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,e biwarped product submanifolds generalize the class of product submanifolds and are particular case of multiply warped
product submanifolds. ,e present paper studies the biwarped product submanifolds of the type ST×ψ1

S⊥×ψ2
Sθ in Sasakian space

forms S(c), where ST, S⊥, and Sθ are the invariant, anti-invariant, and pointwise slant submanifolds of S(c). Some characterizing
inequalities for the existence of such type of submanifolds are proved; besides these inequalities, we also estimated the norm of the
second fundamental form.

1. Introduction

Because of its expected applications in material science and
relativistic theory, the investigation of warped product
manifolds has obtained a conspicuous subject in the field of
differential geometry; for example, warped products give
numerous major solutions for Einstein field equations [1].
,e theory of warped product manifolds is being used to
demonstrate space-time close to the black holes [2]. ,e
warped product P×rS

2(1) represents Schwartzschild space-
time, with base P � R × R+, r> 0, and fibre S2(1) that is
sphere with radius one. However, the Schwartzschild space-
time will transform into a black hole under some instances
[3].

In the paper [4], some of the inherent properties of
warped product manifolds were investigated. Chen (see [5])
undertook the very first extrinsic study of warped product
manifolds in the almost complex setting while acquiring
certain existence results for CR-submanifolds to be CR-
warped product submanifolds in Kaehler manifolds.
Hasegawa and Mihai [6], on the other hand, analyzed
contact CR-warped product submanifolds in almost contact
environments. Many other people have investigated warped

product manifolds in contact geometry, yielding an as-
sortment of existence outcomes for instance (see [7–10]).

Another general class of warped product semislant
submanifolds and contact CR-warped product submanifolds
is the warped product pointwise semislant submanifold. ,e
analysis was then continued by I. Mihai and S. Uddin in the
framework of Sasakian manifolds, and few ideal inequalities
relating to the second fundamental form and warping
function were obtained. In the papers (see [11–13]), warped
product pointwise semislant submanifolds for almost con-
tact and almost complex manifolds were investigated.

One more generalized class of product manifolds is
biwarped product manifolds, which are a subclass of mul-
tiply warped product manifolds. Chen and Dillen [14]
looked at multiply warped product submanifolds immersed
in Kaehler manifolds and found the remarkable optimum
inequalities for them. Biwarped product submanifolds have
recently been investigated (cf., see [15, 16]). Also, there is a
recent paper [17], which initiates the study of inequalities for
biwarped product submanifolds of nearly trans-Sasakian
manifolds.

In this manuscript, authors established some inequalities
for the squared norm of the second fundamental forms.
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,ese inequalities generalize several results available in the
literature. Since Sasakian manifolds are particular cases of
the nearly trans-Sasakian manifolds, therefore, a natural
question arises that the inequalities obtained in the present
paper may be particular case of inequalities obtained in [17].
Although in the paper [17] authors studied whole norm of
second fundamental form, in the present study, the in-
equalities for second fundamental form are obtained by
taking the restriction on the distribution μ, which is a part of
the normal distribution. ,erefore, our main results are
different from the results obtained in [17] except some initial
results.

Basically, in this manuscript, we look at biwarped
product submanifolds of Sasakian space forms and deter-
mine some interesting inequalities. In terms of warping
functions and slant functions, we estimate the norm of the
second fundamental form. As a result, the equity case is
taken into account.

,e article is structured as follows. Second section is
contributed to fundamental concepts, formulae, and results
that are essential for the paper’s next analysis. We prove our
key findings in Section 3 by looking into the nature of
biwarped product submanifolds in Sasakian space forms.

,roughout the text, we used some abbreviations like
Biwarped Product ≡ BW-P, Sasakian space form ≡ S-S-F,
totally Geodesic ≡ T-G, and totally umbilical ≡ T-U.

2. Preliminaries

A (2n + 1)− dimensional C∞− manifold S is said to have an
almost contact structure if on S there exist a tensor field ϕ of
type (1, 1), a vector field ξ, and a 1-form η satisfying the
following properties [18]:

ϕ2 � − I + η⊗ ξ,

ϕξ � 0,

η°ϕ � 0,

η(ξ) � 1.

