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*is study investigates the global output feedback stabilization problem for one type of the nonholonomic system with non-
vanishing external disturbances. An extended state observer (ESO) is constructed in order to estimate the external disturbance and
unmeasurable system states, in which the external disturbance term is seen as a general state. *us, a new generalized error
dynamic system is obtained. Accordingly, a disturbance rejection controller is designed by making use of the backstepping
technique. A control law is given to ensure that all the signals in the closed-loop system are globally bounded, while the system
states converge to an equilibrium point. *e simulation example is proposed to verify that the control algorithm is effective.

1. Introduction

Within recent decades, the control of nonholonomic sys-
tems has always been one of the most popular tasks in
control fields since such systems can be frequently found in
mechanical systems, for example, car-like vehicles, wheeled
mobile robots, knife-edge, and so on. In the theoretical
analysis of the nonholonomic systemmodel, some nonlinear
feedback controllers for these systems were put forward in
the literature to ensure that the systems are asymptotically
stable or exponentially regulatable, for example, the studies
[1–7] and references therein. By using an input/state scaling
technique and switching algorithm, a class of feedback
control law was obtained for nonholonomic chained systems
with uncertainties to realize exponential stabilization [6, 7],
and a switching-based state scaling is designed for pre-
scribed-time stabilization of nonholonomic systems with
actuator dead-zones [8]. In practical applications, especially
in the research of nonholonomic wheeled mobile robot
control, the controller design method to realize the robust
stabilization of the system is given [6, 9, 10]. Considering the
limitations of the hardware and environment of the actual
system, the design method of the controller with saturated
input is given in [11, 12]. In order to overcome the external

disturbances, the robust tracking control for the wheeled
mobile robot is proposed based on the ESO [13, 14].

*e measurement of full states is usually difficult and
sometimes impossible. Moreover, in practical applications,
the systems usually contain unknown disturbances, mea-
surement noise, and modeling errors, which are called
nonvanishing total disturbances. *ese disturbances in re-
ality will influence the performance of closed-loop systems.
*erefore, it is of great significance to study the output
feedback stabilization of nonholonomic systems with non-
linear uncertainties and external disturbances. *e output
feedback stabilization for nonholonomic systems is more
complex and difficult than using the general nonlinear state
feedback. *e output feedback problem towards asymptotic
stability and exponential stability of nonholonomic systems
has previously been put forward [15, 16]. In [17–20], the
adaptive output feedback global stabilization of a class of
nonholonomic systems with parametric uncertainties and
strong nonlinear drifts are solved. However, none of the
above work considers the existence of disturbance items that
do not disappear from the system even though uncertainties
or nonlinear drifts exist. *is means that the proposed
output feedback scheme may be unstable because of the
external disturbances. To reject the external disturbances, an
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output feedback controller has been proposed for non-
holonomic systems with nonlinear uncertainties [21] and
nonvanishing external disturbances [22–24]. In [23], the
external disturbances are considered a generalized system
state, and an ESO was constructed. By utilizing the so-called
ESO, [25] further investigated the output regulation control
problem towards one type of cascade nonlinear systems with
the external disturbance, and the output feedback adaptive
regulation problem was solved by the time-varying Kalman
observer [25]. However, the output regulation controller in
[22, 23, 25] requires that the nonlinear uncertainties in the
systems are only related to the output of the systems.

*e ESO in pioneering work [26] is the key creative
advancement towards active disturbance rejection control
(ADRC). *e ESO has the capability for state observation
and real-time estimation of generalized disturbances be-
tween the controlled object and the model of the controlled
system [27, 28]. By using the ESO, this study addresses
robust output feedback adaptive control towards one type of
nonholonomic chained form systems that have nonvan-
ishing external disturbances in the input channel and un-
certain nonlinearity drift. Different from references [22, 23],
in the model studied in this study, the upper bound function
of nonlinear uncertainties depend not only on the output
variables but also on the system state variables, in which such
uncertain nonlinearities meet a linearly growing triangular
condition.

*e main contribution of this study is that the extended
state observer (ESO) and gain scaling technique [29] are
constructed. In order overcome unknown system states and
the external disturbance, we reconstruct the system state,
and the disturbance is regarded as an extended state. *e
ESO with dynamic gain is put forward, and the disturbance
rejection controller based on an observer is developed by
designing a variable observer gain to overcome the uncer-
tainty.*e controller design is carried out for one type of the
nonholonomic system with nonvanishing external distur-
bances and uncertain nonlinearities satisfying a linearly
growing triangular condition. *is approach allows the
external disturbances to be a larger class of signals.

2. Problem Formulation

In this study, we consider the following nonholonomic
system with nonlinear uncertainties and nonvanishing ex-
ternal disturbance:

x0
.

� u0 + x0ϕ
d
0 t, x0( ,

xi

.
� xi+1u0 + ϕd

i t, u0, x0, x,ω0(t)( ,

xn

.
� u + ϕd

n t, u0, x0, x,ω0(t)(  + w(t),

y � x0, x1 
T

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where x0 ∈ R, x � [x1, . . . , xn]T ∈ Rn are the system states,
and the initial values are x0(t0), x(t0), with t0 as the initial
moment of the system; u � [u0, u]T ∈ R2 is the control input,
and y ∈ R2 is the system output. *e functions ϕd

i (·), i �

1, 2, . . . , n are the uncertainties which represent possible

modeling errors and neglected dynamics; w0(t), _w0(t),
w(t) ∈ R, and _w(t) are the uncertainties and bounded,
where w(t) ∈ R is the nonvanishing external disturbance
and satisfies that _w(t) ∈ L2. *e assumptions and lemmas
used in this article are listed as follows.

Assumption 1. For every 1≤ i≤ n, the following inequality
holds:

ϕd
0 t, x0( 



≤ α0 x0( ,

ϕd
i t, u0, x0, x,ω0(t)( 



≤ α x0(  

i

j�1
xj



,
(2)

where the nonnegative smooth functions α0(x0) and α(x0)

are known.

