ R.

(44)

+en, LG � 16.
Suppose that x satisfies

C
D

0.4
0,ωx(ω) − ω4 cos(x(ω))

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ 0.01, (45)

for all ω ∈ [0, 2].
Here, ε � 0.01. Using+eorem 4, there is a solution x∗ of

the fractional differential equation and M> 0 such that

x(ω) − x
∗
(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.01M, ∀ω ∈ [0, 2]. (46)

4. Conclusion

It is known that, for the majority of fractional differential
problems, a widely applicable general approach to deter-
mine the analytical solutions is not available. In this paper,
we used a version of Banach fixed point theorem to prove
that, under certain conditions, functions that satisfy some
Caputo fractional differential equations approximately are
close in some sense to the exact solutions of such kind of
equations. In other words, we presented stability results for
some Caputo fractional differential equations in the sense
of UH, UHR, and generalized UHR. In our analysis, we
used a new metric as a function of the Mittag–Leffler
function. We end up with two examples that show the
validity of our results.
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