(1)

,e manifold S with the structure (ϕ, ξ, η) is called al-
most contact metric manifold. ,ere exists a Riemannian
metric g on an almost contact metric manifold S, satisfying
the following:

η E1( 􏼁 � g E1, ξ( 􏼁, g ϕE1, ϕE2( 􏼁 � g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁,

(2)

for all E1, E2 ∈ TS where TS is the tangent bundle of S.
An almost contact metric manifold S(ϕ, ξ, η, g) is said to

be Sasakian manifold if it satisfies the following relation [18]:

∇E1
ϕ􏼐 􏼑F � g E1, E2( 􏼁ξ − η E2( 􏼁E1, (3)

for any E1, E2 ∈ TS, where ∇ denotes the Riemannian
connection of the metric g. More details of almost contact
metric manifold can be seen in [18]. For a Sasakianmanifold,
we have

∇E1
ξ � − ϕE1. (4)

A Sasakian manifold S is said to be a Sasakian space form
if it has constant ϕ-holomorphic sectional curvature c and is
denoted by S(c). ,e curvature tensor R of S-S-F S(c) is
given by

R E1, E2( 􏼁E3 �
c − 3
4

g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉 +
c − 1
4

g E1,ϕE3( 􏼁ϕE2 − g E2, ϕE3( 􏼁ϕE1 + 2g E1, ϕE2( 􏼁ϕE3 + η E1( 􏼁η E3( 􏼁E2

− η E2( 􏼁η E3( 􏼁E1 + g E1, E3( 􏼁η E2( 􏼁ξ − g E2, E3( 􏼁η E1( 􏼁ξ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(5)

for all vector fields E1, E2, andE3 on S.
Let S be a submanifold of an A-C-M manifold S with

induced metric g. ,e Riemannian connection ∇ of S in-
duces canonically the connections ∇ and ∇⊥ on the tangent
bundle TS and the normal bundle T⊥S of S, respectively, and
then the Gauss and Weingarten formulae are governed by

∇E1
E2 � ∇E1

E2 + σ E1, E2( 􏼁, (6)

∇E1
V � − AVE1 + ∇⊥E1

V, (7)

for each E1, E2 ∈ TS and V ∈ T⊥S, where σ and AV are the
second fundamental form and the shape operator, respec-
tively, for the immersion of S into S. ,ey are related as

g σ E1, E2( 􏼁, V( 􏼁 � g AVE1, E2( 􏼁, (8)

where g is the Riemannian metric on S as well as the induced
metric on S.

For a submanifold S⟶ S, the equation of Codazzi is
provided by

R E1, E2( 􏼁E3( 􏼁
⊥

� ∇⊥E1
σ E2, E3( 􏼁 − ∇⊥E2

σ E1, E3( 􏼁

+ σ ∇E3
E1, E3􏼐 􏼑 − σ ∇E1

E2, E3􏼐 􏼑

+ σ E1,∇E2
E3􏼐 􏼑 − σ E2,∇E1

E3􏼐 􏼑,

(9)

where (R(E1, E2)E3)
⊥ is the normal component of the

curvature tensor R(E1, E2)E3.
If TE1 and NE1 represent the tangential and nor-

mal part of ϕE1, respectively, for any E1 ∈ TS, one can
write
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ϕE1 � TE1 + NE1. (10)

Similarly, for any V ∈ T⊥S, we write

ϕV � tV + nV, (11)

where tV and nV are the tangential and normal parts of ϕV,
respectively. ,us, T (resp. n) is 1-1 tensor field on TS

(respectively, T⊥S), and t (respectively, n) is a tangential
(respectively, normal) valued 1-form on T⊥S (respectively,
TS).,e covariant derivatives of the tensor fields ϕ, T, and N

are defined as

∇E1
ϕ􏼐 􏼑E2 � ∇E1

ϕE2 − ϕ∇E1
E2, (12)

∇E1
T􏼐 􏼑E2 � ∇E1

TE2 − T∇E1
E2,

∇E1
N􏼐 􏼑E2 � ∇⊥E1

NE2 − N∇E1
E2.

(13)

From equations (3), (6), (7), (10), and (11), we have

∇E1
T􏼐 􏼑E2 � ANE2

E1 + tσ E1, E2( 􏼁 − g E1, E2( 􏼁ξ − η E2( 􏼁E1,

∇E1
N􏼐 􏼑E2 � nσ E1, E2( 􏼁 − σ E1, TE2( 􏼁.

