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Dealing with problems of illumination changes in optical flow estimation, an improved variational optical flowmodel is proposed
in this paper. )e local structure constancy constraint (LSCC) is applied in the data term of the traditional HS (Horn & Schunck)
optical flow model to substitute the brightness constancy constraint. )e fractional-order smoothness constraint (FSC) is applied
in the smoothness term of the HS model. )en, the detailed calculation processes from the optical flow model to the optical flow
value are explained. )e structure tensor in LSCC is an image feature that is constant in the illumination changes scene. )e
fractional differential coefficient in FSC can fuse the local neighborhood optical flow vector into the optical flow vector of the
target pixel, which can improve the integrity of the motion region with the same motion speed. Combining LSCC with FSC, our
improved optical flow model can obtain an accurate optical flow field with clear outline in the illumination abnormity scene. )e
experimental results show that, compared with other optical flowmodels, our model is more suitable for the illumination changes
scene and can be employed in outdoor motion detection projects.

1. Introduction

Motion detection in the image sequence or video is one of the
basic tasks of various image processing projects, which has
been widely used in the research and engineering practice of
3D reconstruction, moving object segmentation, moving
object tracking, video compression, automatic driving, and so
on. )e variational optical flow method is one of the most
commonly used methods of motion detection.)eHS optical
flow model [1] is the most classical variational optical flow
model. It is composed of a brightness constancy constraint
and global smoothness constraint. )e brightness constancy
constraint requires that the intensity of pixels remains con-
stant in the process of motion, while the smoothness con-
straint supposes that the motion speed of all pixels in the
image changes smoothly. However, both constraints are based

on ideal assumptions. In practical applications, these two
constraints are often violated. Illumination changes in the
scene will break the brightness constant constraint and the
global smoothness constraint and lead to the blur of the edge
between different motion regions.

Several other constraints on the data termwere proposed
to improve the performance of the variational optical flow
model, such as gradient constancy constraint [2], Laplacian
constancy constraint [3], and Hessian constancy constraint
[4], but these constraints depend heavily on the intensity
difference. Illumination invariant descriptors such as binary-
based [5], real value-based [6, 7], and neighborhood-based
[8, 9] were applied to substitute the brightness constancy
constraint. But these descriptors fail to identify the edge
between different motion regions. )e structure tensor
[10–12], which can embody the shape feature of the motion
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objective, is a local structure feature that does not change
with the environmental factor. )e local structure optical
flow model (LSOFM) [13–15], which is established on the
structure tensor feature, can improve the robustness in the
illumination changes scene. But when a structure includes
different motion parts, LSOFM would fail.

Because the fractional optical flow vector gradient can fuse
the characteristics of the local neighborhood optical flow
vector into the optical flow vector of the target pixel, the
integrity of regions with the same motion speed is enhanced,
so it can preserve the discontinuity of the optical flow field
between different motion regions. )e fractional-order vari-
ational optical flow model (FOVOFM) is proposed by Chen
et al. [16], which uses the fractional-order smoothness con-
straint in the smoothness term of the HS model. )e dual
fractional order variational optical flowmodel (DFOVOFM) is
proposed by Zhu et al. [17], which the fractional-order de-
rivative is applied both in data term and smoothness term of
the HS model. )e fractional-order TV-L1 optical flow model
was proposed in [18]. )e fractional-order-based optical flow
model neglects the structural information in image, so error
would exist on the edge and some tiny motion regions.

An improved variational optical flow model is proposed
in this paper. Our model is composed of LSCC and FSC.
LSCC cannot only ensure the robustness of the model in
scenes of illumination changes but also the contour in the
image can be enhanced. FSC cannot only preserve the
motion discontinuity between different motion regions but
also weaken the influence of illumination changes on optical
flow estimation.)emodel proposed in this paper combines
the advantages of the two constraints and solves the illu-
mination change problem and the motion discontinuity
problem in optical flow estimation, and different motion
parts in a structure can be identified.

)e contribution of the paper is as follows:

(1) A novel optical flowmodel combining local structure
tensor and fractional-order deviation is designed to
improve the robustness of illumination changes

(2) An applicable model simplification method for our
model is presented

2. Related Work

)e research of the optical flow model never stops. An
optical flow model using full four-dimensional cost volume
was proposed in [19], which applied structural features and
stereomatching pipelines to yield high accuracy. To solve the
problems caused by untextured areas, motion boundaries,
and occlusions in optical flow estimation, post-hoc confi-
dence measures [20] are applied to assess the per-pixel
reliability of the flow. Occlusions have remained one of the
key challenges. In [21], a symmetric optical flow model was
proposed to address occlusion problems of optical flow
estimation. In [22], an interpolation correspondence
method is proposed to estimate the optical flow, but these
methods are usually susceptible to nonrigid motion and
large displacements; to solve this problem, robust interpo-
lation of sparse correspondences is proposed in [23].