Lemma 1 (see [30]). For any x, y ∈ R, any scalar k> 0, and
any positive definite matrix M ∈ R(n+1)×(n+1), the following
inequality holds:

2x
T
y≤ k

− 1
x

TMx + kyT
M

− 1
y. (3)

Lemma 2 (see [31, 32]). For any μ> 0, there exist positive
real numbers d1 and d2, positive definite matrix P, and
positive constants ai, such that the following inequality is
satisfied:

PA + A
T
P≤ − d1In+1, PD + DP≥d2In+1, (4)

where Ii is the identity matrix of order i, and A and D are the
(n + 1) × (n + 1) matrices denoted as

A �

− a1

⋮ In

− an+1 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D � diag μ, 1 + μ, . . . , n + μ .

(5)

3. Controller Design and Stability Analysis

3.1. Output Feedback Controller Design

Lemma 3 (see [33]). For the first subsystem of (1), if the first
control law u0 is chosen as

u0 � − λ0x0 − x0α0 x0( , λ0 > 0, (6)

where (t0, x0(t0)) is regarded as the initial condition,
x0(t0)≠ 0, then as the corresponding solution,
x0(t, t0, x0(t0)) exists and |x0(t, t0, x0(t0))|> 0, 0≤ t0 < t. λ0
is designed as a positive constant parameter. Furthermore,
|u0(t)|> 0.

Proof. Substituting (6) into the first formula of system (1),
we can obtain

x0
.

� − λ0x0 − x0α0 x0(  + x0ϕ
d
0 t, x0( . (7)
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Integrating this nonlinear equation, the solution is

x0(t) � x0(0)e
− 

t

0
λ0+α0(x0(τ))− ϕd

0(τ,x0(τ))dτ
. *is shows that

x0(t)≠ 0 at any time if x0(0)≠ 0, and thus, u0(t)≠ 0.
Choosing V0(x0) � (1/2)x2

0, it can be obtained from (6) that

V0
.

� − λ0x
2
0 − x

2
0 α0 x0(  − ϕd

0 t, x0(  ≤ − λ0x
2
0 ≤ 0. (8)

*us, x0(t) asymptotically approaches zero. For any
bounded x0(t) because α0, ϕ

d
0 are smooth functions, there is

a positive constant M for |x0|≤ 1, |α0|≤M, |ϕd
0 |≤M. *is

yields that

V0
.

� − λ0x
2
0 − x

2
0 α0 x0(  − ϕd

0 t,x0(  

≥ − λ0 + M + M( V0.
(9)

Integrating both sides of this equation, it can be obtained
that

V0(t)≥V0(0)e
− λ0+2M( )t

. (10)

*is means that x0(t) converges to zero, but x0(t)≠ 0 at
any given moment, so that |u0(t)|> 0.

We introduce the following input state scaling:

ζ i �
xi

u
n− i
0

, i � 1, . . . , n. (11)

Unknown nonvanishing external disturbance w(t) is
treated as a generalized state. To realize symbol consistency,
it is defined as

ζn+1 � w(t). (12)

In the new state ζ, system (1) is converted to
_ζ i � ζ i+1 + ϕi t, u0, x0, ζ,ω0(t)( ,

_ζn � ζn+1 + ϕn t, u0, x0, ζ,ω0(t)(  + u,

_ζn+1 � _w(t)≜ h(t), i � 1, . . . , n − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

□

Lemma 4. For any given u0 in (6), there is a known non-
negative smooth function φ0(x0), such that | _u0/u0|≤φ0(x0),
t≥ 0.

Proof. *e following calculation is completed:

_u0

u0




�

− x0 λ0 + α0 x0(  − ϕd
0 t, x0(  

λ0 + α0 x0( 

zα0 x0( 

zx0
− λ0 − α0 x0(  + ϕd

0 t, x0( 





≤ λ0 1 +
λ0x0

λ0 + α0 x0( 

zα0 x0( 

zx0
 




≜φ0 x0( .

(14)

*is completes the proof of the lemma. We know from Assumption 1 that there is a nonnegative
smooth function α(x0):

ϕi t, u0, x0, ζ,ω0(t)( 


≤
α x0(  

i
j�1 xj





u
n− i
0




+(n − i)α0 x0(  ζ i




≤ (n − i)α0 x0(  ζ i


 + α x0(  u

i− 1
0 ζ1| + |u

i− 2
0

����
����ζ2| + · · · + |ζ i



 

≤ α x0(  

i

j�1
ζ i


.

(15)

Considering that (ζ1, . . . , ζn+1) are unmeasurable signals
that cannot be used in feedback control, the dynamic ob-
server for (13) is denoted as follows:

_̂ζ i � ζ̂ i+1 + aic
i ζ1 − ζ̂1 , i � 1, . . . , n − 1,

_̂ζn � u + ζ̂n+1 + anc
n ζ1 − ζ̂1 ,

_̂ζn+1 � an+1c
n+1 ζ1 − ζ̂1  − ccζ̂n+1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)
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where c is the dynamic gain, which will be designed later
according to the requirements. *e observer error dynamics
is defined as

ei � ζ i − ζ̂ i (i � 1, . . . , n + 1). (17)

We can determine from (13), (16), and (17) that

_ei � ei+1 + ϕi t, u0, x0, ζ,ω0(t)(  − aic
i ζ1 − ζ̂1 ,

_en � en+1 + ϕn t, u0, x0, ζ,ω0(t)(  − anc
n ζ1 − ζ̂1 ,

_en+1 � h(t) − an+1c
n+1 ζ1 − ζ̂1  + ccζ̂n+1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

Introducing dynamic gain scaling,

εi �
ei

c
i− 1+μ, zi �

ζ̂ i

c
i− 1+μ, i � 1, . . . , n + 1, (19)

and defining ε � [ε1, . . . , εn+1]
T, z � [z1, . . . , zn+1]

T,

Φ(·) � [ϕ1(·)/cμ, . . . , ϕn(·)/cn− 1+μ, 0]T, we arrive at

ε
.

i � cεi+1 +Φi t, u0, x0, ζ,ω0(t)(  − caiε1 −
_c

c
(i − 1 + μ)εi,

ε
.

n � cεn+1 +Φn t, u0, x0, ζ,ω0(t)(  − canε1 −
_c

c
(n − 1 + μ)εn,

ε
.

n+1 �
h(t)

c
n+μ − can+1ε1 −

_c

c
(n + μ)εn+1 + cczn+1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

_zi � czi+1 + caiε1 −
_c

c
(i − 1 + μ)zi,

_zn �
u

c
n− 1+μ + czn+1 + canε1 −

_c

c
(n − 1 + μ)zn,

_zn+1 � can+1ε1 −
_c

c
(n + μ)zn+1 − cczn+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Denoting a � [a1, . . . , an+1]
T, b � [0, . . . , 1]T

1×(n+1),
F � [0, . . . , cczn+1]

T
1×(n+1), and h(t) � h(t)/cn+μ, we have

ε
.

