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The main objective of the study was to investigate performance of three soft computing models: Naive Bayes (NB), Multilayer
Perceptron (MLP) neural network classifier, and Alternating Decision Tree (ADT) in landslide susceptibility mapping of
Pithoragarh District of Uttarakhand State, India. For this purpose, data of 91 past landslide locations and ten landslide influencing
factors, namely, slope degree, curvature, aspect, land cover, slope forming materials (SFM), elevation, distance to rivers, geo-
morphology, overburden depth, and distance to roads were considered in the models study. Thematic maps of the Geological
Survey of India (GSI), Google Earth images, and Aster Digital Elevation Model (DEM) were used for the development of landslide
susceptibility maps in the Geographic Information System (GIS) environment. Landslide locations data was divided into a 70: 30
ratio for the training (70%) and testing/validation (30%) of the three models. Standard statistical measures, namely, Positive
Predicted Values (PPV), Negative Predicted Values (NPV), Sensitivity, Specificity, Mean Absolute Error (MAE), Root Mean
Squire Error (RMSE), and Area under the ROC Curve (AUC) were used for the evaluation of the models. All the three soft
computing models used in this study have shown good performance in the accurate development of landslide susceptibility maps,
but performance of the ADT and MLP is better than NB. Therefore, these models can be used for the construction of accurate
landslide susceptibility maps in other landslide-prone areas also.

1. Introduction world [1]. Every year casualties in the Himalayan region are

about 200 people, and economic loss due to landslides is
Landslide occurrences in Himalayan region are 30% of the =~ more than US$ 1 billion [2]. Causes of landslides are natural
total landslides in the world. Landslides cause huge loss of ~ and anthropogenic. Landslides are affected by geological,
economy, damage to property, and loss of life all over the = topographical, meteorological, and geo-environmental
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factors. Land-use pattern changes due to anthropogenic
activities such as road construction, power houses excava-
tions, and open-pit/cast mining cause landslides [3]. Natural
causes of landslides include earthquakes, glacier melting,
and rainfall. Currently, impact of the climate change has
drastically amplified the landslides phenomenon globally
(4, 5].

Landslide susceptibility map is regarded as an integral
part of landslide management of a particular region [6, 7].
Such maps find their applications in minimizing landslide
risk to human life, man-made infrastructures, particularly
network of roads in mountainous regions, and land-use
planning [8]. Landslide susceptibility means that the area is
susceptible to landslides and probability of occurrence of
landslides is there on the basis of past experience under
similar geo-environment conditions [9]. There are several
statistical techniques aided by Geographic Information
System (GIS) and Remote Sensing methods that have been
widely employed by many researchers to formulate models
in order to generate landslide susceptibility maps. In general,
there are two main approaches used in modeling and
mapping of the landslide susceptibility, namely, quantitative
and qualitative methods [10]. In qualitative methods, ex-
pert’s opinion-based models are often used and applied such
as Analytical Hierarchy Process (AHP) and Weighted Linear
Combination (WLC) [11]. Whereas, quantitative methods
can be classified as deterministic and probabilistic methods
which involve the mathematical relationship between
landslides’ occurrences and their associated affecting factors.
Statistical and Machine Learning methods such as Binary
Logistic Regression, Information Value, Likelihood Ratio,
Logistic Regression (LR), and Multivariate Regression are
some the quantitative methods applied for landslide sus-
ceptibility modeling and mapping [12-15]. Furthermore,
few other algorithms with optimum performance and a
higher degree of accuracy used in the landslide susceptibility
mapping include Discriminant Analysis, Generalized Ad-
ditive Models, Evidential Belief Functions, Weighted Linear
Combinations, and Weights of Evidence [16-20]. Also,
Certainty Factors, Probabilistic Models, Modified Bayesian
Estimation, Information Values [21-24], Dempster—Shafer
models, and Index of Entropy are also widely used as the
statistical quantitative techniques to map the landslide
susceptible areas [25-28].

