
Research Article
PIA and PPIA for Interpolating Points and Derivatives at
Endpoints by Bézier Curves

Yeqing Yi ,1 Lijuan Hu,2 and Chengzhi Liu 2

1School of Information, Hunan University of Humanities, Science and Technology, Loudi 417000, China
2School of Mathematics and Finance, Hunan University of Humanities, Science and Technology, Loudi 417000, China

Correspondence should be addressed to Chengzhi Liu; 162101002@csu.edu.cn

Received 9 March 2021; Accepted 14 June 2021; Published 1 July 2021

Academic Editor: Gaetano Giunta

Copyright © 2021 Yeqing Yi et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, we are concerned with the interpolation problem that interpolates not only a given set of points but also derivatives
at endpoints by using Bézier curves.*e progressive iterative approximation (PIA) is proposed to interpolate the given points and
derivatives. To speed up the convergence rate of PIA, we exploit the preconditioned PIA (PPIA), in which the diagonally
compensated reduction is used to construct the preconditioner. *e convergence of PIA and PPIA is also analyzed in this study.
*e proposed PPIA is applied to approximate higher order or/and rational Bézier curves. Numerical examples are given to
illustrate the effectiveness of the proposed methods.

1. Introduction

We begin with the description of the data interpolation
problem with constrains at endpoints. Given a set of organized
points pi

n
i�0 ∈ R

2 or R3, rth derivatives dr
0(r � 1, 2, . . . ,

u) ∈ R2 or R3 at the endpoint p0 and sth derivatives ds
n(s �

1, 2, . . . , v) ∈ R2 or R3 at the endpoint pn. For i � 0, 1, . . . , n,
the ith point pi assigned an ordered parameter ti, i.e.,
t0 < t1 < · · · < tn. We want to find a m degree Bézier curve,

C(t) �
m

j�0
qjB

m
j (t), (1)

that interpolates these points as well as the derivatives at the
endpoints, i.e.,

C ti(� pi, i � 0, 1, . . . , n;

drC(t)

dtr
|t�t0

� dr
0, r � 1, 2, . . . , u;

dsC(t)

dts
|t�tn

� ds
n, s � 1, 2, . . . , v.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

*e terms Bm
j (t) in (1) are the Bernstein polynomials of

degree m, i.e., Bm
j (t) � tj(1 − t)m− j. According to the ex-

istence and uniqueness of polynomial interpolant, since
there are n + u + v + 1 different interpolation conditions in
(2), we have m � n + u + v.

Data interpolation and interpolation with tangents,
curvatures, and other derivatives appear frequently in the
fields of science and engineering [1, 2]. It is difficult to
represent curves with complex shapes by a single curve, and
a composite curve composed of several pieces of curves is
necessary [3]. Hence, we need to control the smoothness of
the composite curve when piecing curves together. It would
be great if the derivatives at the endpoints are known. Very
often, this knowledge is not given in practice, and we have to
determine the derivatives at the endpoints. A careful choice
of end conditions is important because it determines the
shape of the interpolating curve near the endpoints. *ere
are several strategies, e.g., natural end condition, Bessel end
condition, quadratic end condition [4, 5]. In this study, we
are especially interested in exploiting iterative methods for
solving the interpolation curve (1) and do not consider the
determination of constraints at the endpoints.

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 9940610, 12 pages
https://doi.org/10.1155/2021/9940610

mailto:162101002@csu.edu.cn
https://orcid.org/0000-0002-2391-7730
https://orcid.org/0000-0001-9998-3016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9940610

It is known to all that the interpolation Bézier curve (1)
can be obtained by solving a system of linear equations
directly when the coefficient matrix is well-conditioned.
However, the condition number of the linear system will be
very large for largem; therefore, it is required to introduce an
efficient algorithm to solve the linear system. In recent years,
a geometric iterative method, named PIA, plays an im-
portant role in data interpolation. Due to its clear geometric
meaning, stable convergence, and simple iterative scheme,
PIA has intrigued the researchers for decades. For more
details about PIA, readers can refer to a recent survey study
[6], in which the authors summarized PIAs and their suc-
cessful applications.

In this study, we exploit the PIA format that interpolates
not only a given set of points but also derivatives at end-
points by using Bézier curves. *e study is organized as
follows. In Section 2, we propose the PIA format and then
analyze its convergence. In order to accelerate the conver-
gence rate of PIA, we exploit the preconditioning technique
for PIA in Section 3. In Section 4, the proposed method is
applied to approximate higher order or rational Bézier
curves with constraints. Numerical examples are given to
illustrate the effectiveness of our proposed methods in
Section 5, and some conclusion remarks are given in the last
section.

2. Progressive Iterative Approximation

2.1. Interpolating Derivatives Conditions at Endpoints. We
note that the kth derivative of (1) is given by

dkC(t)

dt
k

�
m!

(m − k)!

m− k

j�0
ΔkqjB

m− k
j (t), (3)

where Δkqj is defined according to the recurrence relative
formula:

Δkqj � Δk− 1qj+1 − Δk− 1qj, withΔ
0qj � qj. (4)

By direct calculation, from (2) and (3), we have

C(0) � q0 � p0;

C(1) � qm � pn;

Δrq0 �
(m − r)!

m!
dr
0, r � 1, 2, . . . , u;

Δsqm− s �
(m − s)!

m!
ds

n, s � 1, 2, . . . , v.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Hence, the control points qj(j � 0, 1, . . . , u, m−

v, . . . , m) in (1) can be determined according to (5). As an

example, we outline the control points with respect to the
case of u � v � 3.

q0 � p0,

qm � pn,

q1 � q0 +
1
m
d10,

qm− 1 � qm −
1
m
d1n,

q2 �
(m − 2)!

m!
d20 + 2q1 − q0,

qm− 2 �
(m − 2)!

m!
d2n + 2qm− 1 − qm,

q3 �
(m − 3)!

m!
d30 + 3q2 − 3q1 + q0,

qm− 3 � −
(m − 3)!

m!
d3n + 3qm− 2 − 3qm− 1 + qm.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

*erefore, the Bézier curve (1) can be expressed by

C(t) �
u

j�0
qjB

m
j (t) +

m− v− 1

j�u+1
qjB

m
j (t) +

m

j�m− v

qjB
m
j (t), (7)

where the control points qj(j � 0, 1, . . . , u, m − v, . . . , m)

can be obtained according to (5), and the control points
qj(j � u + 1, u + 2, . . . , m − v − 1) need to be determined.
We will give a computing method for solving these points in
the following subsection.