� cAε +Φ t, u0, x0, ζ,ω0(t)(  −
_c

c
Dε + bh(t) + F. (22)

Now, using Assumption 1 and (15), it follows that

Φi t, u0, x0, ζ,ω0(t)( 


≤
α x0( 

c
i− 1+μ 

i

j�1
ζj



 . (23)

Choosing Vε � εTPε, it is then obtained that

Vε
.

� ε
. T

Pε+ εT
Pε

.
� cAε+Φ −

_c

c
Dε+ bh(t) + F 

T

Pε

+ εT
P Φ+ cAε −

_c

c
Dε+ bh(t) + F  � cεT

A
T
P +PA ε

+2εT
PΦ −

_c

c
εT

(DP+PD)ε+2εTPbh(t) +2εT
PF

≤2εT
PΦ − cd1ε

Tε+2εTPbh(t) +2εTPF −
_c

c
d2ε

Tε.

(24)

Introducing the following transformation,

x̂1 � z1,

x̂i � zi − αi− 1, αi− 1 � − gi− 1x̂i− 1, i � 2, . . . , n,

x̂n+1 � zn+1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where gi− 1 > 0 is a constant number that will be given later,
because εi � ei/ci− 1+μ, and ei � ζ i − ζ̂ i, we have

ζ i � c
i− 1+μ εi + zi(  � c

i− 1+μ εi + x̂i − gi− 1x̂i− 1 . (26)

Now, using Lemma 1, it follows that inequality,

2εT
PΦ≤ 2‖ε‖‖P‖α x0( (‖ε‖ +‖z‖)

� 2α x0( ‖P‖‖ε‖2 + 2α x0( ‖P‖‖ε‖‖z‖

≤φ1 x0( ‖ε‖2 + φ2 x0( ‖z‖
2

≤φ1 x0( ‖ε‖2 + φ2 x0( ‖x̂‖
2
,

(27)

holds, where φ1(x0) and φ2(x0) are the nonnegative smooth
functions. On the other hand, by using Young’s inequality,
one has

2εTPbh≤ cL1‖ε‖
2

+ ch
2
,

2εTPF≤ c‖P‖c1z
2
n+1 + c

1
c1

‖P‖‖ε‖2.
(28)

Correspondingly, we can obtain that

Vε
.

≤ − cd1ε
Tε −

_c

c
d2ε

Tε + cL1‖ε‖
2

+ c‖P‖c1z
2
n+1

+ c
1
c1

‖P‖‖ε‖2 + φ1 x0( ‖ε‖2 + φ2 x0( ‖x̂‖
2

+ ch
2
.

(29)

Step 1. Choosing V1 � 1/2z2
1 � 1/2x̂

2
1, we have
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_V1 � x̂1 cz2 + ca1ε1 −
_c

c
μz1 

� cx̂1 z2 − α1 + α1(  + ca1x̂1ε1 −
_c

c
μx̂1z1

� cx̂1x̂2 + cx̂1α1 + ca1x̂1ε1 −
_c

c
μx̂

2
1.

(30)

By using Young’s inequality, we have

ca1x̂1ε1 ≤ cM1ε
2
1 + c

a
2
1

4M1
x̂
2
1 � cM1ε

2
1 + cβ1x̂

2
1, (31)

Where M> 0, β1 � a2
1/4M1 are the constants. Choosing

α1 � − g1x̂1 � − (n + β1)x̂1, δ1 � μ, we then obtain

_V1 ≤ − cnx̂
2
1 + cM1ε

2
1 + cx̂1x̂2 −

_c

c
δ1x̂

2
1. (32)

Step 2. Choosing V2 � p1V1 + 1/2x̂
2
2, where p1 is a

designed positive constant,

_V2 ≤p1 − cnx̂
2
1 + cM1ε

2
1 + cx̂1x̂2 −

_c

c
δ1x̂

2
1  + x̂2 _z2 − _α1( 

� p1 − cnx̂
2
1 + cM1ε

2
1 + cx̂1x̂2 −

_c

c
δ1x̂

2
1  + x̂2 cz3 + ca2ε1 −

_c

c
(1 + μ)z2  − x̂2

zα1
zz1

_z1

� − cp1nx̂
2
1 + cp1M1ε

2
1 + cp1x̂1x̂2 −

_c

c
p1δ1x̂

2
1 + cx̂2x̂3 + cx̂2α2

+ ca2x̂2ε1 −
_c

c
(1 + μ)x̂2z2 − x̂2

zα1
zz1

_z1.