Nowadays, researchers are extensively using Machine
Learning (ML) algorithms in studies related to natural
hazards including landslide studies, such as Multivariate
Adaptive Regression Spline [29], Support Vector Machine
(SVM) [30], Classification and Regression Trees [31],
Boosted Regression [32], Quadratic Discriminant Analysis
[33], Naive Bayes Tree (NBT) [34], Maximum Entropy [35],
Random Forest (RF) [36], Artificial Neural Networks (ANN)
[37], and Generalized Linear Model [38]. In addition, Naive
Bayes (NB), Multilayer Perceptron (MLP) neural network
classifier, and Alternating Decision Tree (ADT) are widely
employed algorithms to investigate landslide susceptibility
[39-41]. Recently, Senouci et al. [42] deployed a knowledge-
driven approach alongside Analytical Hierarchy Process
(AHP) in a GIS-based environment to evaluate the landslide
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susceptibility map in Algeria. Hong et al. [41] evaluated two-
class Kernel Logistic Regression (KLR), SVM, and ADT for
landslide susceptibility mapping at the Yihuang area
(China). It was found that ADT has better capabilities
concerning to the prediction compared to SVM and KLR.
Sahana et al. [43] employed the MLP neural network to
estimate rainfall induced landslide susceptibility. Chen and
Wang [44] compared KLR, NBT, and ADT models for
landslide susceptibility assessment at Taibai County, China.

In the present research, the main objective was to use
three soft computing ML algorithms, namely, NB, MLP, and
ADT-based models, which are popular ML models, to
predict the landslide susceptibility of Pithoragarh District of
Uttarakhand State, India, which is one of the landslide-
prone areas in the Himalayas. In literature, there are several
studies have been carried out in landslide susceptibility
mapping in Himalayas areas [45-47]. However, the appli-
cation of ML models is still limited. Moreover, during lit-
erature survey, it is noticed that, for the first time, these
models have been applied in this area for landslide sus-
ceptibility mapping. Thus, the main objective of this study
was to apply best ML models for the accurate landslide
susceptibility mapping of the study area.

In this study, standard statistical measures including
Receiver Operating Characteristic (ROC) curve techniques
were used to evaluate performance of the models for the
selection of the best model for the accurate landslide sus-
ceptibility mapping. The maps produced would be useful for
regional planning and disaster management. Weka software
was used for the models study and GIS software for the
development of thematic maps and visualization.

2. Material and Methods

2.1.Study Area. In the present study, the Pithoragarh district
of Uttarakhand, India, has been selected as it is one of the
prominent landslide-prone areas of the Himalayas [48]. This
area is mountainous, characterized by high hills and deep
valleys having elevation ranges between 1500 m and 2500 m
gradually increasing from south to north (Figure 1). Two
main rivers Sarju and Ramganga flow in this area forming
deep valleys/gorges. The region is susceptible to occurrence
of landslides on the excavated slopes of road sections par-
ticularly on Bansura-Rameshwar Ghat Road, in the north-
east part, in the suburbs of Muwani, Dewal Thal, northern
Chera, and Gangolihat places. Geologically, the aforemen-
tioned area is complex due to presence of folded and faulted
rocks, belonging to Almora crystalline (granitoid) group and
Garhwal group (shale, slate, phyllite, quartzite, dolomite,
limestone, magnesite, occasional calc slate, and meta-
volcanics). The region witnesses tectonic activities that ul-
timately lead to folding and faulting of the rocks [49].
Quaternary sediments are located in river valleys, on the hill
slopes and also as glacial deposits.

2.2. Methodology. The methodology followed in undertak-
ing the formulation of models in this study is illustrated in
the Figure 2, which is self-explanatory. Landslide
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FIGURE 1: Location of the study area and historical landslides.

conditioning factors and landslide inventory were utilized in
order to model the data using three ML techniques. Models
were validated in terms of degree of accuracy and perfor-
mance using various indices levels. In this study, data of GSI
(http://www.portal.gsi.gov.in), Google Earth images, and
Aster DEM were used for the development of thematic
maps.

2.3. Data Used

2.3.1. Landslide Inventory. In order to undertake the
landslide susceptibility mapping for the study area, it is
necessary to address the landslide inventory which indi-
cates the geospatial distribution of several factors including
locations, types, and nature of landslides [50]. For the

model development, the landslide polygon data repre-
sented on map by points was split randomly into ratio of
70:30 as the training dataset (70%) and validation dataset
(30%), respectively [51, 52]. The training data (70%) was
used for landslide susceptibility zoning whereas the
remaining 30% testing dataset for the validation was used
to check accuracy and robustness of models. This split ratio
was selected based on the experience of other similar re-
search studies [51, 52]. In this research, the inventory of 91
landslides marked as points in the map was prepared based
on the record of (GSI) (https://www.gsi.gov.in/webcenter/
portal) as well as interpretation of the Google Earth images
for the modeling (Figures 1 and 3). Most of the identified
landslides in the area are translational rock-cum-debris
slides.
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FIGURE 2: Methodological framework for landslide susceptibility mapping in this study.