2.2. Approximate Interpolation Algorithm. First, the given
points pi(i � 1, 2, . . . , n − 1) and qj(j � 0, 1, . . . , u, m−

v, . . . , m) are interpreted as the control points of a Bézier
curve, and therefore, we can generate an initial approximate
interpolation curve:

C0
(t) �

u

j�0
qjB

m
j (t) +

m− v− 1

j�u+1
q0jB

m
j (t) +

m

j�m− v

qjB
m
j (t),

(8)
where q0j � pj− u(j � u + 1, . . . , m − v − 1).

Second, for j � u + 1, . . . , m − v − 1, let δ0j � pj− u−

C0(tj− u) be the adjusting vector of the jth control point.
*en, we can update the jth point q1j � q0j + δ0j and generate
the first approximate interpolation curve:

2 Mathematical Problems in Engineering

C1
(t) �

u

j�0
qjB

m
j (t) +

m− v− 1

j�u+1
q1jB

m
j (t) +

m

j�m− v

qjB
m
j (t).

(9)

We repeat these procedures; thus, we obtain a sequence
of approximate interpolation curves:

Ck
(t) �

u

j�0
qjB

m
j (t) +

m− v− 1

j�u+1
qk

jB
m
j (t) +

m

j�m− v

qjB
m
j (t), k � 1, 2, . . . ,

(10)

where

qk
j � qk− 1

j + δk− 1
j , δk− 1

j � pj− u − Ck− 1
tj− u , j � u + 1, . . . , m − v − 1.

(11)

*us, we obtain a sequence of approximate interpolation
curves Ck(t), k � 0, 1, . . . ,. *e initial Bézier curve is said to
have the property of PIA with constraints at endpoints if

limk⟶∞C
k

ti(� pi, i � 0, 1, . . . , n;

limk⟶∞
drCk(t)

dtr

t�t0
� dr

0, r � 1, 2, . . . , u;

limk⟶∞
dsCk(t)

dts

t�tn

� ds
n, s � 1, 2, . . . , v.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Remark 1. By simple calculation, it is easy to verify that
these approximate interpolation curves Ck(t) interpolate the
endpoints p0 and pn as well as the derivatives dr

0(r � 1, 2,

. . . , u) and ds
n(s � 1, 2, . . . , v).

Let

Qk
� qk

u+1, q
k
u+2, . . . , qk

m− v− 1
T
,

P � p1 −
u

j�0
qjB

m
j t1(−

m

j�m− v

qjB
m
j t1(, . . . ,pm− u− v− 1 −

u

j�0
qjB

m
j tm− u− v− 1(−

m

j�m− v

qjB
m
j tm− u− v− 1(⎡⎢⎢⎣ ⎤⎥⎥⎦

T

.
(13)

*en, the iterative process (11) can be written in the
matrix form:

Qk
� (I − B)Qk− 1

+ P, k � 1, 2, . . . , (14)

where I is the (n − 1) × (n − 1) identity matrix and B is said
to be the collocation matrix resulting from the Bernstein
basis at parameters ti

n− 1
i�1 , in detail

B �

B
m
u+1 t1(B

m
u+2 t1(B

m
u+3 t1(· · · B

m
m− v− 1 t1(

B
m
u+1 t2(B

m
u+2 t2(B

m
u+3 t2(· · · B

m
m− v− 1 t2(

B
m
u+1 t3(B

m
u+2 t3(B

m
u+3 t3(· · · B

m
m− v− 1 t3(

⋮ ⋮ ⋮ ⋱ ⋮

B
m
u+1 tn− 1(B

m
r+2 tn− 1(B

m
r+3 tn− 1(· · · B

m
m− v− 1 tn− 1(

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

.

(15)

*e iterative process (14) is equivalent to the Richardson
iteration for solving the system

BQ � P. (16)

2.3. Convergence Analysis of PIA. Before analyzing the
convergence, we review some definitions and conclusions.

Definition 1 (see [7, 8]). A matrix is called totally positive if
all its minors are positive and positive stable (semistable) if
all its eigenvalues have positive (nonnegative) real parts.

It is easy to verify that a positive stable matrix is non-
singular. We note that all the eigenvalues of a totally positive

matrix are positive ([9]); thus, a totally positive matrix is also
nonsingular.

Definition 2 (see [7]). A basis bi(t)
n
i�0 is called normalized

if bi(t)≥ 0(i � 0, . . . , n) and
n
i�0 bi(t) � 1 and totally pos-

itive if its collocation matrix at any increasing sequence is a
totally positive matrix.

Lemma 1 (see [8]). Let A be a given matrix. /en, A is
positive stable if and only if for each nonzero vector x, there
exists a positive definite matrix K, such that Re(x∗KAx) > 0.

Lemma 2 (see [10]). Let A be an n × n matrix with entries
aij. For i ∈ 1, . . . , n{ }, let Λi � j≠i|aij| be the sum of the
absolute values of the nondiagonal entries in the ith row. Let
D(aii,Λi)⊆C be a closed disc centered at aii with radius Λi.
/en, every eigenvalue of A lies within at least one of the discs
D(aii,Λi).

Theorem 1. /e Bézier curve has the property of PIA with
constraints at endpoints.

Proof. As stated in Remark 1, the approximate interpolation
curves Ck(t) interpolate endpoints p0 and p1 and derivatives
dr
0(r � 1, 2, . . . , u) and ds

n(s � 1, 2, . . . , v).
On the other hand, we insert u + v different parameters

into the ordered parameters set tj
n

j�0; hence, we obtain a
sequence of increasing parameters:

Mathematical Problems in Engineering 3

t0 <t1 <t2 < · · · <tu < t1 < t2 < · · · < tn− 1 < t1

< t2 < · · · < tv < tn.
(17)

Note that the Bernstein basis is normalized and totally
positive [7]. Let B be the collocation matrix resulting from
the Bernstein basis at the parameter sequence (17). *en, it
follows from Definition 2 that B is totally positive. Since the
matrix B defined in (15) is a submatrix of B, then B is also
totally positive according to Definition 1. Hence, all the
eigenvalues of B are positive.

