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In this paper, by inserting the logarithm cost function of the normalized subband adaptive filter algorithm with the step-size scaler
(SSS-NSAF) into the sigmoid function structure, the proposed sigmoid-function-based SSS-NSAF algorithm yields improved
robustness against impulsive interferences and lower steady-state error. In order to identify sparse impulse response further, a
series of sparsity-aware algorithms, including the sigmoid L0 norm constraint SSS-NSAF (SL0-SSS-NSAF), sigmoid step-size scaler
improved proportionate NSAF (S-SSS-IPNSAF), and sigmoid L0 norm constraint step-size scaler improved proportionate NSAF
(SL0-SSS-IPNSAF), is derived by inserting the logarithm cost function into the sigmoid function structure as well as the L0 norm of
the weight coefficient vector to act as a new cost function. Since the use of the fix step size in the proposed SL0-SSS-IPNSAF
algorithm, it needs to make a trade-off between fast convergence rate and low steady-state error. )us, the convex combination
version of the SL0-SSS-IPNSAF (CSL0-SSS-IPNSAF) algorithm is proposed. Simulations in acoustic echo cancellation (AEC)
scenario have justified the improved performance of these proposed algorithms in impulsive interference environments and even
in the impulsive interference-free condition.

1. Introduction

Adaptive filtering is famous for its numerous practical ap-
plications, such as system identification, acoustic echo
cancellation, channel equalization, and signal denoising
[1–5]. Due to easy complementation and low computational
complexity, the least mean square (LMS) algorithm and the
normalized least mean square (NLMS) algorithm become
distinguished. However, the main disadvantage of these two
algorithms is that they have a slower convergence speed in
case the input signal is colored. For settling this issue, the
subband adaptive filter (SAF) structure has been presented.
)is is because the colored input signal can be decomposed
into multiple mutually independent white subband signals
by the analysis filter bank [6]. Based on this structure and by
solving a multiple-constraint optimization problem, the
normalized SAF (NSAF) algorithm has been generated to
speed up the convergence rate of the NLMS algorithm [7].

When identifying a sparse system, the traditional NSAF
algorithm offers the same step size for all components of the
weight coefficient vector regardless of the own characteristic
of the sparse system. )us, its convergence rate is dra-
matically degraded [8, 9]. For improving the convergence
behavior of the NSAF algorithm in a sparse system, a family
of proportionate NSAF algorithms [10, 11], such as pro-
portionate NSAF (PNSAF), μ-law proportionate NSAF
(MPNSAF), and improved proportionate NSAF (IPNSAF),
have been proposed, wherein each tap of the filter is updated
independently by allocating different step sizes which are in
proportion to the magnitude of the estimated filter
coefficient.

While all the above-mentioned algorithms, including the
NLMS algorithm, the NSAF algorithm and its improved
proportionate version have awful robustness against im-
pulsive interferences. )e classical sign subband adaptive
filter (SSAF) algorithm derived from L1-norm optimization
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criterion only uses the sign information of the subband error
signal, thus obtaining superb capability of suppressing
impulsive interference [12], while its weakness is a relatively
higher steady-state error and a slower convergence rate [13].
For the purpose of decreasing steady-state error and
speeding up the convergence rate of the SSAF algorithm,
variable regularization parameter SSAF (VRP-SSAF) [12],
some variable step-size SSAF algorithms [14, 15], and affine
projection SSAF [16, 17] have been proposed. Nowadays
many researchers have demonstrated that making full use of
the saturation property of the error nonlinearities can gain
splendid robustness against impulsive interferences, such as
normalized logarithmic SAF (NLSAF) [18], arctangent-
based NSAF algorithms (Arc-NSAFs) [19], maximum cor-
rentropy criterion (MCC) [20], the adaptive algorithms
based on the step-size scaler (SSS) [21, 22], and based on
sigmoid function [23, 24], and M-estimate based subband
adaptive filter algorithm [25].

In this paper, by inserting the logarithm cost function of
the normalized subband adaptive filter algorithm with the
step-size scaler (SSS-NSAF) [22] into the sigmoid function
structure, the proposed sigmoid-function-based SSS-NSAF
(S-SSS-NSAF) algorithm yields improved robustness against
impulsive interferences and lowers steady-state error. In
order to identify sparse impulse response further, a series of
sparsity-aware algorithms, including the sigmoid L0 norm
constraint SSS-NSAF (SL0-SSS-NSAF), sigmoid step-size
scaler improved proportionate NSAF (S-SSS-IPNSAF), and
sigmoid L0 norm constraint improved proportionate NSAF
(SL0-SSS-IPNSAF), are derived by inserting the logarithm
cost function into the sigmoid function structure as well as
the L0 norm of the weight coefficient vector to act as a new
cost function. Since the use of the fix step size in the pro-
posed SL0-SSS-IPNSAF algorithm, it needs to make a trade-
off between fast convergence rate and low steady-state error.
)us, in its convex combination version, the proposed CSL0-
SSS-IPNSAF algorithm is proposed. Simulations in the AEC
scenario with impulsive interference have justified the im-
proved performance of these proposed algorithms.