FIGURE 3: Landslide photos of the study area (source: http://www.portal.gsi.gov.in).

2.3.2. Landslide Conditioning Factors. In this study, ten
impacting parameters, namely, slope degree, slope aspect,
slope curvature, elevation, geomorphology, land cover,
distance to roads, distance to rivers, overburden depth, and
Slope Forming Materials (SFM) were taken into consider-
ation on the basis of the indigenous geo-environmental
scenario. For the models’ study, thematic layers of the
aforementioned parameters were generated using 30 m cell
size with the aid of ArcGIS software. Slope degree, aspect,
curvature, drainage, and elevation maps were generated
from the Aster DEM collected from the United States
Geological Survey (USGS) (https://earthexplorer.usgs.gov).
Geological, geomorphological, and SFM maps were
extracted from the reports of the GSI (https://www.gsi.gov.
in/webcenter/portal). Land cover map was generated using
GSI data and Google Earth images. The binary classification
method (0’s and 1’s) was employed for modeling landslides
that is “1” for the presence of landslide instances and “0” for
the absence [53, 54]. Table 1 shows the original sources of the

TaBLE 1: Information of data used in this study.

Data used Resolution Source

GSI report (https://
Land cover, whww.gsi.govin)
& P gY> 1: 50,000  webcenter/portal) and
overburden depth, and Google Earth Tmage
SEM (2020)
Elevation, slope angle, .
slope aspect, curvature, 30m DEM (https://

. earthexplorer.usgs.gov
road, and rivers p gs.gov)

data used. Figure 4 shows the maps of the landslide con-
ditioning factors.

(1) Slope Angle. It is an extremely vital parameter while eval-
uating the occurrence of landslides. Different types of landslides
depend on the slope angle. Most of the landslides are reported
between 25 and 45 degree slopes [55]. The slope angle also
regulates the surface and subsurface water flow that has direct
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impact on the runoff and infiltration, thus on landslide oc-
currences [56]. Here, the slope angle was derived from Aster
DEM using the slope tool. Based on natural breaks classification,
the slope was divided into five classes (Figure 4(a)).

(2) Slope Aspect. Slope aspect is also deemed as a significant
parameter to effectively evaluate the landslide susceptibility
that is associated with the direction of the sun, air/wind, and
rain/precipitation in the specified area [57, 58]. This factor
also indirectly impacts the vegetation and amount of water
held in the soil. Here, the slope aspect was derived from
Aster DEM. Based on natural breaks classification method,
the slope was divided into nine different categories, flat,
north, northeast, east, southeast, south, southwest, west, and
northwest, using ArcGIS (Figure 4(b)).

(3) Curvature. It is another important factor in the surface
runoff and ground infiltration which ultimately impacts the
erosion, accumulation, and flow of surface and groundwater
[57]. Therefore, the curvature tends to affect the occurrence of
landslides to a larger extent. In the current study, the curvature
map was generated from DEM and categorized as the concave,
convex, and flat surfaces using ArcGIS software (Figure 4(c)).

(4) Elevation. Elevation is considered as an imperative pa-
rameter in the occurrence of landslides [56]. Generally,
landslides occur in mountainous regions with deep valleys
and rugged surfaces. In the hilly area, at higher elevations,
usually the intensity of rainfall is less; however, glaciers’
existence and prominence are relatively more [46]. At higher

elevations, landslides occur due to melting of ice causing
erosion. Moraines also block the passage of streams and
rivers at higher elevations forming lakes which sometimes
burst and cause sudden floods and landslides in the area.

Majority of the rains and vegetation occur mostly in the
range of lower and middle elevations in the Himalayas [45].
Furthermore, the landslide events are hugely associated with
the elevation where slopes are moderate to high, moreover in
the less vegetation area affected by heavy rainfall [59]. In this
study, the elevation map was divided into different classes
based on the natural break method for landslide suscepti-
bility analysis (Figure 4(d)).

(5) Geomorphology. Geomorphology is one more vital factor
for the evaluation of landslide susceptibility [60]. Geo-
morphological features encompass undulating grounds,
mountains, river terraces, valleys, ridges, and escarpments,
which affect the occurrence of landslides alongside other
topographic and geo-environmental parameters. The geo-
morphology map (Figure 4(e)) was extracted from the GSI
report (https://www.gsi.gov.in/webcenter/portal).