A coarse-to-fine scheme combined with an efficient
random search strategy for efficient dense correspondence is
proposed to estimate the optical flow in [24]. A coarse-to-fine
PatchMatch with sparse seeds to sparse matches is applied to
optical flow estimation in [25]. A novel differentiable
neighbor-search up-sampling (NSU)module [26] is proposed
to improve the coarse-to-fine technology for avoiding the
optical flow error in edges, thin bars, and holes. A novel
optical flowmethod related to the frequency domain that uses
TV-wavelet regularization is applied to accurate optical flow
estimation with the frequency-domain regularization in [27].

With the rapid development of artificial intelligence, deep
learning-based methods have been widely employed in optical
flow estimation. )e FlowNet [28] demonstrated that CNNs
can be used to estimate the optical flow. In [29], three major
improvements were designed for the FlowNet: a subnetwork
was elaborated on small displacements, a stacked architecture
was applied to warp of the second image with intermediate
optical flow, and a schedule of the training data. A new deep
network architecture called recurrent all-pairs field transforms
is designed to estimate the optical flow in [30]. A deformable
cost volume neural network which can estimate the multiscale
optical flow in a single high resolution was proposed in [31].
PWC-Net [32], which consists of pyramidal processing,
warping, and a cost volume, is designed to estimate optical
flow. )e network uses the current optical flow estimate to
warp the CNN features of the second image and then uses the
warped features and features of the first image to construct a
cost volume. )e drawback of deep learning-based methods is
large number of ground truth are needed, and retraining the
model is needed for different application scenarios.

3. HS Optical Flow Model

)e HS model can be written as follows:

E(u) � Edata(u) + λEsmooth(u), (1)

where u � (u, v) represents the optical flow vector, u is the
optical flow value on x axis, v is the optical flow value on y

axis, Edata(u) represents the brightness constraint equa-
tion, Esmooth(u) represents smoothness constraint equa-
tion, and λ is a smoothness parameter, and its value is
decided by the image quality. In a blurry image with many
noises disturbing, the value of λ should be big and vice
versa.

)e brightness constraint equation based on the bright
constancy constraint, which supposes that the brightness
value of a pixel is constant during the motion, is as follows:

Edata(u) � 􏽚
Ω

Ixu + Iyv + It􏼐 􏼑
2
dx. (2)

)e smoothness constraint equation based on the global
smoothness constraint, which supposes that the motion
speed of all pixels changes smoothly, that is to say, the
derivative of the speed is very small, is as follows:

Esmooth(u) � 􏽚
Ω

|∇u|
2

+|∇v|
2

􏼐 􏼑dx. (3)

2 Mathematical Problems in Engineering



4. Local Structure Constraint Equation

)e structure tensor which is composed of local geometric
features of image is an invariable feature to illumination
changes, image rotation, image translation, and image
scaling. To increase the robustness of the optical flow model,
we use the local structure constancy constraint to substitute
the brightness constant constraint.

4.1. Image Structure Tensor. )e local structure tensor of the
two-dimensional image can be expressed as follows:

􏽥T � (∇I)
T
(∇I) �

I
2
x IxIy

IxIy I
2
y

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (4)

where I represents the brightness function, ∇ � (zx, zy) is
the tangent vector along x andy axes, and 􏽥T is the structure
tensor of a pixel. But 􏽥T is easily be affected by noise, so it is
always enhanced by Gaussian filter Gσ :

T � Gσ ∗ 􏽥T � Gσ ∗
I
2
x IxIy

IxIy I
2
y

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (5)

4.2. Local Structure ConstancyConstrain. )e local structure
constancy constraint (LSCC) is proposed in this paper to
enhance the robustness of the optical flow model. LSCC is
based on the assumption that the local structure in an image
would not change during the motion:

T(x, y, t) � T(x + u, y + v, t + 1), (6)

where T(x, y, t) represents the structure tensor function
from a pixel (x, y) to t frame.)en, the pixel will move from
(x, y, t) to (x + u, y + v, t + 1), and (u, v) is the optical flow
value, and T(x + u, y + v, t + 1) represents the structure
tensor of t + 1 frame. Equation (6) means that the structure
tensor will not change during the motion.

