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Soil has no obvious yield point, and the classical elastoplastic theory contradicts the uncertainty of the plastic yield point of the soil.
+erefore, a fuzzy plastic Cambridge model based on the membership function was designed by combining the fuzzy mathematics
with the Cambridge model. +is model made the plastic membership function to correspond with the fuzzy yield function. +e
plastic strain at any stress state was calculated using the fuzzy Cambridge model and was compared with the indoor triaxial test
results, and they were in good agreement.+erefore, it is appropriate to use fuzzy mathematics to express the unobvious soil yield
property. +e characteristics of soil yield in any stress state is reflected by the fuzzy plastic theory, which indicates that there is
entirely no elasticity at any stress state. Moreover, the varying degrees of plasticity and the degree of plastic yield were uniquely
determined by the plastic membership function. +e fuzzy plastic model used the membership function change to replace the
complex hardening. Additionally, the cyclic loading path was clear and appropriate for the cyclic loading and
unloading calculations.

1. Introduction

+e elastoplastic theory states that the plastic deformation of
a material meets a certain yield condition. +e elastic and
plastic deformations are controlled by the yield condition,
and the material’s yield point is determined. Numerous
experiments have revealed that there is no apparent dis-
tinction between the elasticity and plasticity of the soil.
+erefore, it is inappropriate to use classic yield conditions
to handle the plastic deformation of soil materials, and the
effective approach is to use fuzzy mathematics to solve the
uncertainty of the soil yield point.

Many engineering structures and components often
operate under low cycle fatigue conditions. Cyclic load and
cyclic plastic strain are the root causes of material fatigue.
+erefore, the problem of cyclic strain analysis of elastic-
plastic materials is worth exploring.

+e stress point, presented in Figure 1, produced only
elastic strain. +e plastic strain occurred in accordance with
the hardening rule only when the stress point reached the

yield line f(p, q, εp
v ) � 0. +e technique to reflect the plastic

strain at any point in the elastic region depicted in Figure 1 is
a problem that needs to be solved. +e stress state within the
yield surface did not produce plastic strain to solve this
problem Hashiguch [1] proposed a lower load surface
concept. Dafalias [2–4] proposed a boundary surface model
to calculate the plasticity in the initial yield surface. Klisinski
[5] proposed applying fuzzy mathematics to plastic me-
chanics theory and established the basic framework of fuzzy
plastic mechanics. Jiang [6] analyzed the fuzzy factors in
elastoplastic mechanics and explained the ambiguity of the
yield and failure criterion of concrete materials. Moreover,
he proposed the idea of describing the yield state with a
membership function. Fu et al. established and demon-
strated the uniqueness and existence of the fuzzy elasto-
viscoplastic constitutive model along with its solution and
studied the continuous transition of elastoplasticity in statics
[7, 8]. Wang et al. [9–11] studied the plastic membership
function of geotechnical media.+ey obtained a fuzzy plastic
constitutive model suitable for geotechnical media and
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provided a general method for transforming the plastic
model into a fuzzy plastic model. Considering the com-
plexity of geotechnical materials, many scholars [12–15]
used fuzzy mathematics to analyze geotechnical problems.
Landgraf used a multistage load test method to describe the
cyclic response of the material. Morrow described the cyclic
stress-strain relationship with analytical expressions; how-
ever, the expression was not accurate enough to reflect the
strength and weakness of the material. Li [16] proposed an
improved boundary surface model of remolded clay that
considered the elastoplastic loading and unloading processes
under cyclic loading. +e model adopted a simple boundary
surface form, which oversimplified the derivation and cal-
culation of the model theory. Based on the existing con-
stitutive model, Zhao [17] proposed a cyclic boundary
surface constitutive model of saturated sand. Zhou [18]
proposed a secondary loading surface model suitable for
cyclic loading and unloading of rocks based on the
Drucker–Prager yield criterion combined with the sec-
ondary loading surface. Huang [19] proposed an elasto-
plastic constitutive model using the boundary surface
plasticity theory and described the mechanical properties of
unsaturated soil under cyclic loading. Based on the movable
hardening criterion of the hardening center and boundary
surface, Yao [20] described the anisotropy of soil caused by
cyclic loading. Furthermore, he proposed a detailed plastic
modulus interpolation method that enabled the model to
accurately describe the cyclic stability of saturated clay under
low stress levels. Instead of the plastic volumetric strain
increment, Dong [21] used hardening parameters inde-
pendent of the stress path to modify the yield surface of the
modified Cambridge model.