(33)

From Lemma 1, we can derive the following inequalities:

cp1x̂1x̂2 ≤
c

3
p1x̂

2
1 + 3c

p1

4
x̂
2
2 �

c

3
p1x̂

2
1 + cβ21x̂

2
2

ca2x̂2ε1 ≤ cθ21ε
2
1 + c

a
2
2

4θ21
x̂
2
2 � cθ21ε

2
1 + cβ22x̂

2
2,

−
_c

c
(1 + μ)x̂2z2 � −

_c

c
(1 + μ)x̂2 x̂2 − g1x̂1 

� −
_c

c
(1 + μ)x̂

2
2 +

_c

c
(1 + μ)x̂2 · g1x̂1

≤ −
_c

c

1 + μ
2

x̂
2
2 +

_c

c

1 + μ
2

g
2
1x̂

2
1

� −
_c

c

1 + μ
2

x̂
2
2 +

_c

c
N1 l2, g1( x̂

2
1,

(34)

where β21 � 3p1/ 4, l1 � μ, l2 � 1 + μ, N1(l2, g1) � l2/2g2
1,

θ21 > 0, β22 � a2
2/4θ21 are the constants. Using the relations

α1 � − g1x̂1 and _z1 � cz2 + ca1ε1 − _c/cμz1, we have

− x̂2
zα1
zz1

_z1 � − x̂2
zα1
zz1

cz2 + ca1ε1 −
_c

c
μz1  . (35)

Defining x̂0 � 0, g0 � 1, it is derived that
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cz2 −
_c

c
l1z1 � c x̂2 − g1x̂1  −

_c

c
l1x̂1

� c x̂2 − g1x̂1  −
_c

c
l1 x̂1 − g0x̂0 

≤ c x̂2



 + g1


 x̂1|


  +
_c

c
l1 x̂1



 + g0


 x̂0|


 

≤A g0, g1(  c x̂2



 + x̂1



  +
_c

c
l1 x̂1



 + x̂0



  ,

(36)

where A(g0, g1) � max 1, |g0|, |g1| . Since |zα1/zz1|≤g1,
this implies that

− x̂2
zα1
zz1

ca1ε1 ≤ x̂2



g1ca1ε1 ≤ cθ22ε
2
1 + c

g
2
1a

2
1

4θ22
x̂
2
2

� cθ22ε
2
1 + cβ23x̂

2
2,

− x̂2
zα1
zz1

cz2 −
_c

c
l1z1 ≤ x̂2



g1A g0, g1( 

c x̂2



 + x̂1



  +
_c

c
l1 x̂1



 + x̂0



  .

(37)

Letting B21 � g1A(g0, g1), it can be concluded that

c x̂2



g1A g0, g1(  x̂2



 + x̂1



  � cB21x̂
2
2 + cB21 x̂2



 x̂1





≤
c

3
p1x̂

2
1 + c B21 +

3B
2
21

4p1
 x̂

2
2

�
c

3
p1x̂

2
1 + cβ24x̂

2
2,

x̂2



B21
_c

c
l1 x̂1



 + x̂0



  � x̂2



B21
_c

c
l1 x̂1





≤
_c

c
B
2
21l1x̂

2
1 +

_c

c

l1

4
x̂
2
2

�
_c

c
B2x̂

2
1 +

_c

c

l1

4
x̂
2
2,

(38)

where θ22 > 0, β23 � g2
1a

2
1/4θ22, β24 � B21 + 3B2

21/4p1, B2 �

B2
21l1 are the constants. Furthermore, we have

_V2 ≤ − cp1nx̂
2
1 −

_c

c
p1δ1x̂

2
1 +

c

3
p1x̂

2
1 +

_c

c
N1 l2, g1( x̂

2
1

+
c

3
p1x̂

2
1 +

_c

c
B2x̂

2
1 + cp1M1ε

2
1 + cM21ε

2
1

+ cM22ε
2
1 + cβ21x̂

2
2 + cβ22x̂

2
2 + cβ23x̂

2
2 + cβ24x̂

2
2

−
_c

c

1 + μ
2

x̂
2
2 +

_c

c

l1

4
x̂
2
2 + cx̂2x̂3 + cx̂2α2.

(39)

Let us denote

β2 � β21 + β22 + β23 + β24,

M2 � p1M1 + θ21 + θ22,
 (40)

thus, it is obtained that

_V2≤ − c(n − 1)p1 

2

j�1
x̂
2
j + cM2ε

2
1 +

_c

c
N1 l2,g1(  + B2( x̂

2
1

+ cx̂2x̂3 + cx̂2α2 −
_c

c
p1δ1x̂

2
1 −

_c

c

l2

4
x̂
2
2 + c β2 +(n − 1)p1( x̂

2
2.

(41)

For simplicity, let p1′ � p1δ1 − N1 − B2 > 0 and
δ2 � min l2/4, p1′ , α2 � − g2x̂2 � − (β2 + (n − 1)p1)x̂2; then,

_V2 ≤ − c(n − 1)p1 

2

j�1
x̂
2
j + cM2ε

2
1 + cx̂2x̂3 −

_c

c
δ2 

2

j�1
x̂
2
j .

(42)

Step i (2< i≤ n − 1). Assume that in Step i − 1, we have

_Vi− 1 ≤ − c(n − i + 2)p1, . . . , pi− 2 

i− 1

j�1
x̂
2
j + cMi− 1ε

2
1 + cx̂i− 1x̂i −

_c

c
δi− 1 

i− 1

j�1
x̂
2
j . (43)
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Letting the ith candidate Lyapunov function be
Vi � pi− 1Vi− 1 + 1/2x̂

2
i and defining x̂i � zi − αi− 1, where

p2, . . . , pi− 2 are the designed positive constants,

_Vi � pi− 1
_Vi− 1 + x̂i _zi − 

i− 1

j�1

zαi− 1

zzj

_zj
⎛⎝ ⎞⎠ � pi− 1

_Vi− 1 + x̂i czi+1 + caiε1 −
_c

c
(i − 1 + μ)zi  − x̂i 

i− 1

j�1

zαi− 1

zzj

_zj

≤ − c(n − i + 2)p1, . . . , pi− 1 

i− 1

j�1
x̂
2
j + cpi− 1Mi− 1ε

2
1 −

_c

c
pi− 1δi− 1 

i− 1

j�1
x̂
2
j

+ cpi− 1x̂i− 1x̂i + cx̂izi+1 + caix̂iε1 − x̂i 

i− 1

j�1

zαi− 1

zzj

_zj −
_c

c
(i − 1 + μ)x̂izi.