(14)

,e mean curvature vector Π of S is defined as

Π �
1
k

􏽘

k

i�1
σ ui, ui( 􏼁, (15)

where k is the dimension of S and u1, u2, . . . , uk􏼈 􏼉 is a local
orthonormal basis of S. ,e squared norm of the second
fundamental form σ is defined as

‖σ‖
2

� 􏽘
k

i,j�1
g σ ui, uj􏼐 􏼑, σ ui, uj􏼐 􏼑􏼐 􏼑. (16)

A submanifold S of S is said to be a T-G submanifold
if σ(E1, E2) � 0 and T-U submanifold if σ(E1, E2) �

g(E1, E2)Π, for each E1, E2 ∈ TS.
,e notion of slant submanifolds in contact geometry

was first defined by Lotta [19]. Later, these submanifolds
were studied by Cabrerizo et al. [20]. Now, we have following
definition of slant submanifolds.

Definition 1. A submanifold M of an almost contact metric
manifold M is said to be slant submanifold if for any x ∈M

and X ∈ TxM − 〈ξ〉, the angle between X and ϕX is con-
stant. ,e constant angle θ ∈ [0, π/2] is then called slant
angle of M in M. If θ � 0, the submanifold is invariant
submanifold, and if θ � π/2, then it is anti-invariant sub-
manifold. If θ≠ 0, π/2, it is proper slant submanifold.

Etayo [21] presented the idea of pointwise slant sub-
manifolds as a generalization of slant submanifolds in the
context of almost Hermitian manifolds. Further, Chen and
Garay [22] looked into pointwise slant submanifolds for
almost Hermitian manifolds and came up with some im-
portant results. However, Park [23] expanded the definition
of pointwise slant submanifolds in almost contact metric
manifolds, which was an important development in this

direction. Nevertheless, for almost contact metric mani-
folds, Uddin and Alkhalidi [24] revised the concept of
pointwise slant submanifolds. More specifically, a sub-
manifolds S of an almost contact metric manifold S are
claimed to be pointwise slant submanifold if for any
E ∈ TpS in the sense that ξ is tangential to S, and the angle
θ(E) between ϕE and TxS − 0{ } is independent of the
choice of nonzero vector field E ∈ TpS − 0{ }. In this case, θ
is viewed as the slant function of the pointwise slant
submanifold, which is a function on S. We now have the
following descriptive theorem.

Theorem 1 (see [24]). Let S be a submanifold of an A-C-M
manifold S such that ξ ∈ TS. 0en, S is pointwise slant iff

T
2

� cos2 θ(− I + η⊗ ξ), (17)

where θ is the real valued function on TS.

As a result, the above formula has the following
implications:

g TE1, TE2( 􏼁 � cos2 θ g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁􏼂 􏼃, (18)

g NE1, NE2( 􏼁 � sin2 θ g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁􏼂 􏼃, (19)

∀E1, E2 ∈ TS.
One can conceive the warped product of manifolds as a

generalization of the product manifolds, which are explained
as follows.

Consider two Riemannian manifolds (S1, g1) and
(S2, g2) with corresponding Riemannian metrics g1 and g2
and ψ: S1⟶ R be a positive differentiable function. If x

and y are projection maps such that x: S1 × S2⟶ S1 and
y: S1 × S2⟶ S2, which are defined as x(m, n) � m and
y(m, n) � n∀(m, n) ∈ S1 × S2, then S � S1 × S2 is called
warped product manifold if the Riemannian structure on S

satisfies

g E1, E2( 􏼁 � g1 x∗E1, x∗E2( 􏼁 + ψ°x( 􏼁
2
g2 y∗E1, y∗E2( 􏼁,

(20)

for all E1, E2 ∈ TS. ,e function ψ represents the warping
function of S1 × S2. We can generalize this definition to
multiply W-P manifolds as follows.