+e soil yield is unobvious, and the calculation of the
cyclic loading and unloading processes is complicated. In
this study, we introduce the plastic membership function
into the Cambridge model to obtain the fuzzy plastic
Cambridge model. +e fuzzy plastic Cambridge model is

used to describe the fuzziness of the soil yield and solve the
problems of cyclic loading and unloading. +e fuzzy plastic
model uses the change in the fuzzy cone surface to distinctly
reflect the loading and unloading paths during cyclic loading
and unloading. +e continuous change in the plastic
membership function can replace the complicated hard-
ening law; therefore, the fuzzy plastic model is more suitable
for cyclic loading and unloading problems.

2. Fuzzy Yield Function

2.1. Yield Function Fuzzification. +e critical state of the
Cambridge model is defined as

q � M∗p. (1)

According to the energy equation and the associated flow
law, the plastic potential function of the Cambridge model
has the same form as the yield function:

f � M lnp +
q

p
+ C � 0, (2)

where C is a constant.
When q� 0, the corresponding intersection point of the

classical initial yield surface and the p-axis is pmax, it can be
obtained from equation (2) that C � − M ln pmax, and
equation (2) becomes

f � M lnp +
q

p
− M ln pmax � 0. (3)

According to equation (3), we obtain

ln pmax � lnp +
1

M

q

p
. (4)

+e stress points in the elastic region, presented in
Figure 1, cannot satisfy equation (4). Moreover, to make the
stress points in the elastic region meet the corresponding
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Initial yield surface

Figure 1: +e elastic area of the Cambridge model.
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yield function, we need to shift the yield function and pmax to
the left at a certain intersection point p∗max. Subsequently, the
original stress point in the elastic region is positioned on the
corresponding fuzzy yield surface, as shown in Figure 2.
+erefore, the fuzzy yield function can be expressed as

f
∗

� M lnp +
q

p
− M ln p

∗
max � 0. (5)

According to equation (5), when p∗max moves from right
to left, the stress point located in the elastic region (depicted
in Figure 1) is positioned on a unique fuzzy yield functionf∗

based on the stress state.

2.2. Plastic Membership Function. Fuzzy plasticity theory
states that the stress state and test parameters determine only
the fuzzy yield function established in the classical initial
yield function. +e stress-state parameter of the fuzzy yield
function is p∗max, as shown in Figure 2. Furthermore, as
shown in Figure 3, it can also be a combination of stress
invariants I1 and J2, which represents the size of the hy-
drostatic pressure axis and deviation on the π plane, re-
spectively. It can also be a combination of other stress or
strain invariants. +e yield degree (plastic strain) of a fuzzy
yield function is determined by the plastic membership
function μ that corresponds to the fuzzy yield function and μ
is determined by the amount of the stress state that rep-
resents f∗.

According to the fuzzy plasticity theory, any stress point
in the elastic region depicted in Figure 1 is in a yielding state;
however, the degree of yielding varies. +ere is no absolute
elasticity or plasticity in the fuzzy plasticity theory, and it can
effectively reflect the elastic region’s degree of plasticity in
the classical initial yield plane.+e fuzzy plastic membership
function adopts the assigned plastic membership function
form (of course, numerical algorithms such as inversion

analysis can be used to determine a more realistic form) to
explain the fuzzy plasticity theory.+e stress-state parameter
adopts p∗max, and the plastic membership function form is

μ �
p∗max
pmax

􏼠 􏼡

α

. (6)

In equation (6), α is the model parameter, which can be
determined experimentally.