(44)

By applying Young’s inequality, one has

cpi− 1x̂i− 1x̂i ≤
c

3
p1, . . . , pi− 1x̂

2
i− 1 + 3c

pi− 1

4p1, . . . , pi− 2
x̂
2
2 �

c

3
pi− 1x̂

2
i− 1 + cβi1x̂

2
i

caix̂iε1 ≤ cMi1ε
2
1 + c

a
2
i

4Mi1
x̂
2
i � cMi1ε

2
1 + cβi2x̂

2
i −

_c

c
(i − 1 + μ)x̂izi

� −
_c

c
(i − 1 + μ)x̂i x̂i − gi− 1x̂i− 1 

� −
_c

c
(i − 1 + μ)x̂

2
i +

_c

c
(i − 1 + μ)x̂i · gi− 1x̂i− 1

≤ −
_c

c

i − 1 + μ
2

x̂
2
i +

_c

c

i − 1 + μ
2

g
2
i− 1x̂

2
i− 1

� −
_c

c

li

2
x̂
2
i +

_c

c
Ni− 1 li, gi− 1( x̂

2
i− 1,

(45)

where βi1 � 3pi− 1/4p1, . . . , pi− 2, li � i − 1 + μ, Ni− 1(li,

gi− 1) � li/2g2
i− 1, Mi1 > 0, βi2 � a2

i /4Mi1 are the constants.
Using the relations

αi− 1 � − gi− 1x̂i− 1 � − gi− 1 zi− 1 + gi− 2x̂i− 2 

� − 
i− 1

j�1


i− 1

s�j

gszj � − 
i− 1

j�1


i− 1

s�j

gs
⎛⎝ ⎞⎠zj,

(46)

and _zj � czj+1 + cajε1 − _c/c(j − 1 + μ)zj, it follows that

− x̂i 

i− 1

j�1

zαi− 1

zzj

_zj � − x̂i 

i− 1

j�1

zαi− 1

zzj

czj+1 +cajε1 −
_c

c
(j − 1+μ)zj , (47)
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czj+1 −
_c

c
ljzj � c x̂j+1 − gjx̂j  −

_c

c
ljzj

� c x̂j+1 − gjx̂j  −
_c

c
lj x̂j − gj− 1x̂j− 1 

≤c x̂j+1



+ gj



 x̂j



 +
_c

c
lj x̂j



+ gj− 1



 x̂j− 1



 

≤A gj− 1,gj  c x̂j+1



+ x̂j



 +
_c

c
lj x̂j



+ x̂j



  .

(48)

Since |zαi− 1/zzj|≤gj, . . . , gi− 1, this implies that

− x̂i 

i− 1

j�1

zαi− 1

zzj

cajε1 ≤ x̂i



 

i− 1

j�1
gj, . . . , gi− 1cajε1 ≤ cMi2ε

2
1 + c


i− 1
j�1 gj, . . . , gi− 1aj 

2

4Mi2
x̂
2
i

� cMi2ε
2
1 + cβi3x̂

2
i

− x̂i 

i− 1

j�1

zαi− 1

zzj

czj+1 −
_c

c
ljzj ≤ x̂i



 

i− 1

j�1
gj, . . . , gi− 1A gj− 1, gj  c x̂j



 + x̂j+1



  +
_c

c
lj x̂j



 + x̂j+1



  .

(49)

Defining Bij � gj, . . . , gi− 1A(gj− 1, gj),

c x̂i



 

i− 1

j�1
Bij x̂j+1



 + x̂j



  � c x̂i



 

i− 1

j�1
Bij x̂j+1



 + c x̂i



 

i− 1

j�1
Bij x̂j





� cBi,i− 1x̂
2
i + c x̂i



 

i− 1

j�2
Bi,j− 1 x̂j



 + c x̂i



 

i− 1

j�1
Bij x̂j





≤ cBi,i− 1x̂
2
i + c x̂i



 

i− 1

j�1
Bi,j− 1 x̂j



 + c x̂i



 

i− 1

j�1
Bij x̂j





� cBi,i− 1x̂
2
i + c x̂i



 

i− 1

j�1
Bi,j x̂j





≤ c Bi,i− 1 +
3

i− 1
j�1B

2
ij

4p1, . . . , pi− 1

⎛⎝ ⎞⎠x̂
2
i +

c

3
p1, . . . , pi− 1 

i− 1

j�1
x̂
2
j

� cβi4x̂
2
i +

c

3
p1, . . . , pi− 1 

i− 1

j�1
x̂
2
j ,

x̂i



 

i− 1

j�1
Bij

_c

c
lj x̂j



 + x̂j− 1



   �
_c

c
x̂i



 

i− 1

j�1
Bijlj x̂j



 +
_c

c
x̂i



 

i− 1

j�1
Bijlj x̂j− 1





≤
_c

c
x̂i



 

i− 1

j�1

Bij x̂j



≤
_c

c
li− 1 

i− 1

j�1

B
2
ijx̂

2
j +

_c

c

li− 1

4
x̂
2
i �

_c

c
Bi 

i− 1

j�1
x̂
2
j +

_c

c

li− 1

4
x̂
2
i ,

(50)

where Bij � Bij + Bi,j− 1,
Bij � Bijlj + Bi,j− 1lj− 1, Mi2 > 0,

βi3 � 
i− 1
j�1(gj, . . . , gi− 1aj)

2/ 4Mi2, βi4 � Bi, i− 1 + 3
i− 1
j�1B

2
ij /4

p1, . . . , pi− 1, Bi � li− 1
i− 1
j�1B

2
ij are the constants.

Denoting

βi � βi1 + βi2 + βi3 + βi4,

Mi � pi− 1Mi− 1 + Mi1 + Mi2,
 (51)

we have
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_Vi ≤ − 2cp1, . . . , pi− 1 

i

j�1
x̂
2
j + cMiε

2
1 + cx̂ix̂i+1 + cx̂iαi

−
_c

c
pi− 1δi− 1 

i

j�1
x̂
2
j +

_c

c
Ni− 1x̂

2
i− 1 +

_c

c
Bi 

i− 1

j�1
x̂
2
j

−
_c

c

li

4
x̂
2
i + c βi + 2p1, . . . , pi− 1( x̂

2
i .