Using the Taylor series expansion and ignoring the
minimum term, we can get

Txu + Tyv + Tt � 0, (7)

where Tx, Ty, and Tt are the derivative of the structure

tensor function on x, y, and t axes, T �
a b

b c
􏼢 􏼣,

Tx �
za/zx zb/zx

zb/zx zc/zx
􏼢 􏼣, Ty �

za/zy zb/zy

zb/zy zc/zy
􏼢 􏼣, Tt �

za/zt zb/zt

zb/zt zc/zt
􏼢 􏼣, a � (1/l)􏽐x∈Ω(x0)wI2x, b � (1/l) 􏽐x∈Ω(x0)

wIxIy, c � (1/l)􏽐x∈Ω(x0)wI2y, Ω(x0) represents the local
neighborhood of the target point, l is the normalization
constant, and w represents the weight function.

)en, Edata(u) can be rewritten as follows:

Edata(u) � 􏽚
Ω

Txu + Tyv + Tt􏼐 􏼑
2
dx. (8)

5. Fractional Smoothness Constraint Equation

)e fractional smoothness constraint (FSC) is applied in our
model to further improve the performance of optical flow
estimation. We use the fractional-order derivative to sub-
stitute the integer-order derivative in the smoothness con-
straint equation of the HS optical flow model:

∇u⟶ D
α
u,

∇v⟶ D
α
v,

(9)

where Dαu represents α-order derivative of the optical flow
vector u on x and y axes, Dαv represents α-order derivative
of the optical flow vector v on x and y axes, α is
real, α ∈ (1, 2), |Dαu| �

���������������
(Dα

xu)2 + (Dα
yu)2

􏽱
, and |Dαv| �

��������������
(Dα

xv)2 + (Dα
yv)2

􏽱
.

)en, Esmooth(u) can be designed as follows:

Esmooth(u) � 􏽚
Ω

D
α
u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ D
α
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑dx. (10)

6. Improved Fractional Optical Flow Model

Combining LSCC with FSC, we construct our improved
optical flow model; using the structure of the HS model, our
optical flow model can be described as follows:

E(u) � Edata(u) + λEsmooth(u) � 􏽚 􏽚
Ω

Txu + Tyv + Tt􏼐 􏼑
2

+ λ D
α
u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ D
α
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2
􏼒 􏼓dxdy. (11)

Using the Euler–Lagrange equation to minimize the
energy function (11), a similar procedure can be seen in
[14, 15]; then, we can get

Txx(i, j)u(i, j) + Txy(i, j)v(i, j) + Txt(i, j) + λ D
α∗
x D

α
xu + D

α∗
y D

α
yu􏼐 􏼑 � 0,

Tyx(i, j)u(i, j) + Tyy(i, j)v(i, j) + Tyt(i, j) + λ D
α∗
x D

α
xv + D

α∗
y D

α
yv􏼐 􏼑 � 0,

(12)
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where Txx(i, j), Txy(i, j), Txt(i, j), Tyx(i, j), Tyy(i, j), and
Tyt(i, j) are the second-order derivative of the structure
tensor at x, y, and t axes:

Txx �
dTx

dx
�

za

zx zx

zb

zx zx

zb

zx zx

zc

zx zx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Txy �
dTx

dy
�

za

zx zy

zb

zx zy

zb

zx zy

zc

zx zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tyx �
dTy

dx
�

za

zy zx

zb

zy zx

zb

zy zx

zc

zy zx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tyy �
dTy

dy
�

za

zy zy

zb

zy zy

zb

zy zy

zc

zy zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Txt �
dTx

dt
�

za

zx zt

zb

zx zt

zb

zx zt

zc

zx zt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tyt �
dTy

dt
�

za

zy zt

zb

zy zt

zb

zy zt

zc

zy zt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

where Dα∗
x Dα

xu, Dα∗
y Dα

yu, Dα∗
x Dα

xv, and Dα∗
y Dα

yv denote
the dual fractional-order derivative of optical flow value u

and v on x and y axes, respectively:

D
α∗
x D

α
xu � 􏽘

0

k�− ∞
w

(α)
|k| u(i − k, j) + 􏽘

∞

k�0
w

(α)
k u(i − k, j)

≈ 􏽘

− 1

k�− L

w
(α)
|k| ∇u(i − k, j)