Explanation of fuzzy plastic membership function:

(1) When μ � 0, the fuzzy yield function is the initial
yield function of loading, and the yield degree is 0%

(2) When μ � 1, the fuzzy yield function is the classical
initial yield function, and the yield degree is 100%

(3) When 0%< μ< 100%, the fuzzy yield function is
between the initial yield function of loading and the
classical initial yield function, and the yield degree is
μ∗ 100%

According to equations (5) and (6), p∗max determines a
plastic membership function value and a fuzzy plastic yield
function, and the calculation results of the plastic mem-
bership function are presented in Table 1.

+e relationship between the different plastic mem-
bership function parameters and stress is shown in Figure 4.

As depicted in Table 1 and Figure 4, the corresponding
stress and plastic membership function evolution laws are
different for different α. When α<1, the plastic membership
function and stress exhibited a curved growth relationship;
however, the slope kept decreasing. When α� 1, the plastic
membership function had a linear growth relationship with
stress. Furthermore, when α>1, the plastic membership
function and stress had a curved growth relationship, and
the slope continued to increase. Additionally, with the in-
crease in p∗max, the plastic membership function continu-
ously increased from 0% to 100%, and the degree of plasticity

q
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Figure 2: Fuzzy yield surface.
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increased from low to high. In the same stress state, the
plastic strain and value of α were inversely proportional; the
larger the plastic strain, the smaller the value of α, which was
determined experimentally.

2.3. Fuzzy Plastic Strain. +e fuzzy plastic Cambridge model
adopted the associated flow law, and the plastic hardening
parameter was the plastic volume strain εp

v . +e plastic strain
increment was orthogonal to the plastic potential surface.
+e results based on the isotropic consolidation test are

shown in Figure 5. +e initial void ratio is e0, and the slopes
of the loading and unloading curves are λ and κ, respectively.

+e change in void ratio for the load from any point in
the elastic region depicted in Figure 1 is

Δe � e − e0 � − λ ln
p
∗
max
p0

. (7)

+e total volumetric strain can be expressed as

ε] �
− Δe
1 + e0

�
λ

1 + e0
ln

p
∗
max
p0

. (8)

Pmax1* Pmax2* Pmax

q

P

Critical state line
Initial yield surface

Fuzzy yield surface
Fuzzy yield surface

Figure 3: Evolution of fuzzy yield surface.

Table 1: Plastic membership function table.

p∗max pmax p∗max/pmax
μ(%)

α� 0.5 α� 1 α� 2 α� 5 α� 10

1.6 188 0.0081 9.21 0.85 0.01 0.00 0.00
10 188 0.0510 23.06 5.32 0.28 0.00 0.00
20 188 0.1020 32.62 10.64 1.13 0.00 0.00
30 188 0.1531 39.95 15.96 2.55 0.01 0.00
40 188 0.2041 46.13 21.28 4.53 0.04 0.00
50 188 0.2551 51.57 26.60 7.07 0.13 0.00
60 188 0.3061 56.49 31.91 10.19 0.33 0.00
70 188 0.3571 61.02 37.23 13.86 0.72 0.01
80 188 0.4082 65.23 42.55 18.11 1.40 0.02
90 188 0.4592 69.19 47.87 22.92 2.51 0.06
100 188 0.5102 72.93 53.19 28.29 4.26 0.18
110 188 0.5612 76.49 58.51 34.23 6.86 0.47
120 188 0.6122 79.89 63.83 40.74 10.60 1.12
130 188 0.6633 83.16 69.15 47.82 15.81 2.50
140 188 0.7143 86.29 74.47 55.45 22.90 5.24
150 188 0.7653 89.32 79.79 63.66 32.33 10.46
160 188 0.8163 92.25 85.11 72.43 44.65 19.94
170 188 0.8673 95.09 90.43 81.77 60.46 36.55
180 188 0.9184 97.85 95.74 91.67 80.46 64.74
185 188 0.9439 99.20 98.40 96.83 92.27 85.14
188 188 1.0000 100.00 100.00 100.00 100.00 100.00
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From equation (8), we can see