Let Si􏼈 􏼉i�1,2,...,k be Riemannian manifolds with respective
Riemannian metrics gi􏼈 􏼉i�1,2,...,k, and let ψi􏼈 􏼉i�2,3,...,k be
positive valued functions on S1. ,en, the product manifold
S � S1 × S2 × · · · Sk equipped with Riemannian metric g

given by

g � π1∗ g1( 􏼁 + 􏽘

k

i�2
ψi°π1( 􏼁

2πi∗ gi( 􏼁, (21)

is said to multiply W-P manifold denoted by S � S1×ψ2
S2 ×

· · · ×ψk
Sk where πi are the projection maps of S onto i, re-

spectively, and πi∗ are their respective tangent maps for
i � 1, 2, . . . , k. ,e functions ψi are known as the warping
functions [14]. If the warping functions are constants, the
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warped product is simply a Riemannian product, known as a
trivial multiply warped product.

,e analysis of multiply warped product manifolds has
recently gained attention in both complex and almost
contact settings [14, 25]. We may define biwarped product
manifolds as a special case of multiply warped product
manifolds by using i � 3 in the above description. For the
BW-P manifold S � S0 × ψ1

S1 × ψ2
S2 with the Levi-Civita

connection, ∇ and ∇i denote the Levi-Civita connection of Si

for i � 0, 1, 2. Some formulae relating to covariant deriva-
tives for a BW-P manifold are given in the following lemma.

Lemma 1 (see [26]). Let S � S0×ψ1
S1×ψ2

S2 be a BW-P
manifold. 0en, we have

∇EF � ∇0EF, (22)

∇EG � ∇GE � E ln ψi( 􏼁G, (23)

for E, F ∈ TS0 and G ∈ TSi, i � 1, 2.

∇ψ is the gradient of ψ and is defined as

g(∇ψ, E) � Eψ, (24)

∀ E ∈ TS. Let S be an m− dimensional Riemannian manifold
with the Riemannian metric g, and let u1, u2, . . . um􏼈 􏼉 be an
orthogonal basis of TS. As a consequence of (24), we have

‖∇ψ‖
2

� 􏽘
m

i�1
ui(ψ)

2
􏼐 􏼑. (25)

,e Laplacian of ψ is defined by

Δψ � 􏽘
m

i�1
∇ui

ui􏼐 􏼑ψ − uiuiψ􏽮 􏽯. (26)

Hopf’s lemma is now described.

Lemma 2 (see [27]). Let S be an n-dimensional connected
compact Riemannian manifold. If ψ is a differentiable
function on S such that Δψ ≥ 0 everywhere on S (or Δψ ≤ 0
everywhere on S), then ψ is a constant function.

3. Main Results

In the present section, first we trace the existence of BW-P
submanifolds S � S1×ψ1

S2 × ψ2
S3 for any Riemannian sub-

manifolds S1, S2, and S3 in Sasakian manifolds with warping
functions ψ1 and ψ2 and then we demonstrate our key
findings. Hasegawa andMihai [6] set up the following result.

Theorem 2. Let S be a (2m + 1)− dimensional Sasakian
manifold. 0en, there do not exist W-P submanifolds S �

S⊥ × ψST such that S⊥ is an anti-invariant submanifold
tangent to ξ and ST an invariant submanifold of S.

We draw the conclusion based on the above result; that
is, if ST, S⊥, and Sθ are invariant, anti-invariant, and
pointwise proper slant submanifolds, then BW-P sub-
manifolds of the forms S⊥×ψ1

ST×ψ2
Sθ and Sθ×ψ1

S⊥×ψ2
ST in a

Sasakian manifold do not exist. From [23], we have the
following observation.

Theorem 3. Let S be a (2m + 1)− dimensional Sasakian
manifold. 0en, there do not exist W-P submanifolds S �

Sθ×ψST tangential to S such that Sθ is pointwise proper slant
submanifold and ST is invariant submanifold of S,
respectively.

It can be deduced by,eorem 2 that BW-P submanifolds
of the types Sθ×ψ1

ST×ψ2
S⊥ and S⊥×ψ1

Sθ×ψ2
ST in a Sasakian

manifold are trivial.
Park identified the existence of the warped product

pointwise semislant submanifolds of Sasakian manifolds of
the form ST×ψSθ in his paper [23], with warping function ψ,
where ST and Sθ are the holomorphic and pointwise slant
submanifolds of S, as well as proving the next lemma.