Again, since the Bernstein basis is normalized, we have
‖B‖∞ � 1; thus, the infinite norm of the submatrix B is less
than 1, i.e., ‖B‖∞ < ‖B‖∞ � 1a. *erefore, 0< λj(B)≤ max

jλj(B) ≤ ‖B‖∞ < 1, j � 1, 2, . . . , n − 1. So, 0< λj(I − B) �

1 − λj(B)< 1, j � 1, 2, . . . , n − 1. *is implies that the spec-
tral radius of the iteration matrix I − B is less than 1, i.e.,

ρ(I − B)< 1. *erefore, the iterative format (14) converges.
*e proof is thus complete.

*eorem 1 tells us that the iteration process (14) always
converges and we can obtain a satisfying approximate
interpolant without solving a system of linear equations.
However, as stated in [11], the collocation matrix resulting
from the Bernstein basis is usually ill-conditioned, and the
convergence rate of PIA is very slow. *erefore, it is nec-
essary to introduce a preconditioner to speed up the con-
vergence rate of PIA. In the following section, we propose a
preconditioning technique for PIA by exploiting the
properties of collocation matrix B. □

3. Preconditioning Technique

3.1. Construction of Preconditioner. To derive a precondi-
tioner for PIA, we first split B as B � Bq + R, where

R �

0 · · · 0 B
m
u+q+1 t1(· · · B

m
m− v− 1 t1(

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋱ B
m
m− v− 1 tm− q− v− 2

B
m
u+1 tu+q+1 ⋱ ⋱ ⋱ ⋱ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

B
m
u+1 tn− 1(· · · B

m
m− q− 2r− 2 tn− 1(0 · · · 0

⎛⎜⎜⎝

⎞⎟⎟⎠

, (18)

and Bq � B − R is a band matrix with bandwidth
2q + 1 (0≤ q≤ n − 2).

*en, we define a diagonal matrix

D � diag d1, d2, . . . , dn− 1(, (19)

such that De � Re with e � (1, 1, . . . , 1)T.
Finally, let

Mq � Bq + D (20)

be the diagonally compensated reduction matrix of B. *en,
the matrix R is called the reduced matrix and D is called the
compensation matrix for R [10, 12].

If Mq is invertible, it can serve as a preconditioner for
(16) and yield the preconditioned system

M
− 1
q BX � M

− 1
q P. (21)

3.2. Preconditioned PIA. By applying Richardson method to
the preconditioned system (21), we obtain

Qk
� I − M

− 1
q B Qk− 1

+ M
− 1
q P,

� Qk− 1
+ M

− 1
q P − BQk− 1

 ,

� Qk− 1
+ M

− 1
q Δk− 1

, k � 1, 2, . . . ,

(22)

We refer the iterative process (22) as PPIA.

3.3. Convergence Analysis of PPIA

Theorem 2. /e preconditioner Mq defined in (20) is
invertible.

Proof. In the proof of *eorem 1, we show that B is positive
stable. By Lemma 1, for any nontrivial y, there exists a
positive definite matrix K, such that Re[y∗KBy]> 0.
According to the definitions of D and R, both the diagonal
entries of D − R and the sum of the absolute values of the
nondiagonal entries in the jth row of D − R are
dj(j ∈ 1, . . . , n − 1{ }). Let λ � a + b · i ∈ C be any eigenvalue
of D − R and x be the eigenvector corresponding to λ. *en,
it follows from Lemma 2 that |λ − dj| �

������������
(a − dj)

2 + b2

≤ dj.
*erefore, 0≤ a≤ 2dj. *is means that all the eigenvalues of
D − R have nonnegative real parts and D − R is positive
semistable. Hence, for the positive definite matrix K and the
nontrivial x, we have Re[x∗K(D − R)x] � x∗Kx(Reλ)≥ 0.

From (20), we have Mq � B + D − R, then Re[x∗K
Mqx] � Re[x∗K(B + D − R)x] � Re[x∗KBx + x∗K (D − R)

x] � Re[x∗KBx] + Re[x∗K(D − R)x] � Re[x∗KBx] + Re[x∗
K(λx)]> 0.

It follows from Lemma 1 that Mq is positive stable and
there is no eigenvalue equal to zero. *is completes the proof.

As it is stated in [13], the error matrix E � Mq − B or the
residual matrix R � I − M− 1

q B is often used to measure the
efficiency of preconditioner Mq.

4 Mathematical Problems in Engineering

Since Mq � B + D − R, then

‖E‖∞ � Mq − B
�����

�����∞
� ‖D − R‖∞ � 2‖R‖∞. (23)

From (18) and (19), we have

‖D‖∞ � ‖R‖∞ � max
1≤j≤n− 1

u+1≤i≤m− v− 1

|i− j|>q

B
m
i tj .

(24)

As is stated in [12], Bm
j+q+1(tj)> · · · >Bm

n (tj) � 0,

Bm
j− q− 1(tj)> · · · >Bm

0 (tj) � 0. *us, the sum of the entries of
each column outside of the q diagonals decays to 0. *is
means that ‖E‖∞ approaches to 0 as q increases. Combined
with (23), we conclude that the matrix Mq is a good ap-
proximation to B for large q. *us, the spectrum of M− 1

q B is
clustered around 1 for large q. □

Remark 2. As it is known to all, the iterative process (22) is
convergent if the spectral radius of the iteration matrix is less
than 1, that is, ρ(I − M− 1

q B)< 1. Note that the eigenvalues of
I − M− 1

q B are 1 − λi(M− 1
q B). In particular, when the ei-

genvalues of M− 1
q B are distributed in [0, 1], we have

ρ(I − M− 1
q B) � 1 − λmin(M− 1

q B). *erefore, the convergence
of (22) mainly depend on the value of λmin(M− 1

q B).
Moreover, the larger the value of λmin(M− 1

q B) is, the faster
the PPIA converges. It would be great if λ(M− 1

q B) ∈ [0, 1].
Unfortunately, we cannot give a rigid theoretical proof that
λ(M− 1

q B) ∈ [0, 1]. Numerous experiments indicate that the
eigenvalues of M− 1

q B are separated in [0, 1], and most of
them are clustered around 0. Based on the above analysis, we
make a conjecture that the eigenvalues of M− 1

q B are sepa-
rated in [0, 1].