εe
v �

κ
1 + e0

ln p
∗
max − ln p0( 􏼁, (9)

εp
v �

λ − κ
1 + e0

ln p
∗
max − ln p0( 􏼁, (10)

where εp
v is the corresponding plastic volume strain of the

fuzzy yield function and f∗ is the hardening parameter of
the fuzzy plastic Cambridge model.

ln p
∗
max �

1 + e0

λ − κ
εp

v + ln p0. (11)

Substituting equation (11) in (5), we obtain

M lnp +
q

p
− M

1 + e0

λ − κ
εp

v + ln p0􏼒 􏼓 � 0. (12)

Sorting equation (12), we obtain

λ − κ
1 + e0

lnp +
1

M

λ − κ
1 + e0

1
M

q

p
− εp

v −
λ − κ
1 + e0

ln p0 � 0. (13)

Let cp � λ − κ/1 + e0; then, the fuzzy yield function in
equation (12) becomes

Cp lnp +
1

M
Cp

1
M

q

p
− εp

v − Cp ln p0 � 0. (14)

According to the consistency conditions, we can derive

zf
∗

zp
dp +

zf
∗

zq
dq +

zf
∗

zεp
v

dεp
v � 0. (15)

According to equation (14), we know
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Figure 4: Evolution of plastic membership function.
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zf
∗

zεp
v

� − 1. (16)

According to the associated flow law, the plastic potential
function is orthogonal to the direction of the plastic strain
increment, and the fuzzy plastic volume strain can be
represented as

dεp
v � Λ

zg

zp
, (17)

where Λ is the plastic scalar factor, which represents the size
of the plastic strain increment, and zg/zp is the development
direction of the plastic strain increment. Substituting
equations (16) and (17) in (15), we obtain

zf
∗

zp
dp +

zf
∗

zq
dq − Λ∗

zg

zp
� 0. (18)

According to equation (18), the plastic scalar factor is

Λ �
zf
∗/zp( 􏼁dp + zf

∗/zp( 􏼁dq

zg/zp
. (19)

According to the relationship between the plastic po-
tential function and the fuzzy yield function of the Cam-
bridge model, from equation (14), we obtain

zf
∗

zp
� Cp

1
p

− Cp

1
M

q

p
2, (20)

zf
∗

zq
� Cp

1
M

1
p

, (21)

zg

zp
�

zf
∗

zp
� Cp

1
p

− Cp

1
M

q

p
2. (22)

Substituting equations (20)–(22) in (19), Λ can be ob-
tained as

Λ �
Cp(1/p) − Cp(1/M) q/p2

􏼐 􏼑􏽨 􏽩dp + Cp(1/M)(1/p)􏽨 􏽩dq

Cp(1/p) − Cp(1/M) q/p2
􏼐 􏼑

.

(23)

Substituting equations (22) and (23) in (17), the plastic
strain increment dεp

v can be obtained as

dεp
v � Cp(1/p) − Cp(1/M) q/p2

􏼐 􏼑􏽨 􏽩dp + Cp(1/M)(1/p)􏽨 􏽩dq.

(24)

According to the Cambridge model equation (22), the
relationship between the stress ratio and strain increment is

q

p
� M −

dεp
v

dεp

d

, (25)

where dεp

d is the plastic shear strain increment.
Substituting equation (24) in (25), dεp

d can be obtained as
follows:

dεp

d �
1

M − (q/p)
Cp(1/p) − Cp(1/M) q/p2

􏼐 􏼑􏽨 􏽩dp􏽨

+ Cp(1/M)(1/p)􏽨 􏽩dq􏽩.