Lemma 3. Let S � ST×ψSθ be a W-P pointwise semislant
submanifold of a Sasakian manifold S such that ξ ∈ TST,
where ST and Sθ are invariant and pointwise slant sub-
manifolds of S, respectively. 0en,

g(σ(E, G), NTH) � cos2 θE ln ψg(G, H)

− ϕE ln ψg(G, TH) − η(E)g(G, TH),

(27)

for any E ∈ TST and G, H ∈ TSθ.

Consider the biwarped product submanifolds of the type
ST×ψ1

S⊥×ψ2
Sθ of a Sasakian manifold (S, ϕ, ξ, η) with

warping functions ψ1 and ψ2 such that ST, S⊥, and Sθ are the
invariant, anti-invariant, and pointwise slant submanifolds
of S correspondingly. To address the question of which
factor of the biwarped product submanifold is parallel to ξ,
we have the following.for all E ∈ TST and G ∈ TSθ.where
u0 � ξ, u1, u2, . . . , up,ϕu1,ϕu2, . . . , ϕup􏽮 􏽯 and
u1, u2, . . . , uq, sec θTu1, . . . , sec θTuq􏼈 􏼉 are the basis of the
orthonormal vector fields on TST and TSθ, respectively.-
Proof. Choosing unit vector fields E ∈ TST, F ∈ TS⊥, and
G ∈ TSθ and using (5) and (19), we have

R(E, ϕE, G, NG) � −
c − 1
2

sin2 θ‖E‖
2
‖G‖

2
, (49)

R(E, ϕE, F, ϕF) � −
c − 1
2

‖E‖
2
‖F‖

2
. (50)

Theorem 4. Let S be a Sasakian manifold. If ST×ψ1
S⊥×ψ2

Sθ is
a biwarped product submanifold of S such that ST, S⊥, and Sθ
are the invariant, anti-invariant, and pointwise slant sub-
manifolds of S, respectively, then we have the following:

(i) If ξ ∈ TS⊥, ψ1 is constant
(ii) If ξ ∈ TSθ, ψ2 is constant

Proof. ,e proof of this theorem can be deduced directly
from Proposition 1 in [17] for β � 0. □
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Remark 1. Proposition 1 in [17] was proved for slant dis-
tributions, and the same proof is also valid for pointwise
slant distributions.

As a consequence of the above, we can point out that
there are no any nontrivial BW-P submanifolds of the type
ST×ψ1

S⊥×ψ2
Nθ of a Sasakian manifold if the vector field ξ is

tangential to S⊥ or Sθ.
Now, let S � ST×ψ1

S⊥×ψ2
Sθ be a BW-P submanifold of a

Sasakian manifold S and consider the vector field ξ tangent
to be ST. If D is invariant distribution, D⊥ is anti-invariant
and Dθ is pointwise slant distribution with the slant function
θ. ,e following decomposition refers to the tangent bundle
TM:

TS � D⊕D
⊥ ⊕D

θ ⊕ 〈ξ〉. (28)

,e normal bundle T⊥S is decompounded as

T
⊥

S � ϕD
⊥ ⊕ND

θ ⊕ μ, (29)

where μ is the invariant orthogonal complementary distri-
bution of ϕD⊥ ⊕NDθ in T⊥S.

,e second fundamental form σ can be written as a
consequence of the above direct decomposition.

σ E1, E2( 􏼁 � σϕD⊥ E1, E2( 􏼁 + σNDθ E1, E2( 􏼁 + σμ E1, E2( 􏼁,

(30)

for E1, E2 ∈ TS, where σϕD⊥(E1, E2), σNDθ(E1, E2), and
σμ(E1, E2) are the components of σ(E1, E2) in the normal
sub-bundles ϕD⊥, NDθ and μ, respectively. Moreover if
F1, F2, . . . , Fq􏽮 􏽯 be a local orthonormal frame of vector fields
of Dθ, then

σNDθ E1, E2( 􏼁 � 􏽘

q

r�1
σr

E1, E2( 􏼁NFr, (31)

where

σr
E1, E2( 􏼁 � csc2 θg σ E1, E2( 􏼁, NFr( 􏼁. (32)

We create an example of a BW-P submanifold of the
form S � ST×ψ1

S⊥×ψ2
Sθ in Sasakian manifold with ξ ∈ ST.