Recalling that Mq � B + D − R, we have B
− 1

Mq � B
− 1

(B + D − R) � I + B
− 1

(D − R); hence,

ρ B
− 1

Mq � ρ I + B
− 1

(D − R)

≤ 1 + ρ B
− 1

(D − R) ≤ 1 + B
− 1�����

�����‖D − R‖∞.

(25)

Note that when λi(M− 1
q B)> 0, we have

λmin M
− 1
q B �

1
ρ B

− 1
Mq

. (26)

According to (25) and the conjecture in Remark 2, we
have

ρ I − M
− 1
q B � 1 − λmin M

− 1
q B

� 1 −
1

ρ B
− 1

Mq
≤ 1 −

1
1 + B

− 1�����

�����‖D − R‖∞

< 1.

(27)

*us, PPIA converges.

Remark 3. In (27), we give a upper bound for ρ(I − M− 1
q B).

As mentioned earlier, ‖D − R‖∞ tends to 0 as q increases;
therefore, the upper bound 1 − (1/(1 + ‖B

− 1
‖‖D − R‖∞))

also tends to 0. In particular, ρ(I − M− 1
q B) equals to 0 when

q � n − 2. Hence, the spectral radius ρ(I − M− 1
q B) may de-

crease as q increases, i.e., the bigger the value of q is, the
faster the PPIA format converges.

On the other hand, it should be pointed out that at the
k(k � 0, 1, . . . ,)th iteration of PPIA, we have to calculate
M− 1

q Δ
(k) or solve the equation MqX(k) � Δ(k) equivalently. It

is costly, especially for large q. *erefore, we need to seek a
tradeoff between the convergence rate and computational
complexity. Experimentally, we found that q ≈ (n/2) is a
suitable choice.

4. Applications of PPIA with
Constraints at Endpoints

Polynomial approximation for higher order or rational
Bézier curves has been a continuous hotspot in computer-
aided geometric design (CAGD). A number of approxi-
mation methods have been proposed in the literature, for
example, polynomial approximation for rational Bézier
curves [14–20] and polynomial approximation for higher
Bézier curves (degree reduction) [3, 21–28].

As a sample-based polynomial approximate method, Lu
employed the weighted PIA (WPIA) to iteratively approx-
imate the points sampled from the rational Bézier curves and
achieved good approximations [17]. As mentioned in [19],
Lu’s method is slow due to the slow convergence of WPIA
and cannot deal with polynomial approximation with higher
order continuity conditions at the endpoints. In fact,
polynomial approximations with constraints are more
practical than those without constraints. Due to the effec-
tiveness in interpolation, these problems resulted from Lu’s
method can be solved efficiently by employing the presented
PPIA with constraints.

4.1. Polynomial IterativeApproximation forHigherOrder and
Rational Bézier Curves with Constraints. Given a rational
Bézier curve of degree N

R(t) �

N
j�0 ωjvjB

N
j (t)

m
j�0 ωjB

N
j (t)

, (28)

where vj and ωj ∈ R+ are the control points and the as-
sociated weights, respectively.

First, we sample n + 1 points R(tj)
n

j�0 at the parameter
values tj(j � 0, 1, . . . , n) and the derivatives R(r)(t0)

u

r�1
and R(s)(t1)

v

s�1 at endpoints, where 0 � t0 < t1 < · · ·

< tn � 1. *en, PPIA for Bézier curves with constraints is
employed to interpolate the points R(tj)

n

j�0 and the de-

rivatives R(r)(t0)
u

r�1 and R(s)(t1)
v

s�1. *erefore, we can
generate a sequence of m degree Bézier curves Ck(t), which
are the polynomial approximations of R(t).

Remark 4. We remark here that if all the weights ωj in (18)
equal to 1, the rational Bézier curve (28) will degenerate into
the Bézier curve of degree N. At this time, if m<N, it is the
problem of approximating a given curve by a lower degree

Mathematical Problems in Engineering 5

Bézier curve, which is an important approximation problem
in CAGD, i.e., degree reduction of Bézier curves.

As stated in [17], the iterative method guarantees the
convergence of data interpolation but does not necessary
converge to the given curve R(t). *erefore, it is not nec-
essary for PPIA to iterate infinitely. To ensure the computing
efficiency, the iteration can be terminated if

L
(k+1)
p ≥ θL

(k)
p , θ ∈ (0, 1), (29)

is satisfied, where L(k)
p is the approximation error at the kth

iteration given by

L
(k)
p �

1

0
Ck

(t) − R(t)
�����

�����
p
dt

(1/p)

, 1≤p<∞. (30)

Since there may exist rational functions in the integrand
of (30), we need an effective and stable numerical method to
calculate the integral (30). We note in [29] that the Gaussian
rule or/and the adaptive quadrature method would be a
better choice for rational cases. *erefore, we employ the
τ-order Gauss–Legendre rule to calculate the integral (30).

By solving the roots of the Legendre polynomial of
degree τ, we can obtain Gauss points xi, i � 1, 2, . . . , and
then calculate τ positive weights ωi. Finally, the integral in
(30) can be evaluated approximately by

L
(k)
p ≈

1≤i≤τ
wi C

k
xi(− R xi(

�����

�����
p

⎛⎝ ⎞⎠

(1/p)

. (31)

We refer the reader to read [30] for more details about
the τ-order Gauss–Legendre quadrature. In our tests, we
used 15-order Gauss–Legendre quadrature to estimate the
approximation error L

(k)
2 , i.e., τ � 15 and p � 2.

Finally, we summarize the approximation algorithm in
the following Algorithm 1.

5. Numerical Examples

In this section, several numerical experiments are given to
illustrate the effectiveness of the proposed methods. All the
numerical experiments were carried out on a computer with
Intel(R) Core(TM) i5-5200U CPU @2.20GHz by Matlab
R2012b.