(26)

According to equations (24) and (26), the fuzzy plastic
volumetric strain increment d(εp

v )∗ and the fuzzy plastic
shear strain increment d(εp

d)∗ in the elastic region can be
obtained as

d εp
v( 􏼁
∗

� μdεp
v � μ Cp(1/p) − Cp(1/M) q/p2

􏼐 􏼑􏽨 􏽩dp + Cp(1/M)(1/p)􏽨 􏽩dq,

d εp

d􏼐 􏼑
∗

� μdεp

d � μ
1

M − (q/p)
Cp(1/p) − Cp(1/M) q/p2

􏼐 􏼑􏽨 􏽩dp + Cp(1/M)(1/p)􏽨 􏽩dq􏽨 􏽩.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

+e elastic strain increment was calculated in accordance
with elastic theory. After deriving the Cambridge model, the
elastic strain increment can be expressed as

dεe
v �

κ
1 + e0

1
p
dp,

dεe
d �

2
9

κ
1 + e0

1 + v

1 − 2v

1
p
dq.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

+e total strain increment was composed of the elastic
strain increment dεe and the fuzzy plastic strain increment
d(εp)∗, which can be expressed as

dεv � dεe
v + d εp

v( 􏼁
∗
,

dεd � dεe
d + d εp

d􏼐 􏼑
∗
.

⎧⎪⎨

⎪⎩
(29)

3. Analysis of Calculation Results

3.1. Model Verification and Parameter Determination.
+e soil properties of a certain cohesive soil are listed in
Table 2. A static triaxial test on the cohesive soil was con-
ducted using a geotechnical triaxial test system, as shown in
Figure 6. +e cylindrical soil sample had a diameter of
39.1mm and a height of 80mm. To ensure the uniformity of
the sample, it was compacted in five layers using the wet
ramming method. In the triaxial pressure chamber, the soil
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sample was saturated by applying back pressure and airless
water. +e specimens were consolidated under different
confining pressures for 24 h in each direction. After con-
solidation was completed, a static triaxial test was performed
under the confining pressures of 30 kPa, 60 kPa, and 90 kPa
to verify the reliability of the model.

A comparison between the triaxial test results and the
calculation results of the fuzzy plastic Cambridge model is
shown in Figure 7.

Figure 7 reveals that the triaxial test results are consistent
with the calculation results of the fuzzy plastic Cambridge
model. +e test result is between α � 1 and α � 1.2 of the
plastic membership function, and when α � 1.2, the test
result is closer to the calculation result of the fuzzy plastic
Cambridge model.+emodel parameters can be determined
by comparing the experiments and models.

3.2. Calculation of the Model. According to equation (22),
the loading path values are listed in Table 3.

Modify p∗max to 188 kPa according to the load path, and
when α� 1, the calculation results of the fuzzy plastic
Cambridge model are presented in Table 4.

+e plastic strain results calculated using the fuzzy
plastic Cambridge model for varied parameters of the plastic
membership function are depicted in Figure 8.

As shown in Figure 8, the plastic strain of the soil
material can be easily calculated according to the fuzzy
plastic Cambridge model in the original elastic region.When
the shear strain and q/p are stable, the larger the plastic
membership function parameter, the smaller the plastic
body strain. However, when Inp is stable, the larger the
plastic membership function parameter, the larger the
plastic body strain.

Figure 9 depicts that the plastic body strain and plastic
shear strain change continuously with a continuous change
in plastic membership function; moreover, the size is
controlled by the plastic membership function’s value. +e
greater the value of the plastic membership function, the
greater the plastic shear and plastic body strains. Notably,

the plastic membership function can effectively reflect the
plastic strain of the stress point in the original elastic region,
and there is a one-to-one correspondence between the
plastic strain and the degree of plastic membership.