(7) Land Cover. Generally, bare lands and nonvegetated areas
are more susceptible to landslides [61]. In a densely vegetated
area, roots of plants reinforce the ground, thereby preventing
erosion and thus landslides. Incidences of landslides are also
in the cultivated region because of saturation of soil as a result
of irrigation and also due to removal of surface soil strata. The
land cover map was extracted from the GSI report (https://
www.gsi.gov.in/webcenter/portal) and verified from the
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Google Earth images. The land cover map of the study area
comprises of eleven major groups of land cover (Figure 4(f)).

(8) Distance to Roads. Presence of the road network in a region
highly impacts the landslide occurrences [62]. Roadside ex-
cavation and vegetation removal are actions that lead to
landslides during pavement/road construction [63]. Excavation
of roads create instability in ground mass resulting in slope
failure and landslides adjacent to roads up to certain distances
based on the nature of soil and geology. Thus, the distance from
the roads is an immensely imperative parameter in the
landslide study [64]. In this study, roads were identified and
delineated using Google Earth images. The road buffer map at
100 m intervals was generated using ArcGIS tool (Figure 4(g)).

(9) Distance to Rivers. Distance to rivers is of prime im-
portance for the development of landslide susceptibility
maps. The hydrological network regime, soil saturation of
water sources, and groundwater recharge, alongside the
mounting water pressure on the groundmass and slopes,
lead to landslides in areas adjacent to water sources, rivers,
and streams. Distance to rivers maps (Figure 4(h)) was
created from the rivers extracted from DEM using Flow
Accumulation tool in GIS and buffered at an interval of
100m for the landslide susceptibility mapping.

(10) Overburden Depth. Chances of slope failure are more
likely in thick overburden areas depending on the character-
istics of the overburden material. Major part of the study area is
covered thin over burden (1-3m) with occasional relatively
thick pockets of greater than 5 m. Therefore, the possibility of
landslides due to failure of the overburden material is very less.
However, nature and thickness of the material affect the in-
filtration, thus ground water conditions in the area which may
affect moisture conditions of the underlying rock mass creating
instability and thus landslides. The overburden material map
was extracted from the report of GSI (https://www.gsi.gov.in/
webcenter/portal) (Figure 4(i)).

(11) Slope for Mining Material (SFM). SEM map was extracted
from the GSI report (https://www.gsi.gov.in/webcenter/portal).
The type of the slope forming material is very important in the
landslide. Characteristics of the groundmass depend on the
SEM, namely, its permeability, porosity, and geotechnical
properties. Types of landslides depends on the above charac-
teristics of the material and also on the binding/looseness of soil
and rock mass, and the SEM map of the present study area was
classified into seventeen main groups (Figure 4(j)): Group 1
(alluvium); Group 2 (chlorite, schist, and massive amphibolite);
Group 3 (dolomite); Group 4 (garnet, mica, schist, and mica-
ceous quartzite); Group 5 (granite, gneiss, garnetiferous schist,
and amphibolite); Group 6 (in situ soil); Group 7 (limestone
with intercalations of shale); Group 8 (limestone, dolomite,
shale, and cherty quartzite); Group 9 (metabasite); Group 10
(older well-compacted debris); Group 11 (phyllite, stromatoli-
phyllite, and stromatolitic); Group 12 (phyllite, stromatolitic
dolomite, limestone, and Cu and Mg min); Group 13 (schist,
augen gneiss, quartzite, and amphibolites); Group 14 (slate,
lenses of quartzite and dolomite, and epidorite dyke); Group 15
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(slate, quartzite, and dolomite with epidiorite dyke); Group 16
(transported soil); Group 17 (transported soil and colluvium).