5.1. Tests of PIA and PPIA with Constraints. Since we have
shown in *eorem 1 that the approximate interpolation

curves Ck(t) interpolate the endpoints and the derivatives at
the endpoints exactly, we need to measure the interpolation
error at the points pi, i � 1, 2, . . . , n − 1. *erefore, the in-
terpolation error of the kth approximate interpolation curve
Ck(t) can be expressed by

ε(k)
� max1≤i≤n− 1 Ck

ti(− pi

�����

�����, (32)

where the norm is the Euclidean norm.

Example 1. We sample 9 points pi(i � 0, 1, . . . , 8),
r(r � 1, 2)th derivatives dr

0, and s(s � 1, 2)th derivatives ds
n

from the semicircle of radius 5 in the following way:

pi � 5 cos
π
8

i , 5 sin
π
8

i , i � 0, 1, . . . , 8;

d10 � (0, 5), d18 � (0, − 5);

d20 � (− 5, 0), d28 � (5, 0).

(33)

Example 2. We sample 19 points pi(i � 0, 1, . . . , 18),
r(r � 1, 2, 3)th derivatives dr

0, and s(s � 1, 2, 3)th derivatives
ds

n from the helix of radius 5 in the following way:

pi � 5 cos
π
3

i , 5 sin
π
3

i ,
π
3

i , i � 0, 1, . . . , 18;

d10 � d118 � (0, 5, 1);

d20 � d218 � (− 5, 0, 0).

(34)

PIA and PPIA formats for constraints at the endpoints
are employed to test Example 1 and Example 2. When we
test PPIA, we take the half bandwidth q � 4 in Example 1
and q � 10 in Example 2. In Table 1, we list the spectral radii
of the iteration matrices of PIA and PPIA with different
constraints at the endpoints. For one thing, the spectral radii
of the iteration matrices of PIA and PPIA are less than 1; this
means that both PIA and PPIA formats converge. For an-
other, the spectral radii of PPIA are much less that those of
PIA; hence, we can expect that PPIA would have a better
convergence behavior than PIA.

We list in Table 2 the interpolation errors of PIA and
PPIA when we test Example 1, and we list in Table 3 the

Input: original curve R(t), largest admissible number kmax, and outer stopping tolerance θ in (19)
Output: control points of the approximate curve, number of iterations k, and approximation error L(k+1)

p

(1) Sample the points R(tj)
n

j�0 and the derivatives R(r)(t0)
u

r�1, R(s)(t1)
v

s�1

(2) Compute the initial error L
(0)
2 according to (31)

(3) For k � 0, 1, . . . , kmax

(i) Employ PPIA for Bézier curves with constraints to generate the (k + 1)th approximation curve
(ii) Compute L

(k+1)
2 according to (31)

(iii) If L
(k+1)
2 ≥ θL

(k)
2 , break for

End for

ALGORITHM 1: Polynomial approximation for higher order and rational Bézier curves with constraints.

6 Mathematical Problems in Engineering

interpolation errors of PIA and PPIA when we test Example
2. As we can see from Tables 2 and 3, the interpolation errors
of PIA and WPIA decrease as the number of iterations
increases, which indicates that both PIA and PPIA converge.
With the same iterations, the interpolate errors of PPIA are
much less than those of PIA. *is means that the pre-
conditioning technique can accelerate the convergence rate
of PIA significantly.

In Figures 1 and 2, we display the interpolation Bézier
curves (dashed lines) when approximating the points
with different derivatives given in Example 1. We also
show in Figures 1 and 2 the semicircle (solid lines) for
comparison. It should be pointed out that the approxi-
mate interpolation Bézier curves generated by PPIA al-
most coincide with the semicircle, no matter which
endpoint conditions are used. In Figures 3 and 4, we
display the interpolation Bézier curves when approxi-
mating the points combined with different derivatives
given in Example 2. All the approximate interpolation
Bézier curves in Figures 1–4 are obtained by preforming 5

PIA or PPIA iterations. Clearly, the IPPIA can yield better
approximations than PIA.

5.2. Tests of Polynomial Approximation for Higher Order and
Rational Bézier Curves. First, we employ Algorithm 1 to test
the degree reduction of higher order Bézier curves in Ex-
ample 3 and then test the polynomial approximation for
rational Bézier curve in Example 4 and Example 5. In our
tests, we take the endpoint interpolation conditions (u �

v � 1) and take the half bandwidth q � ⌈n/2⌉ when we
construct the preconditioner for PIA, where ⌈ · ⌉ is the
round-up operation. When we test Example 3 and Example
4, we take θ � 0.9. Again, when we test Example 5, we take
θ � 0.98.

Example 3 (Degree reduction [17]). A Bézier curve of degree
15 is defined by the control points (0, 0), (1.5, − 2), (4.5, − 1),

(9, 0), (4.5, 1.5), (2.5, 3), (0, 5), (− 4, 8.5), (3, 9.5), (4.4, 10.5),

(6, 12), (8, 11), (9, 10), (9.5, 5), (7, 6), and (5, 7).

Table 1: Spectral radii of iteration matrices of PIA and PPIA in Example 1 and Example 2.

du
0 and dv

n

Example 1 Example 2
PIA PPIA PIA PPIA

u � v � 1 0.99918298 0.23846897 0.99999985 0.14929065
u � 1, v � 2 0.99785411 0.05994428 0.99999985 0.32779082
u � 2, v � 1 0.99785411 0.05994428 0.99999985 0.32779082
u � v � 2 0.99964744 0.57887371 0.99999985 0.24570266

Table 2: Interpolation errors of PIA and PPIA in Example 1 with different constraints at endpoints.