+ 􏽘

L

k�1
w

(α)
k ∇u(i − k, j),

D
α∗
y D

α
yu(i, j) ≈ 􏽘

− 1

k�− L

w
(α)
|k| ∇u(i, j − k) + 􏽘

L

k�1
w

(α)
k ∇u(i, j − k),

(14)

where w
(α)
0 � 1 and w

(α)
k � (1 − ((α + 1)/k))w

(α)
k− 1,

k � 1, 2, . . ., L, which denote the size of the neighborhood.
)en, we can get
D

α∗
x D

α
xu + D

α∗
y D

α
yu ≈ 􏽘

(i,j)∈χ(i,j)

w
(α)
k

ij

(u(i, j) − u(i, j)),

D
α∗
x D

α
xv + D

α∗
y D

α
yv ≈ 􏽘

(i,j)∈χ(i,j)

w
(α)
k

ij

(v(i, j) − v(i, j)),

(15)

where χ(i, j) represents a neighborhood of point (i, j), kij is
equal to max(|i − i|, |j − j|), u(i, j) and v(i, j) are the mean
of the optical flow vector in the neighborhood, and u(i, j)

and v(i, j) are the coordination of the optical flow vector on
x and y axes of each pixel in the neighborhood.

)en, the optical flow estimation formula is as follows:

Txx(i, j)u(i, j) + Txy(i, j)v(i, j) + Txt(i, j) + λ 􏽘

(i,j)∈χ(i,j)

w
(α)
k

ij

(u(i, j) − u(i, j))⎛⎜⎜⎝ ⎞⎟⎟⎠ � 0,

Tyx(i, j)u(i, j) + Tyy(i, j)v(i, j) + Tyt(i, j) + λ 􏽘

(i,j)∈χ(i,j)

w
(α)
k

ij

(v(i, j) − v(i, j))⎛⎜⎜⎝ ⎞⎟⎟⎠ � 0,

(16)

where λ is the smoothness parameter, according to Huerst
and Xie [33]. )e value of parameter λ is determined by the
image quality; when the image is dark, unidentified, blurry,

or noisy, λ should be large. Otherwise, λ should be small. In
our algorithm, we choose λ ∈ [5.0, 10.0] in relatively clear
images, and λ ∈ [10.0, 15.0] in relatively blurry images. α is
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the order of fractional derivation in the smoothness term,
according to Chen et al. [15], and α � 1.3 or 1.4.)e accuracy
in the case of α � 1.3 is relatively higher than in the case of
α � 1.4, while the latter case needs less iteration times.

We can obtain the accurate optical flow value by re-
peated iteration utilizing the Gauss–Seidel method. )e it-
eration will stop when the accuracy reaches the requirement
(the difference of the optical flow value between two adjacent
iterations is less than the threshold).

7. Experimental Result and Analysis

To testify the superiority and practicability of our optical
flow model, Middlebury dataset [34], MPI_Sintel dataset
[35], KITTI dataset [36], and an outdoor real scene video
are used in experiments. Vertical comparisons are
employed to explain the model evolution process; these
models include HS model [1], LSCOFM [15], FOVOFM
[16], and DFOVOFM [17]. )ree widely used high per-
formance models are employed for horizontal compar-
ison: HAST [37], MDP_Flow [38], and PH_Flow [39]. All
experiments are run in a PC equipped with Intel Xeon(R)
X5600, 3.4 GHZ, and 4 GB memory. )e operating system
is 64 byte Windows 7, and the software platform is Matlab
10.1.

Figures 1–3 show the color code map by optical flow
estimation of different algorithms in the Middlebury data-
base. )ey are army sequence, grove sequence, and scheflera
sequence, respectively. It can be seen in these figures that,
from left to right, we can get more and more clear outlines,
which means the optical flow results are getting more and
more accurate. But, compared to the GT, some highly-
textured thin outlines disappear or become adjoined in the
results of our model, such as soldier’s gun in army, the end of
branches in Figure 2(e), and the rhizome parts of leaves in
Figure 3(e). )at is because using the fractional order de-
rivative, the thin parts would be assimilated by the optical
flow field of surrounding pixels. Table 1 shows the AEE/AAE
of different algorithms in the Middlebury dataset. We can
see that, from top to down, the error rate is becoming more
andmore small, and the error rate of our model is the lowest.

Figures 4 and 5 show the color code map by optical flow
estimation of different algorithms in the MPI_Sintel dataset.
)ey are Cave3 sequence and Shaman1 sequence, respec-
tively. )e results presented show that our method can
acquire clear and integral motion outlines under the low
contrast scene (Cave3) and illumination insufficient scene
(Shaman1). HAST can embody motion details such as the
end of the cone in Cave3 and the boy’s hair in Shaman1, but
fails in large nontextured regions such as the tail in Cave3

(a) (b) (c)

(d) (e) (f )

Figure 1: Optical flow estimation results of the army sequence in the Middlebury dataset with different algorithms. (a) HS. (b) FOVOFM.
(c) DFOVOFM. (d) LSOFM. (e) Ours. (f ) GT.