2.4. Methods Used. In this study, we have used three ML
models, namely, NB, ADT, and MLP. Brief description of
these models is mentioned in the following sections:

2.4.1. Naive Bayes (NB). This model (NB) is a classification
model based on Bayes theorem [65]. A variable value on a
given class is assumed as independent of another variable by
the NB classifier, which is also called class conditional in-
dependence. The NB algorithm is simpler to use on various
types of datasets [66]. Consider X to be a dataset with no
class label. Now, assume H to be a hypothesis that X belongs
to a specified class C. We aim to ascertain P(H|X), the
probability that the hypothesis H relates with given the
observed X. P(H|X) is the posterior probability indicating
our confidence in the hypothesis after X is given. The
Bayesian theorem offers a way of estimating the posterior
probability P(H|X) using probability P(H), P(X), and P(X|H)
[67]. The equation is presented as follows:

_ p(H|X). P(H)

P(H|X) T (1)

Assume that there is a set comprising m samples S = {S1,
S2, ..., Ms.} where sample Si is denoting as an n-dimen-
sional feature vector {X1, X2, ..., XNA} as the training
dataset. Values X; relate to attributes Al, A2, ..., An, re-
spectively. Also, k classes c1, c2, ..., ck, and every sample
belong to one of these classes. In the current research ap-
proach, k value is set to two since only slide-prone and
nonslide-prone classes exist. Given an additional data
sample X whose class is unknown, it is possible to predict X
using the highest conditional probability P(Ci|X), where
i=1, 2, ..., k. Then, the NB theorem is formulated as

_p(XIC)P(C)

P(C,X) ve

(2)

2.4.2. Multilayer Perceptron (MLP) Neural Network
Classifier. This MLP neural network is a classification
technique also considered as one type of Artificial Neural
network that has been widely in use, for instance, in remote
sensing applications for the sake of land cover classification
[59, 68]. It encompasses several merits, for instance, par-
titioning of training data points is done straightforwardly
without any prior assumptions, no decision is deemed as
fixed concerning the comparative significance of several
input measurements, and most of these measurements are
selected on the basis of weights adjustment during the
training process [69].

The MLP neural network comprises three main layers:
input layers, hidden layers, and output layers [70]. The input
layers consist of factors that affect landslides, while the
output layers yield the classified results that help in classi-
fying landslide or nonlandslide classes. The hidden layers act
as classifiers to convert the input into the output form.
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Two main steps are involved in the MLP neural nets’
training: initially, the inputs are processed through the
hidden layers for obtaining the desired outcomes. Then, the
output results are associated to the target values to calculate
the specified error, and ultimately, the biases/weights are
adjusted to improve the results [71].

Suppose that x=x; where i=1, 2, ..., n is a vector
comprising n factors affecting the landslides, and y=1
(representing landslide class) or 0 (non-andslide class).
Afterwards, the classification function for the MLP neural
network function is illustrated in the form of equation (1):

Y = f(x), (3)

where f(x) refers to the hidden function which is yielded by
the adjustment of biases during the training process of the
model for a given architecture of the network.

2.4.3. Alternating Decision Tree (ADT). ADT refers to an
advance version of Decision Trees (DT) having boosting which
is capable of generating classifiers with higher accuracy [34, 72].
In literature, it has been shown that ADT-based landslide
susceptibility modeling shows superior modeling performance
[41, 73]. ADT encompasses dual alternating layers; the layer
containing decision nodes, also called splitter nodes, help to
specify the condition of predicate, while the second layer
contains optional nodes that are also known as the prediction
nodes which contain only a single number. The resulting tree
always exhibits the prediction nodes in the form of both roots
and leaves assuming no interconnection with extradecision
nodes. ADT has been employed to segregate the landslide or
nonlandslide classes while modeling the landslide suscepti-
bility, in this current study. Also, this tree is capable to generate
accurate classifiers which can be interpreted simply in contrast
to the variety of DT algorithms, for example, Classification and
Regression Trees (CART), and Random Forest (RF) [41, 73].

The classification rules of ADTare based on defining a set
of paths at a particular time. When a certain path approaches
the decision node, it is accompanied by the off spring that
represents the results of the decision linked to the particular
node. It is necessary to mention that the path remains with
the entire offspring of the node upon approaching the
prediction node, thus leading the instance to track a
“multipath.” The categorization for the recently produced
instance refers to the landslide susceptibility of the indi-
vidual pixel that can be determined from the sign of
summation of the entire values present over predictor nodes
along the aforementioned multipath [74, 75]. The basic
algorithm of the ADT algorithm is stated below [72].

First of all, it is the weight of an individual training instance
that produces a group of weak suppositions. Therefore, the
initial estimation is done using equation (2), which also refers to
entire weights comprising the positive and negative instances:

1w
=W Ty

(4)

where T represents the precondition and condition of an
only base rule.