2. Review of the SSS-NSAF Algorithms

Suppose wo ∈ RL×1 is a weight coefficient vector of the
unknown system in system identification model,
u(n) � [u(n), u(n − 1), . . . , u((n − L + 1)]T stands for the
input signal, and L denotes the filter length, where T rep-
resents vector or matrix transposition. )e desired output
signal d(n) is usually modeled as d(n) � uT(n)wo + ϑ(n),
where ϑ(n) is additive noise which contains Gaussian
measurement noise v(n) plus impulsive interferences η(n),
i.e., ϑ(n) � v(n) + η(n). Figure 1 shows the multiband-
structure of the NSAF algorithm. )e input signal u(n) and
desired output signal d(n) are, respectively, separated intoN
subband signals ui(n) and di(n) by analysis filter bank
H0(z), H1(z), . . . , HN−1(z) . )e subband output signals

yi(n) are obtained by filtering subband input signal ui(n)

through an adaptive filter w(k) � [w0(k), w1(k), . . . ,

wL− 1(k)]T which is an estimate of the unknown wo. )en,
the subband signals di(n) and yi(n) are decimated in a lower

sampling rate to generate signals di,D(k) and yi,D(k), re-
spectively. Here, n and k are used to index the original
sequences and the decimated sequences. And the decimated
subband output signal yi,D(k) is expressed as
yi, D(k) � uT

i (k)w(k), where ui(k) � [ui(kN), ui(kN − 1),

. . . , ui(kN − L + 1)]T. )us, the ith decimated subband
error signal is computed as ei, D(k) � di, D(k) − yi, D(k),
where di, D(k) � di(kN).

In [22], two types of cost functions, i.e., tanh-type cost
function and ln-type cost function, which use the square value
of the normalized error signal with respect to the input signal,
are introduced to subband structure to generate two novel
SSS-NSAF algorithms. However, the tanh-type cost function
needs to use the exponential function, which contains the sum
of the normalized subband output errors with respect to the
subband input vectors. As a result, it brings about a heavy
calculation burden. In contrast, the ln-type cost function
reduces computational complexity to a large extent. )ere-
fore, due to its low computation, the proposed algorithm in
this paper is primarily based on the simplified ln-type version
of the step-size scaler. For the convenience of the discussion in
the next section, the SSS-NSAF algorithm based on the tanh-
type cost function is no longer presented. )e ln-type cost
function of the SSS-NSAF algorithm is given as follows:

JSSS−NSAF(k) �
1
2α

ln[1 + αm(k)], (1)

m(k) � 
N−1

i�0

e
2
i,D(k)

ui(k)
����

����
2, (2)

where α> 0 is a constant parameter which controls the
sharpness of the sharp. By using the gradient descent
method, the SSS-NSAF algorithm is derived by minimizing
the ln-type cost function with respect to the normalized
subband error signal, and update equation of its weight
coefficient vector can be derived easily as follows:

w(k + 1) � w(k) + μA(m(k)) 
N−1

i�0

ui(k)ei,D(k)

uT
i (k)ui(k)

, (3)

A(m(k)) �
1

1 + αm(k)
, (4)

where μ is the step size and A(m(k)) plays a role as the step-
size scaler, which helps to shrink the step size μ whenever
impulsive noise happens and then eliminate the unfavorable
effect of impulsive interferences on system updating.

3. Proposed SL0-SSS-IPNSAF Algorithm

3.1. Derivation of the Proposed SL0-SSS-NSAF Algorithm.
By inserting the ln-type cost function of the SSS-NSAF
algorithm into the sigmoid function structure, a new sig-
moid function is defined as follows:

S(k) � sgm βJSSS−NSAF(k)(  �
1

1 + exp −βJSSS−NSAF(k)( 
,

(5)
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where β> 0 determines the sharpness of the sigmoid
function.)e aim of embedding the cost function of the SSS-
NSAF algorithm into the sigmoid structure is to eliminate
the adverse influence of impulsive interferences better, es-
pecially when the possibility of impulsive interferences is
large.

Combining the above sigmoid function and exploiting
the L0 norm constraint of the estimated weight vector, a new
robust cost function is introduced as follows:

Jpo(k) �
1
β

S(k) + ρ‖w(k)‖0

�
1
β

1
1 + exp −βJSSS−NSAF(k)( 

+ ρ‖w(k)‖0,

(6)

where Jpo(k) stands for the cost function of the proposed
algorithm, ‖ · ‖0 indexes the L0 norm constraint, and ρ is a

small positive value that controls the weight between the
sigmoid function and L0 norm constraint term.