Example 1. It is well known that (R2m+1,ϕ0, ξ, η, g) denotes
a Sasakian manifold with its standard Sasakian structure
given by

η �
1
2

dz − 􏽘
m

i�1
y

idx
i⎛⎝ ⎞⎠,

ξ � 2
z

zz
,

g � η⊗ η +
1
4

􏽘

m

i�1
dx

i ⊗ dx
i
+ dy

i ⊗ dy
i

􏼐 􏼑⎛⎝ ⎞⎠,

ϕ0 􏽘

m

i�1
Xi

z

zx
i
+ Yi

z

zy
i
+ Z

z

zz
􏼠 􏼡⎛⎝ ⎞⎠ � 􏽘

m

i�1
Yi

z

zx
i
− Xi

z

zy
i

􏼠 􏼡 + 􏽘
m

i�1
Yiy

i z

zz
.

(33)

Consider the submanifold as follows:

S � 2 u, 0, we
t
, 0, 0, v, 0, se

t cos θ, se
t sin θ, sin t, f􏼐 􏼑 ∈ R

11
􏽮 􏽯.

(34)

And consider a frame u1, u2, u3, u4, u5, u6􏼈 􏼉 of orthog-
onal vector fields tangent to M as

u1 � 2
z

zx
1 + y

1 z

zz
􏼠 􏼡,

u2 � 2
z

zy
1,

u3 � 2e
t z

zx
3,

u4 � 2e
t cos θ

z

zy
3 + 2e

t sin θ
z

zy
4,

u5 � 2 sin t
z

y
5,

u6 � 2
z

zz
� ξ.

(35)

It is then simple to note that D � span u1, u2, u6􏼈 􏼉, D⊥ �

span u5􏼈 􏼉, and Dθ �span u3, u4􏼈 􏼉 defined as the invariant,
anti-invariant, and pointwise slant distributions with the
slant function θ ∈ (0, π/2) on the Sasakian manifold R11. If
we denote the integral manifold of D, D⊥, and Dθ by ST, S⊥,
and Sθ correspondingly, then the metric g on S is given by

g � gST
+ sin2 tgS⊥

+ e
2t

gSθ
. (36)
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,en, S � ST×ψ1
S⊥×ψ2

Sθ is a BW-P submanifold with the
warping functions ψ1 � sin t, ψ2(t) � et.

First, we demonstrate some preliminary findings.

Lemma 4. Let ST×ψ1
S⊥×ψ2

Sθ be a BW-P submanifold of a
Sasakian manifold S. 0en,

(i) ξ ln ψ1 � 0 and ξ ln ψ2 � 0
(ii) g(σ(ϕE, G), NG) � E ln ψ‖G‖2

(iii) g(σ(ϕE, H), JH) � E ln ψ‖H‖2

(iv) g(σ(ϕE, G), ϕσ(E, G)) � ‖σμ(E, G)‖2 + cos2 θ
(E lnψ)2‖G‖2

(v) g(σ(ϕE, H), ϕσ(E, H)) � ‖σμ(E, H)‖2

for all E ∈ TNT, H ∈ TN⊥, and G ∈ TNθ, where σμ is the μ
component of the second fundamental form σ.

Proof. ,e part (i) can be deduced from Proposition 2 of
[17]. Moreover, the parts (ii) and (iii) can be concluded from
equations (30) and (20) in [17], respectively.

Using (6) and (3), we can prove part (iv) as

σ(ϕE, G) � − η(E)G + ϕσ(E, G) + ϕ∇GE − ∇GϕE. (37)

By applying (23), the above equation can now be written
as

σ(ϕE, G) � − η(E)G + ϕσ(E, G) + E ln ψ2ϕG − ϕE ln ψ2G.

(38)

Comparing the normal parts,

σ(ϕE, G) � ϕσμ(E, G) + E ln ψ2NG. (39)

On taking Riemannian product with ϕσ(E, G), we find

g(σ(ϕE, G), ϕσ(E, G)) � σμ(E, G)
�����

�����
2

+ E ln ψ2g(ϕσ(E, G), NG).