(a) (b) (c)

(d) (e) (f )

Figure 2: Optical flow estimation results of the grove sequence in the Middlebury dataset with different algorithms. (a) HS. (b) FOVOFM.
(c) DFOVOFM. (d) LSOFM. (e) Ours. (f ) GT.
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and the gusset parts in Shaman1. Similar situations are
shown in PH_Flow and MDP_Flow. )e deficiencies of our
model also exist in the thin detail parts: the end of the cone in
Cave3 and details of boy’s hair are missing in Shaman1.
Table 2 shows the AEE/AAE of different algorithms in the
MPI_Sintel dataset. We can see in Table 2 that, in sequences
with existing large displacement and occlusion problems, the
accuracy of our method is lower than its components. When
comes to sequences with illumination changes and illumi-
nation insufficient, the accuracy of our method is higher
than other algorithms.

)e KITTI dataset is a challenging real-world dataset in
which most sequences are affected by illumination abnormity,

such as illumination changes, illumination uneven, illumi-
nation insufficient, and so on. )e experimental results are
shown in Figures 6–8. )ey are sequence 00004, 00009, and
00011, respectively. We can see that our method obtains clear
motion outlines in all image sequences. Despite the illumi-
nation uneven conditions, the tree outline can be seen clearly
in 00004 and the car outline can be seen clearly in 00009. In
sequence 00011 with the illumination normal scene, differ-
ences between different algorithms are small. Table 3 shows the
AEE/AAE of different algorithms in the KITTI dataset. We
can see that, in illumination abnormity scenes, the error rate of
ourmodel is the lowest, and the average accuracy of ourmodel
for the whole sequences in KITTI is the highest.

(a) (b) (c)

(d) (e) (f)

Figure 3: Optical flow estimation results of the scheflera sequence in Middlebury dataset with different algorithms. (a) HS. (b) FOVOFM.
(c) DFOVOFM. (d) LSOFM. (e) Ours. (f ) GT.

Table 1: )e AEE/AAE of different algorithms for the Middlebury dataset.

Algorithm Army Mequn Scheflera Woden Grove Urban Yosemite Teddy

AEE

HS 0.22 0.61 1.01 0.78 1.26 1.43 0.16 1.51
FOVOFM 0.11 0.21 0.32 0.19 0.89 1.25 0.14 0.64
DFOVOFM 0.10 0.22 0.30 0.16 0.67 0.47 0.17 0.51
LSOFM 0.11 0.21 0.26 0.17 0.69 0.46 0.17 0.45
Ours 0.08 0.17 0.18 0.16 048 0.31 0.18 0.38

AAE

HS 8.01 9.13 14.2 12.4 4.64 8.21 4.01 9.16
FOVOFM 3.82 3.61 5.66 3.93 3.24 4.12 2.73 4.48
DFOVOFM 3.18 3.21 5.20 2.93 2.94 2.59 2.67 2.33
LSOFM 2.85 2.24 3.20 3.02 2.54 2.57 2.73 1.73
Ours 2.64 1.98 2.02 2.83 2.34 2.43 2.23 1.32

(a) (b) (c) (d) (e)

Figure 4: Optical flow results of Cave3 sequence in the MPI_Sintel dataset with different algorithms. (a) HAST. (b) MDP_Flow.
(c) PH_Flow. (d) Ours. (e) GT.
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(a) (b) (c) (d) (e)

Figure 5: Optical flow results of Shama1 sequence in the MPI_Sintel dataset with different algorithms. (a) HAST. (b) MDP_Flow.
(c) PH_Flow. (d) Ours. (e) GT.

Table 2: )e AEE/AAE of different algorithms in the MPI_SINTEL dataset.

Algorithm Market1 Wall Cave3 Shaman Market3 Market4 Ambush1 Ambush3

AEE

HAST 3.64 8.39 9.82 2.41 2.20 40.12 43.87 14.12
PH_Flow 3.64 6.45 8.05 1.41 2.06 28.11 38.69 12.98
MDP_Flow 0.10 0.22 0.30 0.16 0.67 0.47 0.17 0.51
LSOFM 0.11 0.21 0.26 0.17 0.69 0.46 0.17 0.45
Ours 0.08 0.17 0.18 0.16 048 0.31 0.18 0.38

AAE

HAST 8.01 9.13 14.2 12.4 4.64 8.21 4.01 9.16
PH_Flow 3.82 3.61 5.66 3.93 3.24 4.12 2.73 4.48
MDP_Flow 3.18 3.21 5.20 2.93 2.94 2.59 2.67 2.33
LSOFM 2.85 2.24 3.20 3.02 2.54 2.57 2.73 1.73
Ours 2.64 1.98 2.02 2.83 2.34 2.43 2.23 1.32

(a) (b) (c) (d)

Figure 6: Visual comparison of 00004 sequence in the KITTI dataset with different methods. (a) HAST. (b) MDP_Flow. (c) PH_Flow. (d) Ours.