Taking the derivative of (6) with respect to the estimated
weight vector w(k), we get the following:
zJ(k)

zw(k)
�
1
β

zS(k)

zJSSS−NSAF(k)

zJSSS−NSAF(k)

zw(k)
+ ρ

z‖w(k)‖0

zw(k)

� −S(k)[1 − S(k)]A(m(k)) 

N−1

i�0

ui(k)ei,D(k)

uT
i (k)ui(k)

+ ρfϕ(w(k)).

(7)

By employing the gradient descent rule, the update
equation of the coefficient vector of the sigmoid L0 norm
constraint SSS-NSAF (SL0-SSS-NSAF) algorithm is obtained
as follows:

w(k + 1) � w(k) + μS(k)[1 − S(k)]A(m(k)) 

N−1

i�0

ui(k)ei,D(k)

uT
i (k)ui(k)

− μρfϕ(w(k)), (8)

where μ is the step size. Considering that L0 norm mini-
mization is a Non-Polynomial (NP) problem, the following
continuous differentiable function is usually used to ap-
proximate ‖w(k)‖0 [13, 26, 27],

‖w(k)‖0 ≈ 
L−1

l�0
1 − e

− ϕ wl(k)| | , (9)

where ϕ determines the attraction degree with regard to the
small magnitude values of w(k). )erefore, for
m � 0, 1, . . . , L − 1, the mth component of the derivative of
‖w(k)‖0 is easily calculated as follows:

z‖w(k)‖0

zwm(k)
� fϕ wm(k)(  � ϕsgn wm(k) e

−ϕ wm(k)| |. (10)
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Figure 1: Multiband structure of the NSAF algorithm.
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Discussion 1. If the L0 norm constraint of the estimated
weight vector is not considered, i.e., ρ � 0, the proposed SL0-
SSS-NSAF algorithm becomes the sigmoid SSS-NSAF (S-
SSS-NSAF) algorithm. )erefore, its coefficient vector up-
date equation and cost function are expressed as follows:

w(k + 1) � w(k) + μS(k)[1 − S(k)]A(m(k)) 
N−1

i�0

ui(k)ei,D(k)

uT
i (k)ui(k)

,

(11)

J(k) �
1
β

S(k) �
1
β

1
1 + exp −βJSSS−NSAF(k)( 

. (12)

Combining the cost function formula (1) of the original
SSS-NSAF algorithm and the above S-SSS-NSAF algorithm
updating formula (11), it is easy to find out that the sigmoid
function JSSS−NSAF(k)⟶ 0 for the small subband error
signal ei,D(k), then S(k) ≈ 0.5 and S(k)[1 − S(k)] ≈ 0.25,
making the performance of the S-SSS-NSAF algorithm is
similar to that of the original SSS-NSAF algorithm. While
whenever impulsive interferences occur, the subband error
signal ei,D(k) will be very large, so does the value of
JSSS−NSAF(k), and thus S(k) approaches to constant one,
which result in the termination of iteration of the SL0-SSS-
NSAF algorithm. )is demonstrates that the proposed
sigmoid-function-based algorithms not only retain the
outstanding performance of the original SSS-NSAF algo-
rithm in the noise-free impulsive condition but also possess
strong robustness against impulsive noise.

In fact, the robustness of the SSS-NSAF algorithm
against impulsive noise primarily relies on the step size
scaler. When impulsive noise appears, the step size scaler
instantly scales down the step size to restrain the adverse
effect from the contaminated subband error signal. Con-
trasting the update equation (3) of the weight coefficient
vector of the SSS-NSAF and the S-SSS-NSAF’s update
equation (11), A(m(k)) and S(k)[1 − S(k)]A(m(k)) are the
step-size scaler of the original SSS-NSAF and the proposed
S-SSS-NSAF algorithms, respectively. As a matter of fact, the
suppressing effect of the proposed algorithms on impulsive
noise is stronger than that of the original SSS-NSAF algo-
rithm, which can be observed from their cost functions.
Figure 2 presents the stochastic cost functions of the pro-
posed S-SSS-NSAF with β � 0.5 and the original SSS-NSAF
algorithm. Obviously, the stochastic cost function of the

proposed S-SSS-NSAF algorithm is less steep than that of the
original SSS-NSAF algorithm for large and small pertur-
bations on the normalized subband error signal, which il-
lustrates that the proposed S-SSS-NSAF algorithm can still
obtain improved performance even in the impulsive-in-
terference-free environment when compared with the
original SSS-NSAF algorithm.