After that, the precondition ¢, and condition c, are used
to define Z,(c;,c,). In equation (3), " and - represent
conjunction (AND gate) and negation (NOT gate),
respectively:

Zy(ee) =2(\WL (W) + WL (W () ) + W (~Cy),
(5)

where a and b are the estimated values which can be defined
by equation (4), wherein the optimized ¢; and c, values are
chosen by reducing Z, (c;, ¢,):

1 W (T)cp, 1. W, (T),
az,lnL)cé)bz,lnL)cl_‘r (6)
2 W_(T)c? 2 W_(T)e, ™

The weights of individual training instances are updated
in accordance with equation (5), where x defines a set of
instances and y refers to a set of prediction layers:

Wirr1 = wi,teirt (xi)y'> (7)

where r denotes a base rule, r(x) denotes the real value which
the rule relates with the instance x, t represents boosting
iteration, and w is the weight of examples [72]. Eventually,
the classification rule can be achieved as illustrated in
equation (8) that represents the sign of the summation of the
entire base rules:

T
class(x) = sign<z rt(x)>. (8)

i=1

2.4.4. Validation Methods

(1) Area under the Receiver Operating Characteristic Curve
(AUC-ROC). The AUC-ROC curve is used as a prevalent
validation technique for landslide susceptibility models
[76, 77]. The current study also employed AUC-ROC for
evaluating performance of the developed models. The values
of sensitivity and 100% specificity were first plotted, and
then, AUC was employed for quantitative evaluation [73].
The AUC value of 1 suggests a perfect model, whereas a value
<0.5 indicates an incorrect model [78, 79].

(2) Statistical Indices. The common statistical indices for
landslide susceptibility models, namely, Kappa (k), Speci-
ficity (SPF), Sensitivity (SST), Negative Predictive Value
(NPV), Positive Predictive Value (PPV), Root Mean Square
Error (RMSE), and Accuracy (ACC) were chosen for vali-
dation of the models [80, 81]. Out of these, the reliability of
the models for landslide prediction was assessed using k
value that varies between “0” and “1” [34]. If k is closer to “1,”
it indicates that the landslide models are more reliable, and if
the values of Kappa are closer to 0, it indicates that the
landslide models are not corrected. Furthermore, SPF and
NPV were used to evaluate the goodness of landslide models
for classification of nonlandslide pixels, SST and PPV were
used for landslide pixels, RMSE indicates the error analysis
of the models, and ACC was used to validate the general
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accuracy of the model. Detailed description and calculation
of these indices are presented in the published works
[80, 82].

3. Results

3.1. Evaluation of Goodness of Fit of the Models. Using the
training dataset, three landslide susceptibility models,
namely, NB, MLP, and ADT were developed for spatial
landslide prediction and evaluated for the goodness of fit of
the models. The statistical evaluation of the developed
models has been listed in Table 2 and Figures 5-8. The
classification probability of the landslide class i.e., PPV for
ADT and MLP is almost similar, which reflects the strong
classifying capability of the landslide class as compared to
NB. For the NPV, the MLP model indicates that the
probability to correctly classify the pixels in the training data
related to the nonlandslide class is 85.29%, followed by the
ADT model (83.53%) and the NB model (80%).

The MLP model shows the highest SST (84.38%)
demonstrating that the landslide points are accurately
classified to the landslide class though in comparison to the
ADT and NB models which are 82.93% and 78.88%, re-
spectively. The maximum SPF is for the ADT model de-
scribing that 80.68% nonlandslide points are accurately
classified to the nonlandslide class. MLP and NB models
showed the SPF of 80.56% and 75.98%, respectively.

The MLP model manifests the highest values of the
Kappa index of 0.647, followed by ADT (0.6353) and NB
(0.547) models representing a substantial agreement be-
tween the predictions and reality (Figure 5). The minimum
value of RMSE for the training data was observed as 0.364 for
the MLP model, followed by 0.372 and 0.416 for ADT and
NB models, respectively (Figure 6). The highest value of
ACC is for the MLP model (82.35%), followed by ADT
(81.76%), and NB (77.35%) (Table 2). From the ROC curve
analysis, it can be seen that the ADT model received the
highest value of AUC (0.902), followed by the MLP (0.886)
and the NB (0.802) (Figure 8). From these results, it can be
stated that all models have a high goodness of fit with the
data used, but the MLP and ADT are slightly better than NB.