Table 3: )e AEE of TV_L1 and DFOVOF combined with WRMS-based method or our adaptive method in KITTI.

Algorithm AVE 000004 000009 000011 000014 000015
HAST 8.85/15.23 2.16/5.53 18.26/25.92 8.05/14.97 5.82/8.03 9.93/18.74
MDP_Flow 8.25/14.73 1.87/5.13 16.91/24.25 7.46/13.89 5.03/7.29 8.26/16.53
PH_Flow 8.57/14.92 1.94/5.26 17.68/25.64 7.73/14.54 5.47/7.83 9.75/17.42
Ours 8.15/13.65 1.73/5.15 16.65/23.64 7.76/14.68 4.79/7.17 8.18/15.72

(a) (b) (c) (d)

Figure 8: Visual comparison of 00011 sequence in the KITTI dataset with different methods. (a) HAST. (b) MDP_Flow. (c) PH_Flow. (d) Ours.

(a) (b) (c) (d)

Figure 7: Visual comparison of 00009 sequence in the KITTI dataset with different methods. (a) HAST. (b) MDP_Flow. (c) PH_Flow. (d) Ours.
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Figures 9–12 show the color code map of optical flow
estimation by different algorithms in an outdoor video. We
can see that compared to LSOFM, DFOVOFM has less
noise affected regions, but the outline is not so clear. Our
model achieves better results with the most intact object
outline and least noise affected regions than other models.

In Figure 10(d), different motion parts in the right sole can
be seen, the optical flow field of the first half foot is pink,
and the second half is yellow. )e motion of one finger in
the right hand in Figures 11 and 12 is different from the
other part on that hand, and we can see different color
regions in Figure 12(d).

(a) (b) (c) (d)

Figure 9: Inputs and visual comparison of an image sequence from the outdoor video of different algorithms. (a) Input1. (b) Input2.
(c) HAST. (d) MDP_Flow.

(a) (b) (c) (d)

Figure 10: Visual comparison of an image sequence from the outdoor video of different algorithms. (a) PH_Flow. (b) DFOVOFM.
(c) LSOFM. (d) Ours.

(a) (b) (c) (d)

Figure 11: Inputs and visual comparison of an image sequence from the outdoor video of different algorithms. (a) Input1. (b) Input2.
(c) HAST. (d) MDP_Flow.
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8. Conclusion

An improved variational optical flow model is proposed in
this paper to solve problems of illumination changes in
optical flow estimation. )e model applies LSCC and FSC in
the data term and smoothness term of the HS model. )en,
the detailed calculation processes from the optical flow
model to optical flow value are explained. Experimental
results in three public datasets and an outdoor video show
that our model is superior to other algorithms in illumi-
nation abnormity scenes. )e disadvantage of our model is
that it cannot embody the motion of thin parts. Experi-
mental results testify the performance of our model. Finally,
we have conclusions that our model is more suitable for the
illumination changes scene and can be employed in outdoor
motion detection projects.

Data Availability

Middlebury dataset, MPI_Sintel dataset, and KITTI dataset
can be found in references [17–19]. Our own outdoor video
can be easily obtained by a normal RGB camera.

Additional Points

)e model proposed in this paper has some limitations:
When the difference between the RGB value of background
and foreground all less than “1,” the model would fail;
because of the large amount of computation, the running
speed of the algorithm is 30 seconds per frame, so it cannot
be used for real-time application; when the average
brightness is less than 5, the optical flow estimation result of
the algorithm would not be accurate.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the Department of Natural
Resources of Guangdong Province-Offshore Wind Power
Project, 2020, Key-Area Research and Development

Program of Guangdong Province, 2019B020214001, Key-
Area Research and Development Program of Guangdong
Province, 2018B010109 001, Guangzhou Industrial Tech-
nology Major Research Plan, 20190101121006001, and
Fundamental Research Funds for the Central Universities,
2018KZ05.

References

[1] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1, pp. 185–203, 1981.