3.2. 2e Proportionate Version of the SL0-SSS-NSAF
Algorithm. Inspired by the work in [10], these adaptive
filtering algorithms containing zero attracting terms and the
proportionate control matrix have gained improved per-
formance in terms of convergence rate and steady-state
error. )erefore, for obtaining a fast convergence rate of the
proportionate control matrix and low steady-state error of
the zero attracting term simultaneously, a gain control
matrix is introduced to the SL0-SSS-NSAF algorithm to
further accelerate its convergence tare. As a result, the
proportionate version of the SL0-SSS-NSAF algorithm (SL0-
SSS-IPNSAF) is yielded in an analogy way

w(k + 1) � w(k) + μS(k)[1 − S(k)]A(m(k)) 
N−1

i�0

G(k)ui(k)ei,D(k)

uT
i (k)G(k)ui(k)

− μρfϕ(w(k)), (13)

where G(k), named proportionate matrix, is a diagonal
matrix with its diagonal elements being g0(k),

g1(k), . . . , gL−1(k). So far, a different method of choosing
G(k) has been put forward [10]. Among them, due to the
robustness to the different sparseness degrees of unknown
impulse response, the following strategy is the most widely

used procedure to compute the diagonal elements of the
matrix G(k).

gl(k) �
1 − τ
2L

+
(1 + τ) wl(k)




2‖w(k)‖1 + ζ
, for 0≤ l≤L − 1, (14)
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Figure 2: Stochastic cost functions of the proposed S-SSS-NSAF
algorithm with β � 0.5 and the original SSS-NSAF algorithm for
different α values.
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where τ ∈ [−1, 1], wl(k) is the lth element of w(k), ζ is a
small positive constant to avoid division by zero.

Discussion 2. From the equation formula (13) of the SL0-
SSS-IPNSAF algorithm, some relating algorithms can be
derived:

(1) Letting the weight ρ which controls the sigmoid
function and L0 norm constraint term equal to zero,
the SL0-SSS-IPNSAF algorithm becomes the S-SSS-
IPNSAF algorithm

(2) When the proportionate matrix G(k) becomes
identity matrix, the SL0-SSS-IPNSAF algorithm re-
duces to the SL0-SSS-NSAF algorithm

(3) If ρ � 0 and G(k) � I, the SL0-SSS-IPNSAF algo-
rithm turns into the S-SSS-NSAF algorithm

4. Adaptive Convex Combination of
Two SL0-SSS-IPNSAF Algorithms
(CSL0-SSS-IPNSAF)

Similar to all fixed-step-size adaptive filter algorithms, the
proposed SL0-SSS-IPNSAF algorithm with a large step size
has a fast convergence rate but a high steady-state error.
)erefore, there always exists the conflicting demands of the
fast convergence rate and low steady-state error in the
proposed SL0-SSS-IPNSAF. In order to address this issue,
the CSL0-SSS-IPNSAF algorithm is proposed by combining
two different step sizes SL0-SSS-IPNSAF algorithms and the
diagram of the adaptive combination scheme for an ith
subband is presented in Figure 3, where w1(k) stands for
weight coefficient vector of the SL0-SSS-IPNSAF algorithm
with large step size μ1, w2(k) corresponds a small step size
μ2, and wj(k) � [w0,j(k), w1,j(k), . . . , wL− 1,j(k)]T, j � 1, 2.
)e coefficient vector w(k) of the overall filter can be
generated by using a variable mixing parameter λ(k),

w(k) � λ(k)w1(k) +(1 − λ(k))w2(k), (15)

where 0≤ λ(k)≤ 1. Based on the convex combination
strategy, the ith subband output signal yi,D(k) of the overall
filter can be formulated as follows:

yi,D(k) � λ(k)yi,D,1(k) +(1 − λ(k))yi,D,2(k), (16)

where yi,D,j(k), j � 1, 2, are the decimated subband outputs
of the component filters and yi,D,j(k) � uT

i (k)wj(k). Sim-
ilarly, the overall subband error signal can be expressed as
ei, D(k) � di, D(k) − yi, D(k).

From (15), we know that the performance of the overall
filter largely relies on the choice of λ(k). )us, an appro-
priate method to recursively compute λ(k) is important. To
constrain the λ(k) value in the [0, 1], a sigmoidal function
which depends on an auxiliary variable a(k) is applied

λ(k) �
1

1 + e
− a(k)

 
. (17)

According to the gradient descent method, the auxiliary
variable a(k) can be recursively updated by minimizing the
power of the system output error, which is equal to the sum
of squared subband errors of the overall filter, i.e.,����������


N−1
i�0 e2i,D(k)



,

a(k + 1) � a(k) − μa

z

����������


N−1
i�0 e

2
i,D(k)



 

za(k)

� a(k) − μa

1

2
����������


N−1
i�0 e

2
i,D(k)


z 

N−1
i�0 e

2
i,D(k) 

za(k)