(52)

Choosing pi− 1′ � pi− 1δi− 1 − Ni− 1 − Bi > 0, δi � min
li/4, pi− 1′  and using the formula

αi � − gix̂i � − βi +(n − i + 1)p1, . . . , pi− 1( x̂i
, (53)

we again obtain

_Vi ≤ − c(n − i + 1)p1, . . . , pi− 1 

i

j�1
x̂
2
j + cMiε

2
1

+ cx̂ix̂i+1 −
_c

c
δi 

i

j�1
x̂
2
j .

(54)

Step n: for the last step, we choose
Vn � pn− 1Vn− 1 + 1/2x̂

2
n + 1/2z2

n+1, where pn− 1 is a designed
positive constant, and by using (30), (32), and (43), we have

_Vn � pn− 1
_Vn− 1 + x̂n _zn − 

n− 1

j�1

zαn− 1

zzj

_zj
⎛⎝ ⎞⎠

+ zn+1 can+1ε1 −
_c

c
(n + μ)zn+1 − cczn+1 

≤ − 2cp1, . . . , pn− 1 

n− 1

j�1
x̂
2
j

+ cpn− 1x̂n− 1x̂n −
_c

c
pn− 1δn− 1 

n− 1

j�1
x̂
2
j + canx̂nε1

−
_c

c
(n − 1 + μ)x̂nzn + x̂n

u

c
n− 1+μ

+ zn+1 can+1ε1 −
_c

c
(n + μ)zn+1 − cczn+1 

− x̂n 

n− 1

j�1

zαn− 1

zzj

_zj.

(55)

*is is similar to step i, in that

cpn− 1x̂n− 1x̂n ≤
c

3
p1, . . . , pn− 1x̂

2
n− 1 + 3c

pn− 1

4p1, . . . , pn− 2
x̂
2
n

�
c

3
pn− 1x̂

2
n− 1 + cβn1x̂

2
n

canx̂nε1 ≤ cMn1ε
2
1 + c

a
2
n

4Mn1
x̂
2
n

� cMn1ε
2
1 + cβn2x̂

2
n −

_c

c
(n − 1 + μ)x̂nzn

� −
_c

c
(n − 1 + μ)x̂n x̂n − gn− 1x̂n− 1 

� −
_c

c
(n − 1 + μ)x̂

2
n +

_c

c
(n − 1 + μ)x̂n · gn− 1x̂n− 1

≤ −
_c

c

n − 1 + μ
2

x̂
2
n +

_c

c

n − 1 + μ
2

g
2
n− 1x̂

2
n− 1

� −
_c

c

ln

2
x̂
2
n +

_c

c
Nn− 1 ln, gn− 1( x̂

2
n− 1,

(56)

where βn1 � 3pn− 1/4p1, . . . , pn− 2, ln � n − 1 + μ, Nn− 1(ln,

gn− 1) � ln/2g2
n− 1, Mn1 > 0, βn2 � a2

n/4Mn1 are the constants.
According to the relations

αn− 1 � − gn− 1x̂n− 1 � − gn− 1 zn− 1 + gn− 2x̂n− 2 

� − 
n− 1

j�1


n− 1

s�j

gszj � − 
i− 1

j�1


n− 1

s�j

gs
⎛⎝ ⎞⎠zj

(57)

and _zj � czj+1 + cajε1 − _c/c(j − 1 + μ)zj, we have
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− x̂n 

n− 1

j�1

zαn− 1

zzj

_zj � − x̂n 

n− 1

j�1

zαn− 1

zzj

czj+1 + cajε1 −
_c

c
(j − 1 + μ)zj 

czj+1 −
_c

c
ljzj � c x̂j+1 − gjx̂j  −

_c

c
ljzj

� c x̂j+1 − gjx̂j  −
_c

c
ljx̂j − gj− 1x̂j− 1

≤ c |x̂j+1| + |gj‖x̂j|  +
_c

c
lj |x̂j| + |gj− 1‖x̂j− 1| 

≤A gj− 1, gj  c |x̂j+1| + |x̂j|  +
_c

c
lj |x̂j| + |x̂j− 1|  .

(58)

Because |zαn− 1/zzj|≤gj, . . . , gn− 1, it is obtained

− x̂n 

n− 1

j�1

zαn− 1

zzj

cajε1 ≤ x̂n



 

n− 1

j�1
gj, . . . gn− 1cajε1

≤ cMn2ε
2
1 + c


n− 1
j�1 gj, . . . , gn− 1aj 

2

4Mn2
x̂
2
n

� cMn2ε
2
1 + cβn3x̂

2
n

− x̂n 

n− 1

j�1

zαn− 1

zzj

cajε1 ≤ x̂n



 

n− 1

j�1
gj, . . . , gn− 1cajε1

≤ cMn2ε
2
1 + c


n− 1
j�1 gj, . . . , gn− 1aj 

2

4Mn2
x̂
2
n

� cMn2ε
2
1 + cβn3x̂

2
n

− x̂n 

n− 1

j�1

zαn− 1

zzj

czj+1 −
_c

c
ljzj ≤ x̂n



 

n− 1

j�1
gj, . . . , gn− 1A gj− 1, gj  c x̂j+1



 + x̂j



  +
_c

c
lj x̂j



 + x̂j− 1



  .