3.2. Validation of Predictive Capability of the Models.
Using the testing dataset, the predictive capability of the
landslide susceptibility models was tested. The results are
illustrated in Tables 3 and Figures 5-8. The maximum ACC
in the validation dataset is for the MLP model (83.55%),
followed by the NB model (79.61%) and the ADT model
(78.95%). The MLP model has the maximum PPV (81.58%),
signifying the probability to accurately classify pixels to the
landslide class at 81.58%. The value of PPV for ADT is
similar to MLP, whereas it is 80.26% for the NB model
(Table 2). The highest probability to classify pixels to the
nonlandslide class is also for the MLP model (85.53%). The
MLP model has the highest SST (84.93%) indicating that
84.93% of the landslide points are correctly classified into the
landslide class whereas the NB and ADT can accurately
classify 79.22% and 77.50%, respectively. SPF is 82.28% for
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the MLP model supporting 82.28% nonlandslide points
which are correctly categorized to the nonlandslide class
whereas this value is 80% and 80.56% for NB and ADT,
respectively. Figure 7 also shows the RMSE values of the
models. The Kappa indices of 0.647, 0.635, and 0.547 for the
MLP, the ADT, and the NB models, respectively, reveal a
significant agreement between observed and anticipated
landslides (Figure 5). The AUC-ROC results indicate that all
three models have good prediction capabilities with the
maximum for the ADT model (AUC=0.902), followed by
the MLP model (AUC=0.886) and NB model
(AUC=0.829) (Figure 8). Overall, all three models have
demonstrated close agreement between the predicted and
actual values. However, the NB and MLP models showed
better performance in the validation datasets comparatively.

3.3. Construction of Landslide Susceptibility Maps. Results of
the studied landslide models were used to develop landslide
susceptibility maps. Initially, landslide susceptibility indices
(LSI) were created from the training of the models, and each
pixel was assigned a distinctive LSI. In the subsequent step,
the geometrical intervals’ (GIs) method was used to
reclassify LSI into different ranges [83]. On the basis of these
intervals, five different susceptible classes were identified for
developing landslide susceptibility maps, namely, very low,
low, moderate, high, and very high (Figure 9).

Landslide susceptibility maps developed on the basis of
the models were validated by Frequency Ratio (FR) analysis
of each susceptible class for each model on the maps
(Figure 10). FR for each susceptible class on the map was
obtained from equation (9). Each class represents a ratio of
the percentage of landslide pixels (P; 5 %) to the percentage
of all pixels of class (Pp %):

Prs
FR = Pp. (9)

It can be observed from the Figure 10 that the map
produced by MLP and ADT models are the most reliable as
they received the highest value of FR on the very high class
compared with another model (NB).

4. Discussion

Landslide susceptibility maps are deemed as a final product
that can assist authorities in land-use planning. The de-
velopment of these maps is generally considered as the first
important step in landslide hazard and risk evaluation for
better landslide management [84, 85]. So, it is desirable to
develop and use a number of models which can forecast
correctly landslide susceptible areas. Since the precision of a
variety of suggested methods for landslide susceptibility
modeling is under discussion, investigations of existing and
novel techniques for this purpose are very important to
reach some satisfactory conclusions [86]. The recent ad-
vancement in the field of GIS and ML techniques has been
helpful in performance of the models [87]. Some advanced
innovative ML methods, for instance, ADT and KLR have
been employed in several fields with high accuracy [88-91].
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TABLE 2: Accuracy analysis of the models for the training dataset.

11

Parameters PPV (%) NPV (%) SST (%) SPF (%) ACC (%) Kappa (k) MAE RMSE
NB 74.71 80 78.88 75.98 77.35 0.547 0.292 0.416
Training dataset MLP 79.41 85.29 84.38 80.56 82.35 0.647 0.271 0.364
ADT 80 83.53 82.93 80.68 81.76 0.635 0.329 0.372
1.0 0.5
0.8 1 0.4 0.363
0.647 0.671 0.635
3 53
= =]
& <
S/ =
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FIGUure 5: Compare results of the models using the validating dataset: (a) Kappa values and (b) MAE values.
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ADT model (RMSE = 0.372)
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FIGURE 6: RMSE analysis of the models using the training dataset: (a) NB model, (b) MLP model, and (c) ADT model.
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FIGURE 7: RMSE analysis of the models using validating dataset: (a) NB model, (b) MLP model, and (c) ADT model.