� a(k) + μa

1
����������


N−1
i�0 e

2
i,D(k)

 

N−1

i�0
ei,D(k) yi,D,1(k) − yi,D,2(k) 

z[λ(k)]

za(k)

� a(k) + μa

1
����������


N−1
i�0 e

2
i,D(k)

 [λ(k)(1 − λ(k)) + ε] 
N−1

i�0
ei,D(k) yi,D,1(k) − yi,D,2(k) ,

(18)

where μa is the step size for adapting a(k), and the introduction
of ε is to prevent the update process of a(k) from stalling

whenever λ(k) is equal to 0 or 1. Besides, to make adaptation at
a minimum a(k) is suggested to lie in [−a+, a+] [28].
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Figure 3: Diagram of the adaptive combination scheme for the ith
subband.
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Actually, the component filter with a small step size may
reduce the convergence rate of the overall filter in the initial

phase of iteration. )e weight transfer scheme is utilized as
follows to avoid this.

If a(k)≥ ϑ, then

w1(k + 1) � w1(k) + μ1S(k)[1 − S(k)]A(m(k)) 
N−1

i�0

G(k)ui(k)ei,D(k)

uT
i (k)G(k)ui(k)

− μ1ρfϕ w1(k)( ,

w2(k + 1) � w(k) + μ2S(k)[1 − S(k)]A(m(k)) 
N−1

i�0

G(k)ui(k)ei,D(k)

uT
i (k)G(k)ui(k)

− μ2ρfϕ w2(k)( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

else

w1(k + 1) � w1(k) + μ1S(k)[1 − S(k)]A(m(k)) 
N−1

i�0

G(k)ui(k)ei,D(k)

uT
i (k)G(k)ui(k)

− μ1ρfϕ w1(k)( ,

w2(k + 1) � w2(k) + μ2S(k)[1 − S(k)]A(m(k)) 
N−1

i�0

G(k)ui(k)ei,D(k)

uT
i (k)G(k)ui(k)

− μ2ρfϕ w2(k)( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where the parameter ϑ must satisfy −a+ ≤ ϑ≤ a+, and its
recommended value is ϑ � a+ [29], fϕ(wj(k)) �

[fϕ(w0,j(k)), fϕ(w1,j(k)), . . . , fϕ(wL− 1, j(k))]T, j � 1, 2,
and fϕ(ws,j(k)) for s � 0, 1, . . . , L − 1 can be calculated as
follows:

fϕ ws,j(k)  �

−ϕ2ws,j(k) − ϕ, −
1
ϕ
≤ws,j(k)< 0,

−ϕ2ws,j(k) + ϕ, 0<ws,j(k)≤
1
ϕ

,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

5. Simulation Results

In order to measure the performance of the proposed
S-SSS-NSAF, SL0-SSS-NSAF, S-SSS-IPNSAF, and
SL0-SSS-IPNSAF algorithms, simulations are presented in
the system identification and acoustic echo cancellation
context with impulsive interferences. )e cosine-modulated
filter bank is utilized with the number of subband N � 4.)e
unknown impulse responses wo with their length L� 512
taps are illustrated in Figure 4. Assuming that the adaptive
filter has the same length as the unknown vector, for ex-
amining the robustness of these proposed algorithms against
impulsive interferences, the impulsive interferences ϑ(n) is
added into the output of the identified unknown system,
which is modeled as ϑ(n) � B(n)g(n), where B(n) indexes a
Bernoulli process with the probability mass function
expressed as p(B(n) � 1) � Pr and p(B(n) � 0) � 1 − Pr

(Pr � 0.1 means the occurrence possibility of impulsive
interferences), and g(n) is a zero-mean white Gaussian noise
with variance σ2g � 1000E[(uT(n)wo)2]. An independent
white Gaussian measurement noise v(n) is added to the
unknown system output with a 30 dB signal-to-noise (SNR).
In subsequent Sections 5.1 and 5.2, the input signal is an
AR(1) input and the unknown impulse responses are
multiplied by −1 at the middle of the iterations to investigate
the tracking capability of all algorithms, while in the Section
5.3, a speech input signal is used.

All algorithms’ performance is measured by the nor-
malized mean square deviation (NMSD), defined as
20 log10[‖wo − w(k)‖22/‖wo‖22]. And All learning curves are
obtained by averaging over 10 independent trails (except for
speech input).

5.1. Impulsive Interference Environment. In this section, the
proposed S-SSS-NSAF, SL0-SSS-NSAF, S-SSS-IPNSAF and
SL0-SSS-IPNSAF algorithms are compared with the con-
ventional SSAF [12], SSS-NSAF [22] algorithms with
Pr � 0.1.