3.3. Cyclic Loading and Unloading. Using the soil sample
listed in Table 2, the axial cyclic loading and unloading were
increased for the test under certain confining pressure
conditions. To exhibit the plastic strain inside the initial yield
surface, cyclic loading and unloading action were applied
between a fuzzy yield surface (0< μ< 1) and the initial yield
surface (μ�1). +e axial dynamic load adopts the form of a
sine wave with a frequency of 1Hz. +e law of loading and
unloading is defined by

q(t) � qj + qd ∗ sin 2πt +
3
2
π􏼒 􏼓, (30)

where q(t) represents the magnitude of the dynamic load at
time t and qd represents the dynamic load amplitude.

+e initial consolidation pressure of the test soil was
200 kPa, and the values of the cyclic loading are listed in
Table 5.

+e stress-strain curves calculated using the fuzzy plastic
model are shown in Figure 10.

Figure 10 indicates that different initial confining
pressures correspond to different plastic membership
function values, affecting the cyclic loading and unloading
results. When the initial confining pressure is stable, the
cyclic loading and unloading curves increase for an increase
in the plastic membership function value. Moreover, when
the plastic membership function value is stable, the increase
in the initial confining pressure increases the cyclic loading
and unloading curves.+e cyclic loading and unloading path
is clear, and its mathematical expression is simple; therefore,
fuzzy plasticity theory can solve the problem of cyclic
loading and unloading. +e loading and unloading path can
be noticed using the fuzzy cone surface; thus, the fuzzy
plastic theory has more advantages than the classical plastic
theory in the cyclic loading and unloading problem.

Table 2: Cohesive soil parameters.

e0 ρ (g/cm3) ] E (Gpa) C (Kpa) ϕ(0) λ κ M

0.65 1.936 0.252 4.565 35 34 0.0865 0.0185 1.33

Figure 6: Triaxial test equipment.
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Figure 7: Test comparison curve of q/p − (εp
v )∗ − (εp

d)∗ for different confining pressures. (a) 30 kpa. (b) 60 kpa. (c) 90 kpa.

Table 3: Load path table.

p q η� q/p p∗max

1.5942 0.001594191 0.001 1.595390284
2.7742 0.065563384 0.024 2.823927555
3.9542 0.182947243 0.046 4.094166046
5.1342 0.353745768 0.069 5.407175311
6.3142 0.577958959 0.092 6.764049334
7.4942 0.855586815 0.114 8.165907053
8.6742 1.186629338 0.137 9.613892893
9.8542 1.571086526 0.159 11.10917731
11.0342 2.00895838 0.182 12.65295736
12.2142 2.500244901 0.205 14.24645723
13.3942 3.044946087 0.227 15.89092888
14.5742 3.643061938 0.250 17.58765257
15.7542 4.294592456 0.273 19.33793751
16.9342 4.99953764 0.295 21.14312244
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Table 3: Continued.

p q η� q/p p∗max

18.1142 5.757897489 0.318 23.00457629
19.2942 6.569672005 0.340 24.9236988
20.4742 7.434861186 0.363 26.9019212
21.6542 8.353465033 0.386 28.94070684
22.8342 9.325483546 0.408 31.04155191
24.0142 10.35091673 0.431 33.20598609
25.1942 11.42976457 0.454 35.43557332
26.3742 12.56202708 0.476 37.73191248
27.5542 13.74770426 0.499 40.09663813
28.7342 14.9867961 0.522 42.53142129
29.9142 16.27930261 0.544 45.03797019
31.0942 17.62522378 0.567 47.61803106
32.2742 19.02455962 0.589 50.27338894
33.4542 20.47731013 0.612 53.00586846
34.6342 21.9834753 0.635 55.81733475
35.8142 23.54305514 0.657 58.70969419
36.9942 25.15604964 0.680 61.68489538
38.1742 26.82245881 0.703 64.74492995
39.3542 28.54228265 0.725 67.89183351
40.5342 30.31552115 0.748 71.12768653
41.7142 32.14217431 0.771 74.45461534
42.8942 34.02224215 0.793 77.87479303
44.0742 35.95572465 0.816 81.39044046
45.2542 37.94262181 0.838 85.00382727
46.4342 39.98293364 0.861 88.71727286
47.6142 42.07666014 0.884 92.53314749
48.7942 44.2238013 0.906 96.45387327
49.9742 46.42435713 0.929 100.4819253
51.1542 48.67832762 0.952 104.6198328
52.3342 50.98571278 0.974 108.87018
53.5142 53.34651261 0.997 113.2356078
54.6942 55.7607271 1.019 117.7188144
55.8742 58.22835626 1.042 122.3225567
57.0542 60.74940008 1.065 127.0496517
58.2342 63.32385857 1.087 131.9029774
59.4142 65.95173173 1.110 136.8854745
60.5942 68.63301955 1.133 142.0001471
61.7742 71.36772204 1.155 147.2500648
62.9542 74.15583919 1.178 152.6383634
64.1342 76.99737101 1.201 158.1682463
65.3142 79.89231749 1.223 163.8429866
66.4942 82.84067864 1.246 169.6659275
67.6742 85.84245446 1.268 175.6404848
68.5656 88.52504486 1.291 181.0082873
69.0256 89.905844 1.303 183.7912786
69.1500 92.169 1.330 188