[2] Z. Tu, W. Xie, J. Cao et al., “Variational method for joint
optical flow estimation and edge-aware image restoration,”
Pattern Recognition, vol. 65, no. 3, pp. 11–25, 2016.

[3] N. Monzón, A. Salgado, and J. Sánchez, “Regularization
strategies for discontinuity-preserving optical flow methods,”
IEEE Transactions on Image Processing, vol. 25, no. 4,
pp. 1580–1591, 2016.

[4] C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang, “Robust
non-local TV- L1 optical flow estimation with occlusion
detection,” IEEE Transactions on Image Processing, vol. 26,
no. 8, pp. 4055–4067, 2017.

[5] M. A.Mohamed, H. A. Rashwan, B. Mertsching, M. A. Garcia,
and D. Puig, “Illumination-robust optical flow using a local
directional pattern,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 24, no. 9, pp. 1499–1508, 2014.

[6] M. Drulea and S. Nedevschi, “Motion estimation using the
correlation transform,” IEEE Transactions on Image Pro-
cessing: A Publication of the IEEE Signal Processing Society,
vol. 22, no. 10, pp. 3260–3270, 2013.

[7] R. W. Liu, L. Shi, W. Huang, J. Xu, S. C. Yu, and D. Wang,
“Generalized total variation-based MRI rician denoising
model with spatially adaptive regularization parameters,”
Magnetic Resonance Imaging, vol. 32, no. 6, pp. 702–720, 2014.

[8] S. Ali, C. Daul, E. Galbrun, and W. Blondel, “Illumination
invariant optical flow using neighborhood descriptors,”
Computer Vision and Image Understanding, vol. 145, no. 12,
pp. 95–110, 2016.

[9] W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai,
“Implementation of high-order variational models made easy
for image processing,” Mathematical Methods in the Applied
Sciences, vol. 39, no. 14, pp. 4208–4233, 2016.

[10] M. Andersson and H. Knutsson, “Transformation of local
spatio-temporal structure tensor fields,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal
Processing, pp. 25–31, IEEE, Hong Kong, China, April 2003.

(a) (b) (c) (d)

Figure 12: Visual comparison of an image sequence from the outdoor video of different algorithms. (a) PH_Flow. (b) DFOVOFM.
(c) LSOFM. (d) Ours.

Mathematical Problems in Engineering 9



[11] W. Förstner and E. Gülch, “A fast operator for detection and
precise location of distinct points, corners and centres of
circular features,” in International Commission Conference on
Fast Processing of Photogrammetric Data, pp. 281–305,
Springer, Interlaken, Switzerland, June 1987.

[12] J. Shi and C. Tomasi, “Good features to track,” in Proceedings
of the International Conference on Computer Vision and
Pattern Recognition, pp. 357–365, IEEE, Seattle, WA, USA,
June 1994.

[13] Z. Q. Lu, X. Xie, and J. H. Pei, “A robust optical flow
computation,” Journal of Electronics, vol. 5, no. 3, pp. 635–641,
2007.

[14] A. Bruhn, J. Weickert, and C. Schnoerr, “Lucas/kanade meets
horn/schunck: combining local and global optic flow
methods,” International Journal of Computer Vision, vol. 61,
no. 3, pp. 211–231, 2005.

[15] Z. Chen, C. Zhang, X. Zhang, and M. Li, “Coarse-to-fine
optical flow estimation with image structure tensor,” in
Proceedings of the International Congress on Image and Signal
Processing, pp. 478–485, IEEE, Hangzhou, China, December
2013.

[16] D. Chen, H. Sheng, Y. Chen, and D Xue, “Fractional-order
variational optical flow model for motion estimation,” Phil-
osophical Transactions. Series A, Mathematical, Physical, and
Engineering Sciences, vol. 371, Article ID 20120148, 2013.

[17] B. Zhu, L. F. Tian, Q. L. Du et al., “An Improved Fractional
order optical flow model for motion estimation,” Mathe-
matical Problems in Engineering, vol. 2018, Article ID
6278719, 6 pages, 2018.

[18] S. G. Bardeji, I. N. Figueiredo, and E. Sousa, “Optical flow with
fractional order regularization: variational model and solution
method,” in Proceedings of the 5th International Workshop on
Analysis and Numerical Approximation of Singular Problems,
pp. 188–200, Lagos, Portugal, April 2017.

[19] J. Xu, R. Ranftl, and V. Koltun, “Accurate optical flow via
direct cost volume processing,” in Proceedings of the IEEE
Conference on Computer Vision Pattern Recognition,
pp. 5807–5815, Honolulu, HI, USA, June 2017.