(40)

Calculating the last term of (40) by using (3) and (6) and
(23),

g(ϕσ(E, G), NG) � g(σ(ϕE, G), NG) − sin2 θE ln ψ2‖G‖
2
.

(41)

Utilizing part (ii), we get

g(ϕσ(E, G), NG) � cos2 θE ln ψ2‖G‖
2
. (42)

Using the above equation in (40), we get the required
result. Part (v) of the lemma can also be verified in a similar
way. □

Lemma 5. Let S � ST×ψ1
S⊥×ψ2

Sθ be a BW-P submanifold of
a Sasakian manifold S. 0en,

g(σ(E, TG), NG) � − g(σ(E, G), NTG)

� − cos2 θE ln ψ‖G‖
2
,

(43)

Proof. ,e proof of the present lemma can be concluded
from equation (33) in [17] for β � 0. □

Lemma 6. On a BW-P submanifold S � ST×ψ1
S⊥×ψ2

Sθ of a
Sasakian manifold S, we have

􏽘

p

i�1

􏽘

2q

j,k�1
g σ ϕui, u

k
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

k
􏼐 􏼑, Nu

j
􏼐 􏼑−

g σ ui, u
k

􏼐 􏼑, Nu
j

􏼐 􏼑g σ ϕui, Tu
k

􏼐 􏼑, Nu
j

􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� − 4q cos2 θ ∇ ln ψ2

����
����
2
, (44)

Proof. First, we will modify the left-hand term as follows:

􏽘

p

i�1
􏽘

2q

j,k�1
g σ ϕui, u

k
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

k
􏼐 􏼑, Nu

j
􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 􏽘

p

i�1
􏽘

2q

j�1
g σ ϕui, u

j
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

j
􏼐 􏼑, Nu

j
􏼐 􏼑⎡⎢⎢⎣

+ 􏽘

2q

j≠ k�1
g σ ϕui, u

k
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

k
􏼐 􏼑, Nu

j
􏼐 􏼑
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� 􏽘

p

i�1

􏽘

2q

j�1
g σ ϕui, u

j
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

j
􏼐 􏼑, Nu

j
􏼐 􏼑

+ 􏽘

q

j�1
g σ ϕui, u

j
􏼐 􏼑, Nu

j+q
􏼐 􏼑g σ ui, Tu

j
􏼐 􏼑, Nu

j+q
􏼐 􏼑

+ 􏽘

q

j�1
g σ ϕui, u

j+q
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

j+q
􏼐 􏼑, Nu

j
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 􏽘

p

i�1

􏽘

2q

j�1
g σ ϕui, u

j
􏼐 􏼑, Fu

j
􏼐 􏼑g σ ui, Pu

j
􏼐 􏼑, Fu

j
􏼐 􏼑

+ sec2 θ 􏽘

q

j�1
g σ ϕui, u

j
􏼐 􏼑, NTu

j
􏼐 􏼑g σ ui, Tu

j
􏼐 􏼑, NTu

j
􏼐 􏼑

− 􏽘

q

j�1
g σ ϕui, Tu

j
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, u

j
􏼐 􏼑, Nu

j
􏼐 􏼑.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(45)

On using part (ii) of Lemmas 4 and 5 and combining
(25), we find

􏽘

p

i�1
􏽘

2q

j,k�1
g σ ϕui, u

k
􏼐 􏼑, Nu

j
􏼐 􏼑g σ ui, Tu

k
􏼐 􏼑, Nu

j
􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 􏽘

p

i�1
− 2q cos2 θ ui ln ψ2( 􏼁

2
− 2q cos2 θ ϕui ln ψ2( 􏼁

2
− 2qϕui ln ψ2η ui( 􏼁􏽨 􏽩

� − 2qcos2 θ ∇ ln ψ2
����

����
2
.

(46)

Replacing ui by ϕui in the above equation, we get

􏽘

p

i�1
􏽘

2q

j,k�1
g σ ui, u

k
􏼐 􏼑, Fu

j
􏼐 􏼑g σ ϕui, Tu

k
􏼐 􏼑, Nu

j
􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 2q cos2 θ ∇ ln ψ2
����

����
2
.

(47)

We get the required result while subtracting the above
two findings.