Since the proposed S-SSS-NSAF algorithm does not
belong to a sparsity-aware family, the identified unknown
system is a dispersive impulse response illustrated in
Figure 4(a). Figure 5 presents the comparison of the per-
formance of the proposed S-SSS-NSAF algorithm with that
of the SSAF and SSS-NSAF algorithms. Compared with the
conventional SSS-NSAF algorithms, the proposed S-SSS-
NSAF algorithm obtain lower steady-state error with almost
the same initial convergence rate. While when the unknown
system is changed suddenly, its tracking capability is not
pretty well.
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)e performance comparison of the proposed SL0-SSS-
NSAF and SL0-SSS-IPNSAF algorithms with the SSAF and
SSS-NSAF algorithms is reflected in Figure 6. )e used
impulse response is sparse, which is given in Figure 4(b).)e
SSS-NSAF-2 algorithm has almost the same performance as
the SSS-NSAF-1 algorithm before the unknown system is
changed abruptly, while the SSS-NSAF-2 algorithm has
better tracking capability than the SSS-NSAF-1 algorithm.
)e proposed SL0-SSS-NSAF algorithm obtains lower
steady-state error and stronger robustness against impulsive
interference than the SSS-NSAF algorithms with the same
convergence rate. It is noted that, as a proportionate version
of the proposed SL0-SSS-NSAF algorithm, the proposed SL0-

SSS-IPNSAF algorithm achieves significantly improved
convergence behavior and better tracking capability than the
SL0-SSS-NSAF algorithm with the same steady-state error.
)is demonstrates that the role of the proportionate scheme
is to speed up convergence rate of the original algorithm.

Figure 7 compares the performance of the proposed
S-SSS-IPNSAF and SL0-SSS-IPNSAF algorithms with that of
the SSAF and SSS-NSAF algorithms in sparse impulse re-
sponse with Pr � 0.1. )e performance behavior of the SSS-
NSAF-1 algorithm and the SSS-NSAF-2 algorithm is similar
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Figure 4: Two unknown impulse responses wo with their length is 512 taps, (a) Dispersive impulse response. (b) Sparse impulse response.
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to those in Figure 6. As can be observed from Figure 7, the
proposed S-SSS-IPNSAF algorithm provides a faster con-
vergence rate, lower steady-state error, and more splendid
tracking ability than the SSS-NSAF algorithms. By adding
L0-norm constraint term into the S-SSS-IPNSAF algorithm,
the proposed SL0-SSS-IPNSAF algorithm obtains the same
convergence rate but lower steady-state error and better
tracking capability. It can be concluded that L0-norm
constraint term offers lower steady-state error in compar-
ison to the original algorithm.

As can be seen from Figure 8, since the step size pa-
rameter of the proposed SL0-SSS-IPNSAF algorithm is fixed,
the proposed SL0-SSS-IPNSAF algorithm with a large step
size μ � 1.8 has a fast convergence rate but a high steady-
state error, but the one with a small step size μ � 0.2 obtains
lower steady-state error but slower convergence rate. By
utilizing a convex combination scheme, the proposed CSL0-
SSS-IPNSAF algorithm possesses a fast convergence rate
with a large step size original algorithm and low steady-state
error with small step size algorithm simultaneously.

5.2. Impulsive-interference-free Environment. Figures 9 and
10 illustrate the NMSD learning curves of the standard
SSAF, SSS-NSAF-1, SSS-NSAF-2, the proposed SL0-SSS-
NSAF, S-SSS-IPNSAF, and SL0-SSS-IPNSAF algorithms
with Pr � 0. Obviously, even in an impulsive interference-
free environment, these proposed algorithms with a sig-
moid-function-based step-size scaler gain improved per-
formance than the original SSS-NSAF algorithms in terms of

convergence rate, steady-state error and tracking capability.
With having the same steady-state error, compared with the
SL0-SSS-IPNSAF algorithm, the SL0-SSS-NSAF algorithm
converges slowly at the initial phase of the iteration but
obtains faster convergence rate in near steady state. In
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Figure 10, the proposed S-SSS-IPNSAF algorithm gains a
faster convergence rate than the standard SSS-NSAF algo-
rithms with the same steady-state error. Like the results in
impulsive interference environment, the proposed SL0-SSS-
IPNSAF algorithm obtains the same initial convergence rate
but lower steady-state error and better tracking capability
than the S-SSS-IPNSAF algorithm.

5.3. AEC Scenario. )e comparison of the NMSD learning
curves of the standard SSAF, SSS-NSAF-1, SSS-NSAF-2, the
proposed SL0-SSS-NSAF, S-SSS-IPNSAF, and SL0-SSS-
IPNSAF algorithms in AEC is presented in Figures 11 and
12. )e used speech input signal is given in Figure 13. As
shown, the proposed SL0-SSS-NSAF algorithm performs not
very well, while the proposed S-SSS-IPNSAF algorithm
achieves a significantly faster convergence rate, lower steady-
state NMSD, and better tracking ability than the original
SSS-NSAF algorithm. Furthermore, due to the combination
of the benefits of the proportionate scheme and the L0 norm
constraint, the SL0-SSS-IPNSAF algorithm performs even
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much better than the splendid S-SSS-IPNSAF algorithm in
the AEC scenario.