[20] AS. Wannenwetsch, M. Keuper, and S. Roth, “Probflow: joint
optical flow and uncertainty estimation,” in Proceedings of the
IEEE International Conference on Computer Vision,
pp. 1182–1191, Venice, Italy, October 2017.

[21] J. Hur and S. Roth, “Mirrorflow: exploiting symmetries in
joint optical flow and occlusion estimation,” in Proceedings of
the IEEE International Conference on Computer Vision,
pp. 312–321, Venice, Italy, October 2017.

[22] Y. Hu, Y. Li, and R. Song, “Robust interpolation of corre-
spondences for large displacement optical flow,” in Pro-
ceedings of the IEEE Conference Computer Vision Pattern
Recognition, pp. 481–489, Honolulu, HI, USA, July 2017.

[23] S. Shi, D. Zhang, C. Zhang, Z. Chen, C. Feng, and B. Fan,
“Large displacement optical flow estimation based on robust
interpolation of sparse correspondences,” IEEE Access, vol. 8,
pp. 227360–227372, 2020.

[24] Y. Li, Y. Hu, R. Song, P. Rao, and Y. Wang, “Coarse-to-fine
PatchMatch for dense correspondence,” IEEE Transaction on
Circuits System Video Technology, vol. 28, no. 9, pp. 2233–
2245, 2018.

[25] J. Chen, Z. Cai, J. Lai, and X. Xie, “Efficient segmentation-
based PatchMatch for large displacement optical flow esti-
mation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 12, pp. 3595–3607, 2019.

[26] Y. Deng, J. Xiao, S. Z. Zhou, and J. Feng, “Detail preserving
coarse-to-finematching for stereomatching and optical flow,”

IEEE Transactions on Image Processing, vol. 30, pp. 5835–
5847, 2021.

[27] J. Chen, J. Lai, Z. Cai, X. Xie, and Z. Pan, “Optical flow es-
timation based on the frequency-domain regularization,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 31, no. 1, pp. 217–230, 2021.

[28] A. Dosovitskiy, P. Fischer, E. Ilg et al., “Flownet: learning
optical flow with convolutional networks,” in Proceedings of
the IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, December 2015.

[29] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox, “Flownet 2.0: evolution of optical flow estimation
with deep networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2462–2470,
Honolulu, HI, USA, July 2017.

[30] Z. Teed and J. Deng, “RAFT: recurrent all-pairs field trans-
forms for optical flow,” 2020, https://arxiv.org/abs/2003.
12039v3.

[31] Y. Lu, J. Valmadre, H. Wang, J. Kannala, M. Harandi, and
P. Torr, “Devon: deformable volume network for learning
optical flow,” in Proceedings of the IEEEWinter Conference on
Applications of Computer Vision, pp. 2705–2713, Snowmass,
CO, USA, March 2020.

[32] D. Sun, X. Yang, M. Y. Liu, and J. Kautz, “PWC-net: cnns for
optical flow using pyramid, warping, and cost volume,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8934–8943, Salt Lake City, UT, USA,
June 2018.

[33] W. Huerst andW. Xie, “Weighted root mean square approach
to select the optimal smoothness parameter of the variational
optical flow algorithms,” Optical Engineering, vol. 51, no. 3,
pp. 720–732, 2012.

[34] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and
R. Szeliski, “A database and evaluation methodology for
optical flow,” International Journal of Computer Vision,
vol. 92, no. 1, pp. 1–31, 2011.

[35] D. J. Butler, J. Wulff, G. B. Stanley et al., “A naturalistic open
source movie for optical flow evaluation,” in Proceedings of the
12th European Conference on Computer Vision, pp. 611–625,
Florence, Italy, October 2012.

[36] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? )e KITTI vision benchmark suite,” in
Proceedings of theIEEE Conference Computer Vision Pattern
recognition, pp. 3354–3361, Providence, RI, USA, June 2012.

[37] Y. Hu, R. Song, Y. Li, P. Rao, and Y. Wang, “Highly accurate
optical flow estimation on superpixel tree,” Image and Vision
Computing, vol. 52, no. 3, pp. 167–177, 2016.

[38] X. Li, J. Jiaya, and Y. Matsushita, “Motion detail preserving
optical flow estimation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 9, pp. 1744–
1757, 2012.

[39] J. Yang and H. Li, “Dense, accurate optical flow estimation
with piecewise parametric model,” in Proceedings of theIEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1019–1027, Boston, MA, USA, June 2015.

10 Mathematical Problems in Engineering

https://arxiv.org/abs/2003.12039v3
https://arxiv.org/abs/2003.12039v3