k
u � v � 1 u � 1, v � 2 u � 2, v � 1 u � v � 2

PIA PPIA PIA PPIA PIA PPIA PIA PPIA
1 5.4395e − 01 3.9638e − 03 1.4104e00 4.3811e − 02 1.4104e00 4.3811e − 02 9.1860e − 01 1.8233e − 02
2 3.8274e − 01 1.4605e − 04 9.1358e − 01 2.9530e − 03 9.1358e − 01 2.9530e − 03 7.7540e − 01 7.6179e − 04
3 2.8078e − 01 5.3842e − 06 7.7453e − 01 1.7897e − 04 7.7453e − 01 1.7897e − 04 6.6697e − 01 3.1829e − 05
4 2.1528e − 01 1.9849e − 07 6.6933e − 01 1.0740e − 05 6.6933e − 01 1.0740e − 05 5.8133e − 01 1.3299e − 06
5 1.7055e − 01 7.3177e − 09 5.8848e − 01 6.4387e − 07 5.8848e − 01 6.4387e − 07 5.1179e − 01 5.5567e − 08
10 1.1297e − 01 5.6300e − 14 3.6339e − 01 5.2694e − 13 3.6339e − 01 4.9105e − 13 3.4893e − e − 01 8.0428e − 15
15 8.6368e − 02 5.5417e − e − 14 3.4564e − 01 8.9706e − 14 3.4564e − 01 2.4995e − 14 3.4688e − 01 8.0428e − 15
20 6.4608e − 02 5.5417e − 14 3.2913e − 01 8.9706e − 14 3.2913e − 01 2.4995e − 14 3.0648e − 01 8.0428e − 15
40 2.4501e − 02 5.5417e − 14 2.4740e − 01 8.9706e − 14 2.4740e − 01 2.4995e − 14 1.6225e − 01 8.0428e − 15
50 2.2440e − 02 5.5417e − 14 2.1753e − 01 8.9706e − 14 2.1753e − 01 2.4995e − 14 1.2254e − 01 8.0428e − 15

Table 3: Interpolation errors of PIA and PPIA in Example 2 with different constraints at endpoints.

k
u � v � 1 u � 1, v � 2 u � 2, v � 1 u � v � 2

PIA PPIA PIA PPIA PIA PPIA PIA PPIA
1 4.6885e00 7.5971e − 05 1.1145e01 5.9422e − 03 1.1191e01 5.9448e − 03 9.4468e00 2.1520e − 03
2 4.2701e00 2.6533e − 06 7.0081e00 2.3159e − 03 6.9937e00 2.3164e − 03 5.7317e00 1.9501e − 04
3 3.7030e00 1.5379e − 07 5.8458e00 7.6479e − 04 5.8565e00 7.6496e − 04 4.9157e00 3.7394e − 05
4 3.1942e00 1.9400e − 08 4.6120e00 2.5081e − 04 4.6235e00 2.5087e − 04 3.5536e00 9.0175e − 06
5 2.7764e00 2.8613e − 09 3.5412e00 8.2217e − 05 3.5411e00 8.2235e − 05 2.4739e00 2.2132e − 06
10 1.5062e00 2.1517e − 13 2.4607e00 3.1113e − 07 2.4604e00 3.1120e − 07 1.9172e00 1.9817e − 09
20 6.7818e − 01 1.7061e − 14 1.6841e00 3.3866e − 12 1.6823e00 4.6786e − 12 1.3289e00 1.9304e − 13
50 2.5157e − 01 1.3557e − 14 1.2789e00 9.5874e − 13 1.2786e00 8.1082e − 13 9.9004e − 01 2.2176e − 13
100 9.7764e − 02 2.4470e − 14 7.6721e − 01 9.6635e − 13 7.6715e − 01 9.3884e − 13 6.2363e − 01 1.6799e − 13

Mathematical Problems in Engineering 7

By employing Algorithm 1, we use the Bézier curves of
degree m(m � 6, 7, . . . , 14) to approximate the Bézier
curve given in Example 3. In Table 4, we list the iteration
number k, the approximation errors L

(k)
2 , and the elapsed

CPU time T (in seconds) of Algorithm 1; the numerical

results run by Lu’s method ([17]) are also listed for
comparison. *e results for degree reduction with con-
straints, reported in Table 4, indicate that Algorithm 1
outperforms Lu’s method, in terms of the approximation
error and the computing time.

−5
0

5
−5

0

5
0

5

10

15

PPIA
PIA

(a)

−5
0

5
−10

−5

0

5

10
0

5

10

15

20

PPIA
PIA

(b)

Figure 3: Bézier curves obtained by performing 5 PIA or PPIA iterations in Example 2. (a) Interpolating d1
0 and d1

18. (b) Interpolating d1
0 andd2

18.

−5 0 5
0

1

2

3

4

5

(a)

−5 0 5
0

1

2

3

4

5

(b)

Figure 1: Bézier curves interpolating d10 and d18 in Example 1. (a) PIA. (b) PPIA.

−5 0 5
0

1

2

3

4

5

(a)

−5 0 5
0

1

2

3

4

5

(b)

Figure 2: Bézier curves interpolating d20 and d28 in Example 1. (a) PIA. (b) PPIA.

8 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

Original curve
Algorithm 1
Lu’s method

(a)

Algorithm 1
Lu’s method

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 5: Reduction from degree 15 to 8 in Example 3. (a) Comparison of polynomial approximations. (b)*e corresponding error distance
curves.

−5
0

5
−10

−5

0

5

10
0

5

10

15

20

PPIA
PIA

(a)

−5
0

5
−10

−5

0

5

10
0

5

10

15

20

PPIA
PIA

(b)

Figure 4: Bézier curves obtained by performing 5 PIA or PPIA iterations in Example 2. (a) Interpolating d2
0 and d1

18. (b) Interpolating d2
0 and

d2
18.

Table 4: Numerical results of Algorithm 1 and Lu’s method in Example 3.

m
Algorithm 1 Lu’s method

k L
(k)
2 T(s) k L

(k)
2 T(s)

6 1 3.6163e − 01 0.59 3 4.9761e − 01 2.14
7 1 1.3234e − 01 0.60 4 3.6118e − 01 2.59
8 1 9.2304e − 02 0.60 7 1.9136e − 01 3.58
9 1 2.1803e − 02 0.60 9 1.0012e − 01 3.99
10 1 8.6645e − 03 0.60 9 7.4032e − 02 4.14
11 1 5.8744e − 03 0.61 9 6.3833e − 02 4.07
12 2 2.5835e − 03 0.94 11 4.7558e − 02 4.67
13 1 2.3246e − 04 0.61 11 4.5005e − 02 4.79
14 3 1.1873e − 04 1.23 15 2.6818e − 02 6.09

Mathematical Problems in Engineering 9

In Figure 5(a), we show the approximations of degree 8
obtained by Algorithm 1 (blue dashed line) and Lu’s method
(red dashdot line). In Figure 5(b), we display the corre-
sponding error distance curves of the approximations shown
in Figure 5(a). It is evident from Figure 5 that Algorithm 1
can produce better approximations than Lu’s method. What
is more, the approximations obtained by Algorithm 1 are

C1-continuity at two endpoints, whereas the approximations
obtained by Lu’s method only satisfy the simplest
C0-continuity.