(59)

Defining Bnj � gj, . . . , gn− 1A(gj− 1, gj),

c x̂n



 

n− 1

j�1
Bnj x̂j+1



 + x̂j



  � c x̂n



 

n− 1

j�1
Bnj x̂j+1



 + c x̂n



 

n− 1

j�1
Bnj x̂j





≤ cBn,n− 1x̂
2
n + c x̂n



 

n− 1

j�1
Bn,j− 1 x̂j



 + c x̂n



 

n− 1

j�1
Bnj x̂j





� cBn,n− 1x̂
2
n + c x̂n



 

n− 1

j�1
Bn,j x̂j





≤ c Bn,n− 1 +
3

n− 1
j�1B

2
nj

4p1, . . . , pn− 1

⎛⎝ ⎞⎠x̂
2
n +

c

3
p1, . . . , pn− 1 

n− 1

j�1
x̂
2
j
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� cβn4x̂
2
n +

c

3
p1, . . . , pn− 1 

n− 1

j�1
x̂
2
j

x̂n



 

n− 1

j�1
Bnj

_c

c
lj x̂j



 + x̂j− 1



  

�
_c

c
x̂n



 

n− 1

j�1
Bnjlj x̂j



 +
_c

c
x̂n



 

n− 1

j�1
Bnjlj x̂j− 1





≤
_c

c
x̂n



 

n− 1

j�1

Bnj x̂j





≤
_c

c
ln− 1 

n− 1

j�1

B
2
njx̂

2
j +

_c

c

ln− 1

4
x̂
2
n

�
_c

c
Bn 

n− 1

j�1
x̂
2
j +

_c

c

ln− 1

4
x̂
2
n, (60)

where Bnj � Bnj + Bn,j− 1,
Bnj � Bnjlj + Bn,j− 1lj− 1, Mn2 > 0,

βn3 � 
n− 1
j�1(gj, . . . , gn− 1aj)

2/4Mn2, βn4 � Bn,n− 1 + 3
n− 1
j�1B

2
nj

/4p1, . . . , pn− 1, Bn � ln− 1
n− 1
j�1B

2
nj are the constants.

Denoting

βn � βn1 + βn2 + βn3 + βn4,

Mn � pn− 1Mn− 1 + Mn1 + Mn2,
 (61)

we have

_Vn ≤ − cp1, . . . , pn− 1 

n− 1

j�1
x̂
2
j + cMnε

2
1 + cx̂nzn+1 −

_c

c

ln

4
x̂
2
n

−
_c

c
pn− 1δn− 1 

n− 1

j�1
x̂
2
j +

_c

c
Nn− 1̂x

2
n− 1 +

_c

c
Bn 

n− 1

j�1
x̂
2
j

+ cβn̂x
2
n + x̂n

u

c
n− 1+μ + can+1zn+1ε1

−
_c

c
(n + μ)z

2
n+1 − ccz2n+1).

(62)

For simplicity, we define pn− 1′ � pn− 1δn− 1−

Nn− 1 − Bn > 0, δn � min ln/4, pn− 1′, n + μ , and then,

_Vn ≤ − cp1, . . . , pn− 1 

n

j�1
x̂
2
j + cMnε

2
1 + cx̂nzn+1

−
_c

c
δn 

n

j�1
x̂
2
j + c βn + p1, . . . , pn− 1( x̂

2
n + x̂n

u

c
n− 1+μ

+ can+1zn+1ε1 −
_c

c
(n + μ)z

2
n+1 − ccz2n+1

can+1zn+1ε1 ≤ cMn+1ε
2
1 + c

a
2
n+1

4Mn+1
z
2
n+1

� cMn+1ε
2
1 + cβn+1z

2
n+1,

(63)

where Mn+1 > 0, βn+1 � a2
n+1/4Mn+1 are the constants. Now,

let us choose the final control signal as

u � − c
n+μ βn + p1, . . . , pn− 1( x̂n − c

n+μ
zn+1

� − c
n+μ βn + p1, . . . , pn− 1( x̂n − ζn+1.

(64)

Finally, it is derived that

_Vn ≤ − cp1, . . . , pn− 1 

n

j�1
x̂
2
j + c Mn + Mn+1( ε21

−
_c

c
δn 

n

j�1
x̂
2
j + z

2
n+1

⎛⎝ ⎞⎠ + c − c + βn+1( z
2
n+1.

(65)

□

3.2. StabilityAnalysis. Choosing V � Vn + Vε, we can obtain
that

_V≤ − cp1, . . . , pn− 1 

n

j�1
x̂
2
j + c Mn + Mn+1( ε21 + ch

2

−
_c

c
δn 

n

j�1
x̂
2
j + z

2
n+1  + c − c + βn+1( z

2
n+1

− cd1ε
Tε −

_c

c
d2ε

Tε + cL1‖ε‖
2

+ c‖P‖c1z
2
n+1

+ c
1
c1

‖P‖‖ε‖2 + φ1 x0( ‖ε‖2 + φ2 x0( ‖x̂‖
2
.

(66)

Select parameters

− c + βn+1 +‖P‖c1 < − Ca,

− d1 + Mn + Mn+1(  +
1
c1

‖P‖ + L1 < − Cb,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(67)

where Ca > 0, Cb > 0 denote p1, . . . , pn− 1 � D,

δn+1 � minD, δn, Ca, Cb, such that
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_V≤ − cD 

n

j�1
x̂
2
j − cCaz

2
n+1 − cCb‖ε‖2 −

_c

c
δn 

n

j�1
x̂
2
j + z

2
n+1

⎛⎝ ⎞⎠

−
_c

c
d2ε

Tε + φ1 x0( ‖ε‖2 + φ2 x0( ‖x̂‖
2

+ ch
2

≤ − D0 c‖x̂‖
2

+ c‖ε‖2  −
_c

c
δn+1‖x̂‖

2
−

_c

c
δn+1‖ε‖

2

+ φ1 x0( ‖ε‖2 + φ2 x0( ‖x̂‖
2

+ ch
2

≤ −
D0

2
c ‖x̂‖

2
+‖ε‖2  + ch

2
− D0

c

2
+

_c

c

δn+1

D0
−
φ2 x0( 

D0
 

‖x̂‖
2

− D0
c

2
+

_c

c

δn+1

D0
−
φ1 x0( 

D0
 ‖x̂‖

2
.