ML models such as NB, MLP, and ADT have also been
employed in some landslide susceptibility studies [40, 73].
However, the literature lacks the comparison of these three
models in the assessment of landslide susceptibility at the
study area. This issue is addressed in the current research by
analyzing and comparing the NB, ADT, and MLP

techniques for landslide susceptibility modeling in the study
area of Pithoragarh District of Uttarakhand State, India.
Overall, all three applied models performed well for
landslide susceptibility mapping. However, the performance
of the ADT and MLP models is slightly better than the NB
model. It is reasonable as both of the ADT and MLP are
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FIGURE 8: AUC analysis of the models using (a) training dataset and (b) validating dataset.
TABLE 3: Accuracy analysis of the models for the testing dataset.
Parameters PPV (%) NPV (%) SST (%) SPF (%) ACC (%) Kappa (k) MAE RMSE
NB 80.26 78.95 79.22 80 79.61 0.592 0.269 0.375
Testing dataset MLP 81.58 85.53 84.93 82.28 83.55 0.671 0.304 0.385
ADT 81.58 76.32 77.5 80.56 78.95 0.579 0.363 0.407
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FIGURE 9: Landslide susceptibility maps using the models: (a) NB, (b) MLP Classifier, (c) ADT.
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TaBLE 4: Hyperparameters used in the applied models of this study.

Models

Hyperparameters

NB MLP ADT
Batch size 100 100 100
Debug False False False
Display model in old format False — —
Do not check capabilities False False False
Num decimal places 2 2 2
Use kernel estimator False — —
Use supervised discretization False — —
Activation function — Approximate sigmoid —
Loss function — Squared error —
Num function — 2 —
Num threads — 1 —
Pool size — 1 —
Ridge — 0.01 —
Seed — 1 1
Tolerance — 1.0E-6 —
Use CGD — False —
Num of booting iterations — — 10
Resume — — False
Save instance data — — False

Search path —

— Expand all paths

advanced and popular ML models with many advantages. In
the case of the ADT, it has the handling of large input data
with the proper assessment of the accuracy of the output
[92]. In addition, in the ADT, each decision rule can be
analyzed in isolation as it is known explicitly [93]. With the
case of MLP, it has an adapting learning, which is able to
learn how to do the tasks on the given data. However, in this
case, no assumption is made about the pattern classes for the
underlying probability density functions [94].

Comparison with the published works shows that the
modeling results of this study are comparative with other
published works. In the study of Thai Pham et al. [76] for
landslide susceptibility of Luc Yen district of northern part
of Viet Nam, it obtained the AUC value of 0.827 for the
ADT model. Similarly, Hong et al. [41] obtained the AUCs’
equals 0f 0.957, 0.925, and 0.888 for the ADT, the KLR, and
the SVM models. Hong et al. [41] evaluated the values of
Kappa indices as 0.741, 0.702, and 0.626 for the ADT, the
KLG, and the SVM models, respectively, indicating a
substantial agreement between the models and the reality.
Pham et al. [95] also compared MLP with NB for landslide
susceptibility mapping and stated that the MLP
(AUC=0.850) is slightly better than the NB (AUC =0.838).
In [73], it was also stated that the ADT is slightly better than
NBT, which is a hybrid model of NB and DT, for landslide
susceptibility modeling. From these comparisons, we can
state that although the ML models have good accuracy
prediction for landslide susceptibility, however, their
predictive capability is different from case to case, which
depends on the data used for each model. In addition, we
insisted that the performance of the ML models depends on
the selection of the hyperparameters used to train the
models. In this work, the hyperparameters of the applied
models are selected by the trial-error process as presented
in Table 4.

5. Concluding Remarks

In this study, we compared three popular ML models,
namely, NB, MLP, and ADT for landslide susceptibility
modeling and mapping at the Pithoragarh District, Uttar-
akhand State, India. Several validation indices including the
AUC-ROC curve were used for validation and comparison
of the models. The results infer that all the three models
performed well for landslide susceptibility mapping. How-
ever, the ADT and MLP are slightly better than NB.
Therefore, it can be concluded that the ADT and MLP
models are promising techniques that could be used for
landslide susceptibility modeling and mapping. The devel-
oped maps would be useful in identifying future landslide-
prone areas for the better landslide management, prevention
of causalities and damages to infrastructure, and proper
land-use planning of the area. Model development is a
continuous process. Therefore, it is proposed to carryout
similar studies by comparing these models with other soft
computing models in other areas also for its wider
application.
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