Example 4. (Polynomial approximation for rational Bézier
curves [19]). A rational Bézier curve of degree 8 is defined by
the control points (14, 1), (34, 25), (40, 38), (− 12, 24),

−5 0 5 10 15 20 25 30
0

5

10

15

20

25

30

Original curve
Algorithm 1
Lu’s method

(a)

Original curve
Algorithm 1
Lu’s method

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b)

Original curve
Algorithm 1
Lu’s method

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(c)

Figure 6: Polynomial approximations of the rational Bézier curve in Example 4 with different m. (a) m� 9. (b) m� 12. (c) m� 14.

Table 5: Numerical results of Algorithm 1 and Lu’s method in Examples 4 and 5.

m

Example 4
m

Example 5
Algorithm 1 Lu’s method Algorithm 1 Lu’s method

k L
(k)
2 T(s) k L

(k)
2 T(s) k L

(k)
2 T(s) k L

(k)
2 T(s)

8 1 1.9356e+ 00 0.58 5 1.9556e+ 00 1.76 9 1 5.7514e − 01 0.59 8 9.9194e − 01 2.64
9 1 1.0215e+ 00 0.59 5 1.6452e+ 00 1.75 10 2 2.9092e − 01 0.87 10 7.6682e − 01 3.30
10 1 6.6233e − 01 0.58 5 1.4297e+ 00 1.80 11 1 1.5379e − 01 0.59 12 5.8658e − 01 3.96
11 1 4.0403e − 01 0.60 5 1.2715e+ 00 1.80 12 2 6.9603e − 02 0.92 16 4.2321e − 01 5.23
12 1 2.6760e − 01 0.59 5 1.1512e+ 00 1.78 13 1 4.3342e − 02 0.63 18 3.1705e − 01 5.75
13 1 1.6397e − 01 0.59 5 1.0575e+ 00 1.79 14 3 2.0350e − 02 1.19 18 2.4794e − 01 5.86
14 1 1.2175e − 01 0.58 7 7.7411e − 01 2.39 15 2 1.5264e − 02 0.89 20 1.8593e − 01 6.47

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Algorithm 1
Lu’s method

(a)

Algorithm 1
Lu’s method

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

(b)

Algorithm 1
Lu’s method

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

(c)

Figure 7: *e corresponding error distance curves of the approximations in Figure 6. (a) m� 9. (b) m� 12. (c) m� 14.

10 Mathematical Problems in Engineering

(5, 21), (26, 7), (18, 41), (− 13, 34), and (14, 1) and the as-
sociated weights 1, 2, (1/3), 2, 2, (1/3), 2, and 1.

Example 5. (Polynomial approximation for rational Bézier
curves [19]).A rational Bézier curve of degree 9 is defined by
the control points (17, 12), (32, 34), (− 23, 24), (33, 6),
(− 23, 15), (25, 3), (30, − 2), (− 5, − 8), (− 5, 15), (11, 8), and
the associated weights 1, 2, 3, 6, 4, 5, 3, 4, 2, 1.

We employ Algorithm 1 and Lu’s method to generate
polynomial approximations for the rational Bézier curves
given in Example 4 and Example 5. In Table 5, we list the
iteration number k, the approximation error L

(k)
2 , and the

elapsed CPU time T (in seconds) of Algorithm 1 and Lu’s
method. *e results indicate that Algorithm 1 also performs
better than Lu’s method for polynomial approximation for
rational Bézier curves with constraints.

*e m(m � 9, 12, 15) degree approximations for the
rational Bézier curve in Example 4 and their corresponding
error distance curves are shown in Figures 6 and 7,

respectively. Again, m(m � 10, 12, 15) degree approxima-
tions for the rational Bézier curve in Example 5 and their
corresponding error distance curves are shown in Figures 8
and 9, respectively. It is already clear from these figures the
reliability of the proposed approximation algorithm.

6. Conclusion

*e presented PIA format for Bézier curves iteratively in-
terpolates not only a set of points but also derivatives at
endpoints. It can construct higher order continuous
piecewise interpolation Bézier curves without solving a
linear system directly. To accelerate the convergence rate of
PIA, the preconditioning technique is introduced. Nu-
merical examples demonstrate that the given methods are
effective, and the convergence rate of PIA is accelerated
significantly by the presented preconditioning technique.

Furthermore, due to the efficient performance in data
interpolation, the presented PPIA for Bézier curves with

0 5 10 15 20 25
0

5

10

15

20

25

Original curve
Algorithm 1
Lu’s method

(a)

0 5 10 15 20
0

5

10

15

20

25

Original curve
Algorithm 1
Lu’s method

(b)

0 5 10 15 20
0

5

10

15

20

25

Original curve
Algorithm 1
Lu’s method

(c)

Figure 8: Polynomial approximations of the rational Bézier curve in Example 5 with different m. (a) m� 10. (b) m� 12. (c) m� 15.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Algorithm 1
Lu’s method

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Algorithm 1
Lu’s method

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Algorithm 1
Lu’s method

(c)

Figure 9: *e corresponding error distance curves of the approximations in Figure 8. (a) m� 10. (b) m� 12. (c) m� 15.

Mathematical Problems in Engineering 11

constraints is applied to approximate higher order and
rational Bézier curves. Our numerical experiments show that
the proposed method achieves higher efficiency and results
in a better approximation than the similar sample-based
polynomial approximation method. More importantly, they
can satisfy Ck(k � 1, 2, . . . ,) continuity at the endpoints.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is research was supported by the National Natural Science
Foundation of China (11771453), Natural Science Foun-
dation of Hunan Province (2020JJ5267), and Scientific
Research Funds of Hunan Provincial Education Department
(CX20201192 and 19B301).