As the result observed from Figure 14, by utilizing a
convex combination scheme and weight transfer strategy,
the proposed CSL0-SSS-IPNSAF algorithm inherits a fast
convergence rate with a large step size SL0-SSS-IPNSAF
algorithm and low steady-state error with small step size SL0-
SSS-IPNSAF algorithm simultaneously.

6. Conclusion

In order to improve the performance of the SSS-NSAF al-
gorithm when identifying sparse system, a series of sparsity-
aware algorithms, including the SL0-SSS-NSAF, S-SSS-
NSAF, and SL0-SSS-IPNSAF algorithm, are proposed by
inserting the logarithm cost function of the SSS-NSAF al-
gorithm into the sigmoid function structure. Besides, the
convex combination version of the SL0-SSS-IPNSAF is
proposed to making the SL0-SSS-IPNSAF algorithm
obtaining a fast convergence rate and low steady-state error.
Simulations in the AEC scenario with impulsive interference
have justified the improved performance of these proposed
algorithms.

Although the proposed sparsity-aware algorithms in this
paper essentially belong to linear adaptive filtering scheme, it
also can be extended to the active noise control in linear
systems and/or nonlinear systems [30, 31] and other fields
[32] in the future.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China under grant no. 61703060) and the
Sichuan Science and Technology Program under grant no.
21YYJC0469.

References

[1] S. Haykin, Adaptive Filter 2eory, Prentice-Hall, Hoboken,
NJ, USA, 4 edition, 2002.

[2] H. Xia and F. Chen, “Filtering-based parameter identification
methods for multivariable stochastic systems,” Mathematics,
vol. 8, no. 12, p. 2254, 2020.

[3] J. Benesty and Y. Huang, Adaptive Signal Proc-
essing—Applications to Real-World Problems, Springer-Ver-
lag, Berlin, Germany, 2003.

[4] M. M. Sondhi, “)e history of echo cancellation,” IEEE Signal
Processing Magazine, vol. 23, no. 5, pp. 95–102, 2006.

[5] Y. Yu, L. Lu, Z. Zheng, W. Wang, Y. Zakharov, and
R. C. de Lamare, “DCD-based recursive adaptive algorithms
robust against impulsive noise,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 67, no. 7, pp. 1359–1363,
2020.

[6] K. A. Lee, W. S. Gan, and S. M. Kuo, Subband Adaptive
Filtering: 2eory and Implementation, Wiley, Hoboken, NJ,
USA, 2009.

[7] K. A. Lee and W. S. Gan, “Improving convergence of the
NLMS algorithm using constrained subband updates,” IEEE
Signal Processing Letters, vol. 11, no. 9, pp. 736–739, 2004.

[8] Y.-S. Choi, “Subband adaptive filtering with l1-norm con-
straint for sparse system identification,” Mathematical
Problems in Engineering, vol. 2013, Article ID 601623, 7 pages,
2013.

[9] Y. Yu, T. Yang, H. Chen, R. C. de Lamare, and Y. Li, “Sparsity-
aware SSAF algorithm with individual weighting factors:
performance analysis and improvements in acoustic echo
cancellation,” Signal Processing, vol. 178, Article ID 107806,
2021.

[10] M. S. E. Abadi and S. Kadkhodazadeh, “A family of pro-
portionate normalized subband adaptive filter algorithms,”
Journal of the Franklin Institute, vol. 348, no. 2, pp. 212–238,
2011.

[11] M. S. E. Abadi and S. Kadkhodazadeh, “)e novel propor-
tionate normalized subband adaptive filter algorithms for
sparse system identification,” International Journal of Com-
puter and Electrical Engineering, vol. 4, no. 4, pp. 577–581,
2012.

[12] J. Ni and F. Li, “Variable regularisation parameter sign
subband adaptive filter,” Electronics Letters, vol. 46, no. 24,
pp. 1605–1607, 2010.

[13] Y.-S. Choi, “A new subband adaptive filtering algorithm for
sparse system identification with impulsive noise,” Journal of
Applied Mathematics, vol. 2014, Article ID 704231, 7 pages,
2014.

[14] J. H. Kim, J. H. Chang, and S. W. Nam, “Sign subband
adaptive filter with ℓ 1 -norm minimisation-based variable
step-size,” Electronics Letters, vol. 49, no. 21, pp. 1325-1326,
2013.