Table 4: Calculation results when α� 1.

η� q/p p∗max μ (εv
p)∗ (εd p)∗

0.001 1.595390284 0.008486119 0 0
0.024 2.823927555 0.015020891 − 0.000269363 0.000206193
0.046 4.094166046 0.021777479 − 0.000547907 0.000423172
0.069 5.407175311 0.028761571 − 0.000835868 0.000651513
0.092 6.764049334 0.035978986 − 0.001133486 0.000891825
0.114 8.165907053 0.043435676 − 0.001441009 0.001144757
0.137 9.613892893 0.051137728 − 0.00175869 0.001410999
0.159 11.10917731 0.059091369 − 0.002086785 0.001691287
0.182 12.65295736 0.067302965 − 0.002425559 0.001986403
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Table 4: Continued.

η� q/p p∗max μ (εv
p)∗ (εd p)∗

0.205 14.24645723 0.075779028 − 0.002775281 0.002297185
0.227 15.89092888 0.084526217 − 0.003136229 0.002624525
0.250 17.58765257 0.093551343 − 0.003508684 0.00296938
0.273 19.33793751 0.10286137 − 0.003892934 0.003332772
0.295 21.14312244 0.112463417 − 0.004289276 0.003715797
0.318 23.00457629 0.122364767 − 0.00469801 0.004119632
0.340 24.9236988 0.132572866 − 0.005119446 0.00454554
0.363 26.9019212 0.143095326 − 0.005553899 0.004994881
0.386 28.94070684 0.15393993 − 0.006001692 0.005469121
0.408 31.04155191 0.165114638 − 0.006463155 0.005969839
0.431 33.20598609 0.176627586 − 0.006938624 0.006498746
0.454 35.43557332 0.188487092 − 0.007428446 0.00705769
0.476 37.73191248 0.200701662 − 0.007932972 0.007648678
0.499 40.09663813 0.21327999 − 0.008452562 0.008273888
0.522 42.53142129 0.226230964 − 0.008987587 0.008935692
0.544 45.03797019 0.239563671 − 0.009538421 0.009636677
0.567 47.61803106 0.253287399 − 0.010105451 0.010379673
0.589 50.27338894 0.267411643 − 0.01068907 0.011167779
0.612 53.00586846 0.281946109 − 0.01128968 0.0120044
0.635 55.81733475 0.296900717 − 0.011907693 0.012893286
0.657 58.70969419 0.312285607 − 0.012543529 0.01383858
0.680 61.68489538 0.328111146 − 0.013197618 0.01484487
0.703 64.74492995 0.344387925 − 0.013870399 0.015917259
0.725 67.89183351 0.361126774 − 0.014562321 0.017061436
0.748 71.12768653 0.378338758 − 0.015273843 0.018283772
0.771 74.45461534 0.396035188 − 0.016005434 0.01959143
0.793 77.87479303 0.414227622 − 0.016757573 0.020992496
0.816 81.39044046 0.432927875 − 0.01753075 0.022496147
0.838 85.00382727 0.452148017 − 0.018325466 0.024112847
0.861 88.71727286 0.471900388 − 0.019142232 0.0258546
0.884 92.53314749 0.492197593 − 0.019981571 0.027735261
0.906 96.45387327 0.513052517 − 0.020844017 0.029770933
0.929 100.4819253 0.534478326 − 0.021730117 0.031980474
0.952 104.6198328 0.556488472 − 0.022640428 0.034386158
0.974 108.87018 0.579096702 − 0.023575519 0.037014543
0.997 113.2356078 0.602317063 − 0.024535975 0.039897639
1.019 117.7188144 0.626163906 − 0.025522389 0.043074497
1.042 122.3225567 0.650651897 − 0.026535371 0.046593422
1.065 127.0496517 0.67579602 − 0.02757554 0.050515137
1.087 131.9029774 0.701611582 − 0.028643533 0.054917416
1.110 136.8854745 0.728114226 − 0.029739998 0.059902102
1.133 142.0001471 0.755319932 − 0.030865597 0.065606152