References

[1] S.-i. Gofuku, S. Tamura, and T. Maekawa, “Point-tangent/
point-normal B-spline curve interpolation by geometric al-
gorithms,” Computer-Aided Design, vol. 41, no. 6,
pp. 412–422, 2009.

[2] S. Okaniwa, A. Nasri, H. Hongwei Lin, A. Abbas, Y. Kineri,
and T. Maekawa, “Uniform B-spline curve interpolation with
prescribed tangent and curvature vectors,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 9,
pp. 1474–1487, 2012.

[3] Wozny, Pawel, Gospodarczyk et al., “Degree reduction of
composite Bezier curves,” Applied Mathematics and Com-
putation, vol. 293, pp. 40–48, 2017.

[4] G. E. Farin, Curves and Surfaces for CAGD: A Practical Guide,
Morgan Kaufmann Publishers Inc, Burlington, MA, USA,
2002.

[5] A. M. Bica, “Optimizing at the end-points the Akima’s in-
terpolation method of smooth curve fitting,” Computer Aided
Geometric Design, vol. 31, pp. 245–257, 2014.

[6] H. Lin, T. Maekawa, and C. Deng, “Survey on geometric
iterative methods and their applications,” Computer-Aided
Design, vol. 95, pp. 40–51, 2018.

[7] R. T. Farouki, “*e Bernstein polynomial basis: a centennial
retrospective,” Computer Aided Geometric Design, vol. 29,
no. 6, pp. 379–419, 2012.

[8] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, Cambridge, UK, 1991.

[9] H.-W. Lin, H.-J. Bao, and G.-J. Wang, “Totally positive bases
and progressive iteration approximation,” Computers &
Mathematics with Applications, vol. 50, no. 3-4, pp. 575–586,
2005.

[10] O. Axelsson, Iterative Solution Methods, Cambridge Uni-
versity Press, Cambridge, UK, 1994.

[11] A. Marco and J. Mart́ınez, “A fast and accurate algorithm for
solving Bernstein-Vandermonde linear systems,” Linear Al-
gebra and Its Applications, vol. 422, pp. 616–628, 2006.

[12] C. Liu and Z. Liu, “Progressive iterative approximation with
preconditioners,” Mathematics, vol. 8, no. 9, p. 1503, 2020.

[13] M. Benzi, “Preconditioning techniques for large linear sys-
tems: a survey,” Journal of Computational Physics, vol. 182,
no. 2, pp. 418–477, 2002.

[14] G.-J. Wang, T. W. Sederberg, and F. Chen, “On the con-
vergence of polynomial approximation of rational functions,”
Journal of Approximation /eory, vol. 89, no. 3, pp. 267–288,
1997.

[15] M. S. Floater, “High order approximation of rational curves by
polynomial curves,” Computer Aided Geometric Design,
vol. 23, no. 8, pp. 621–628, 2006.

[16] Y. Huang, H. Su, and H. Lin, “A simple method for ap-
proximating rational Bézier curve using Bézier curves,”
Computer Aided Geometric Design, vol. 25, no. 8, pp. 697–699,
2008.

[17] L. Lu, “Sample-based polynomial approximation of rational
Bézier curves,” Journal of Computational and Applied
Mathematics, vol. 235, no. 6, pp. 1557–1563, 2011.

[18] H.-J. Cai and G.-J. Wang, “Constrained approximation of
rational Bézier curves based on a matrix expression of its end
points continuity condition,” Computer-Aided Design, vol. 42,
no. 6, pp. 495–504, 2010.

[19] S. Lewanowicz, P. Woźny, and P. Keller, “Polynomial ap-
proximation of rational Bézier curves with constraints,”
Numerical Algorithms, vol. 59, no. 4, pp. 607–622, 2012.

[20] Q. Hu and H. Xu, “Constrained polynomial approximation of
rational Bézier curves using reparameterization,” Journal of
Computational and Applied Mathematics, vol. 249, pp. 133–
143, 2013.

[21] M. Eck, “Degree reduction of Bézier curves,” Computer Aided
Geometric Design, vol. 10, no. 3-4, pp. 237–251, 1993.

[22] P. Bogacki, S. E. Weinstein, and Y. Xu, “Degree reduction of
Bézier curves by uniform approximation with endpoint in-
terpolation,” Computer-Aided Design, vol. 27, no. 9,
pp. 651–661, 1995.

[23] G.-D. Chen and G.-J. Wang, “Optimal multi-degree reduction
of Bézier curves with constraints of endpoints continuity,”
Computer Aided Geometric Design, vol. 19, no. 6, pp. 365–377,
2002.

[24] H. Sunwoo, “Matrix representation for multi-degree reduc-
tion of Bézier curves,” Computer Aided Geometric Design,
vol. 22, no. 3, pp. 261–273, 2005.

[25] P. Wozny and S. Lewanowicz, “Multi-degree reduction of
Bézier curves with constraints, using dual Bernstein basis
polynomials,” Computer Aided Geometric Design, vol. 26,
pp. 566–579, 2009.

[26] L. Zhou, Y.Wei, and Y. Yao, “Optimal multi-degree reduction
of Bézier curves with geometric constraints,” Computer-Aided
Design, vol. 49, pp. 18–27, 2014.

[27] L. Lu, “Some improvements on optimal multi-degree re-
duction of Bézier curves with geometric constraints,” Com-
puter-Aided Design, vol. 59, pp. 39–42, 2015.

[28] L. Lu and X. Xiang, “Note on multi-degree reduction of
B8A6zier curves via modified Jacobi-Bernstein basis trans-
formation,” Journal of Computational & Applied Mathe-
matics, vol. 315, pp. 65–69, 2016.

[29] W. Gautschi, “Gauss-type quadrature rules for rational
functions,” Numerical Integration IV, vol. 112, pp. 111–130,
1993.

[30] J. Mathews and F. DFink, Numerical Methods Using MAT-
LAB, Pearson, New York, NY, USA, 2004.

12 Mathematical Problems in Engineering