N
M

SD
 (d

B)

–40

–35

–30

–25

–20

–15

–10

–5

0

5

0.5 1 1.5 2 2.50
Iteration number ×105

SL0-SSS-IPNSAF (μ = 0.2)
SL0-SSS-IPNSAFF (μ = 1.8)
CSL0-SSS-IPNSAF

Figure 14: NMSD learning curves comparison of the proposed
SL0-SSS-IPNSAF and the proposed CSL0-SSS-IPNSAF algorithms
for speech input with Pr � 0.1 (All parameters setting of all al-
gorithms are the same as those of Figure 8).

10 Mathematical Problems in Engineering



[15] P. Wen and J. Zhang, “Robust variable step-size sign subband
adaptive filter algorithm against impulsive noise,” Signal
Processing, vol. 139, pp. 110–115, 2017.

[16] J. Ni, X. Chen, and J. Yang, “Two variants of the sign subband
adaptive filter with improved convergence rate,” Signal Pro-
cessing, vol. 96, pp. 325–331, 2014.

[17] T. Tiange Shao, Y. R. Zheng, and J. Benesty, “An affine
projection sign algorithm robust against impulsive interfer-
ences,” IEEE Signal Processing Letters, vol. 17, no. 4,
pp. 327–330, 2010.

[18] Z. Shen, T. Huang, and K. Zhou, “$$L_{0}$$ L 0 -norm
constraint normalized logarithmic subband adaptive filter
algorithm,” Signal, Image and Video Processing, vol. 12, no. 5,
pp. 861–868, 2018.

[19] Z. Shen, Y. Yu, and T. Huang, “Two novel arctangent nor-
malized subband adaptive filter algorithms against impulsive
interferences,”Circuits, Systems, and Signal Processing, vol. 37,
no. 2, pp. 883–900, 2017.

[20] F. Huang, J. Zhang, and S. Zhang, “Adaptive filtering under a
variable kernel width maximum correntropy criterion,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 64,
no. 10, pp. 1247–1251, 2017.

[21] I. Song, P. Park, and R. W. Newcomb, “A normalized least
mean squares algorithm with a step-size scaler against im-
pulsive measurement noise,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 60, no. 7, pp. 442–445, 2013.

[22] J. Hur, I. Song, and P. Park, “A variable step-size normalized
subband adaptive filter with a step-size scaler against im-
pulsive measurement noise,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 64, no. 7, pp. 842–846, 2017.

[23] Y. Chen, J. Tian, and Y. Liu, “Variable step size LMS algorithm
based on modified sigmoid function,” in Proceedings of 2014
International Conference on Audio, Language and Image
Processing, pp. 627–630, Shanghai, China, January 2014.

[24] F. Huang, J. Zhang, and S. Zhang, “A family of robust adaptive
filtering algorithms based on sigmoid cost,” Signal Processing,
vol. 149, pp. 179–192, 2018.

[25] Y. Yu, H. He, B. Chen, J. Li, Y. Zhang, and L. Lu, “M-estimate
based normalized subband Adaptive filter algorithm: per-
formance analysis and improvements,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 28,
pp. 225–239, 2020.

[26] G. Su, J. Jin, Y. Gu, and J. Wang, “Performance analysis of $l_
0$ norm constraint least mean square algorithm,” IEEE
Transactions on Signal Processing, vol. 60, no. 5, pp. 2223–
2235, 2012.

[27] M. V. S. Lima, T. N. Ferreira, W. A. Martins, and
P. S. R. Diniz, “Sparsity-aware data-selective adaptive filters,”
IEEE Transactions on Signal Processing, vol. 62, no. 17,
pp. 4557–4572, 2014.

[28] J. Ni and F. Li, “Adaptive combination of subband adaptive
filters for acoustic echo cancellation,” IEEE Transactions on
Consumer Electronics, vol. 56, no. 3, pp. 1549–1555, 2010.

[29] L. Lu, H. Zhao, Z. He, and B. Chen, “A novel sign adaptation
scheme for convex combination of two adaptive filters,” AEU-
International Journal of Electronics and Communications,
vol. 69, no. 11, pp. 1590–1598, 2015.

[30] L. Lu, K.-L. Yin, R. C. de Lamare et al., “A survey on active
noise control in the past decade-Part I: linear systems,” Signal
Processing, vol. 183, Article ID 108039, 2021.

[31] L. Lu, K. L. Yin, R. C. de Lamare et al., “A survey on active
noise control in the past decade-Part II: nonlinear systems,”
Signal Processing, vol. 181, Article ID 107929, 2020.

[32] L. Tang, J. Zhang, K. Shi et al., “Application of an improved
seeds local averaging algorithm in X-ray spectrum,” Mathe-
matical Problems in Engineering, vol. 2021, Article ID
5545818, 8 pages, 2021.

Mathematical Problems in Engineering 11