1.155 147.2500648 0.783245026 − 0.032021009 0.072219839
1.178 152.6383634 0.811906188 − 0.033206923 0.080018488
1.201 158.1682463 0.841320459 − 0.034424048 0.089421975
1.223 163.8429866 0.871505248 − 0.035673105 0.101117263
1.246 169.6659275 0.902478338 − 0.036954832 0.116345697
1.268 175.6404848 0.934257898 − 0.038269982 0.13771866
1.291 181.0082873 0.962810039 − 0.039452315 0.168112812
1.303 183.7912786 0.977613184 − 0.04006385 0.190350448
1.330 188 1 − 0.04124346 0.192589561
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Figure 8: +e calculation result curve of the fuzzy Cambridge model. (a) Curve of (εd p)∗ − (εv
p)∗. (b) Curve of lnp − (εp

v )∗. (c) Curve of
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Figure 9: Continued.
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4. Discussion

+e core of the fuzzy plasticity theory is to select an ap-
propriate plastic membership function. +is study adopts the
assignment-type plastic membership function form; however,
it cannot accurately reflect the plasticity of the material. +e
subsequent step of the study uses an inversion analysis to
determine a more appropriate membership function.

5. Conclusion

+is study combined fuzzy mathematics with the Cambridge
model and used the associated flow law to obtain a fuzzy
plastic Cambridge model. +e model reflected the plastic
strain of the stress point in the classical initial yield plane and
the unobvious characteristics of the soil’s yield point. +e
fuzzy plastic Cambridge model controlled the plastic strain
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Figure 9: Relationship between plastic membership function and stress-strain. (a) α� 0.2. (b) α� 1. (c) α� 1.2. (d) α� 2.
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Figure 10: Cycle loading and unloading curves.

Table 5: Cyclic load amplitude values.

p qj qd μ α
90 145 55 0.38 1.2
60 130 70 0.24 1.2
30 115 85 0.10 1.2
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according to the degree of plastic membership. By com-
paring and analyzing the fuzzy Cambridge model and the
triaxial test results, the model parameters were determined,
and the reliability of the fuzzy plastic Cambridge model was
verified. +e fuzzy plasticity theory considered elastoplas-
ticity. In the cyclic loading and unloading process, the
change in the fuzzy cone surface indicated the loading and
unloading paths. +e mathematical expressions in the
loading and unloading processes were simple, and the
loading path was clear. +is proved that the fuzzy plastic
model is appropriate for solving the cyclic loading and
unloading problems. +e fuzzy plasticity theory is based on
fuzzy mathematics and classical plasticity models. Most
plastic models can be transformed into fuzzy plastic con-
stitutive models because there is no need to build a new
plastic constitutive model. +erefore, fuzzy plasticity theory
is easy to popularize.
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