(68)

Denoting ω(x0)> 1/D0 max φ1(x0),φ2(x0)  and
_c � max (− c2/2 + ω(x0))δn+1/D0, 0 , then

_V≤ −
D0

2
c ‖x̂‖

2
+‖ε‖2  + ch

2
. (69)

Defining ch
2 ≤D � p1, . . . , pn− 1, we can obtain that

_V≤ −
D0

2
c ‖x̂‖

2
+‖ε‖2  + D. (70)

x̂, ε are bounded. Now, we shall prove by contradiction
that c(t) is bounded. Assume c(t) is unbounded in [t0, tf).
We notice that _c(t)≥ 0, so lim t⟶tf

c(t) � +∞, and thus,
there exists a finite time T1 ∈ [t0, tf), such that ∀t ∈ [T1, tf),
and we have

_c(t) �

−
c
2

2
+ ω x0(  

δn+1

D0
≤ −

D
2
0
2

+ ω x0(  
δn+1

D0
,

0≤ −
D

2
0
2

+ ω x0(  
δn+1

D0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(71)

Integrating both sides of the top equation, when
_c � (− c2/2 + ω(x0))δn+1/D0, we can obtain


tf

T1

−
c
2

2
+ ω x0(  

δn+1

D0
dτ

� 
tf

T1

_c(τ)dτ � c tf  − c T1(  � +∞


tf

T1

−
c
2

2
+ ω x0(  

δn+1

D0
dτ ≤ 

tf

T1

−
D

2
0
2

+ ω x0(  
δn+1

D0
dτ.

(72)

Since x0 is bounded in [t0, tf), ω(x0) is bounded,


tf

T1
(− c2/2 + ω(x0))δn+1/D0dτ < +∞, which is a contradic-

tion. *us, c(t) is bounded in [t0, tf). When _c � 0, one has


tf

T1

_c(τ)dτ � c tf  − c T1(  � +∞,


tf

T1

_c(τ)dτ � 0.

(73)

*ese two equations contradict each other. *us, c(t) is
bounded in [t0, tf). Integrating _V≤ − D0/2c

(‖x̂‖2 + ‖ε‖2) + ch
2, we have

V(t) − V(0)≤ −
D0

2


t

0
c ‖x̂‖

2
+‖ε‖2 dτ + 

t

0
ch

2dτ ,

(74)

namely,

V(t)≤V(0) −
D0

2


t

0
c ‖x̂‖

2
+‖ε‖2 dτ + 

t

0
ch

2dτ . (75)

Because h(t) � _w(t)/cn+μ ∈ L2, 
t

0 ch(τ)2dτ < +∞,∀t
> 0. Because ε, x̂ ∈ L2, it can be obtained from (19) and (20)
that _̂x, ε

.
is bounded. According to Barbalat’s lemma,

limt⟶∞ε � 0, and limt⟶∞x̂ � 0.

4. Simulation Results

In this section, we consider a simulation example to prove
that the controller design in this study is effective. Consider
the following three-dimensional uncertain nonholonomic
system with nonvanishing external disturbance:

x0
.

� u0 + x
2
0x0,

x1
.

� x2u0 + x
2
0 x1


cos2 u0( ,

x2
.

� u + 0.01x
2
0

x1




u0



+ |x2|  +

sin(t)

t + 1
+ 1.

(76)

*is example shows that the nonlinear uncertainty in
third equation is related to the unknown system state x2, so
that the assumption condition in [23] is not satisfied, and
thus, the given method in that of article is not available to
deal with this model. However, this example satisfies the
given Assumption 1. By designing the controller, execution
simulation algorithm, and choosing parameters u0
� − λ0x0 − x0 (x2

0 + 1), u1 � − 2c3 x̂2 − c3z3, λ0 � μ
� 0.01, a1 � a2 � a3 � 2, g1 � 10, c � 100, k � 0.01, we have

_ζ1 � ζ2 + x
2
0cos

2
u0(  ζ1


 −

9 1 + x
2
0 

3 + x
2
0

ζ1,

_ζ2 � u1 + 0.01x
2
0 ζ1


 + ζ2


  + ζ3,

_ζ3 �
cos(t)

t + 1
−

sin(t)

(t + 1)
2,

_̂ζ1 � ζ̂2 + 2c ζ1 − ζ̂ ,
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Figure 1: State response curve of the system.
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Figure 2: Input response curve of the system.
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_̂ζ2 � u1 + 2c
2 ζ1 − ζ̂  + ζ̂3,

_̂ζ3 � 2c
3 ζ1 − ζ̂  − 100cζ̂3,

_z1 � cz2 + 2c
0.99 ζ1 − ζ̂  − 0.01

_c

c
z1,

_z2 � cz3 + 2c
0.99 ζ1 − ζ̂  − 1.01

_c

c
z2 +

u1

c
1.01,

_z3 � 2c
0.99 ζ1 − ζ̂  − 2.01

_c

c
z3 − 100cz3,

_̂x1 � _z1,

_̂x2 � _z2 + 10 _̂x1,

_̂x3 � _̂z3, (77)

where the initial states are x0 � 1, x1 � 2, x2 � 7, ζ1 �

− 1, ζ2 � 7, ζ3 � 0, ζ̂1 � 1, ζ̂2 � 1, ζ̂3 � 5, z1 � 1, z2 � 10, z3 �

1, x̂1 � 1, x̂2 � 10, x̂3 � 1 , and c � 15, and dynamic gain is
selected as _c � − c2/2 + 20x2

0(|ζ1| + |ζ2|). In Figure 1, the
simulation results are shown. *is study presents an output
feedback control scheme that realizes stability control, and
the control inputs u0 and u are bounded, as shown in
Figure 2.

5. Conclusion

*is study solves the problems of output feedback control
for one type of the nonholonomic system with nonvanishing
external disturbances and nonlinear uncertainties for which
the strong uncertainties are restricted by a generalized lower
triangular linearly growing condition. *e system is
reconstructed by introducing a new extended state observer.
*e external disturbance is viewed as a general state. An
adjustable varying gain scaling transformation and the ex-
tended state observer are used to carry out output feedback
control and overcome the uncertainties and disturbances.
*e output of the system and states of the system go to zero,
and all signals of the closed-loop system are guaranteed to be
bounded. Simulation examples show that the control al-
gorithm is effective. How to reduce the uncertainty and
external disturbance assumptions of the model (1) and make
the types of the models more extensive will be further
considered.
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