,e following characterization is now established. □

Theorem 5. Let S � ST×ψ1
S⊥×ψ2

Sθ be a BW-P submanifold
of a Sasakian space form S(c) such that ST is a compact
submanifold. 0e following characterization is now estab-
lished. If the following inequalities hold, S is a Riemannian
product submanifold.

􏽘

2p

i�1
􏽘

2q

j�1
σμ ui, u

j
􏼐 􏼑

�����

�����
2

+ 􏽘
r

k�1
σμ ui, f

k
􏼐 􏼑

�����

�����
2⎡⎢⎢⎣ ⎤⎥⎥⎦≤p(c − 1) q sin2 θ +

r

2
􏼒 􏼓−

− 2q cos2 θ + 2 cot2 θ􏼐 􏼑 ∇ ln ψ2
����

����
2

􏽘

p

i�1
􏽘

2q

j�1
g σμ ϕui, u

j
􏼐 􏼑, σμ ui, Tu

j
􏼐 􏼑􏼐 􏼑≥ 0,

(48)

where σμ represents the projection of σ in μ and (2p + 1), 2q,
and r are the dimensions of ST, Sθ, and S⊥ subsequently while
f1, f2, . . . , fr􏼈 􏼉 is a local orthonormal basis of TS⊥.

,en, again by the Codazzi equation,

R(E, ϕE, G, NG) � g ∇⊥Eσ(ϕE, G), NG( 􏼁 − g ∇⊥ϕXσ(E, G), NG􏼐 􏼑

+ g σ E,∇ϕEG􏼐 􏼑, NG􏼐 􏼑 − g σ ϕE,∇EG( 􏼁, NG( 􏼁

− g σ ∇EϕN, G( 􏼁, NG( 􏼁 + g σ ∇ϕEE, G􏼐 􏼑, NG􏼐 􏼑.

(51)
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,e estimations of the terms engaged with (51) are
presently processed. Foremost, we have

g ∇⊥Eσ(ϕE, G), NG( 􏼁 � Eg(σ(ϕE, G), NG)

− g σ(ϕE, G),∇⊥ENG( 􏼁.
(52)

Applying the part (ii) of Lemma 4 in the last equation, we
find

g ∇⊥Eσ(ϕE, G), NG( 􏼁 � E
2 ln ψ2‖G‖

2
+ 2 E ln ψ2( 􏼁

2
‖G‖

2

− g σ(ϕE, G),∇⊥ENG( 􏼁.

(53)

Calculating the last term of (53) and using (10), we have

g σ(ϕE, G),∇⊥ENG( 􏼁 � g σ(ϕE, G),∇E(ϕG − TG)( 􏼁. (54)

By the use of (6) and (12), the previous equation changes
to

g σ(ϕE, G),∇⊥ENG( 􏼁 � g σ(ϕE, G), ∇Eϕ( 􏼁G + ϕ∇EG( 􏼁

− g(σ(ϕE, G), σ(E, TG)).

(55)

By the application of (3), (6), and (23) and part (ii) and
(iii) of Lemma 4, we get

g σ(ϕE, G),∇⊥ENG( 􏼁 � E ln ψ2( 􏼁
2 1 + cos2 θ􏼐 􏼑‖G‖

2

+ σμ(E, G)
�����

�����
2

− g(σ(ϕE, G), σ(E, TG)).

(56)

Making use of (56) in (53), we find

g ∇⊥Eσ(ϕE, G), NG( 􏼁 � E
2 ln ψ2‖G‖

2
+ E ln ψ2( 􏼁

2sin2 θ‖G‖
2

− σμ(E, G)
�����

�����
2

+ g(σ(ϕE, G), σ(E, TG)).

(57)

In similar fashion, we are able to write

g ∇⊥ϕEσ(E, G), NG􏼐 􏼑 � − (ϕE)
2 ln ψ2‖G‖

2
− ϕE ln ψ2( 􏼁

2sin2 θ‖G‖
2

+ σμ(ϕE, G)
�����

�����
2

+ g(σ(E, G), σ(ϕE, TG)).

(58)

We have the following from part (ii) of Lemma 4:

g ANGG, ϕE( 􏼁 � E ln ψ2‖G‖
2
. (59)

Changing out E by ∇EE (applying the totally geo-
desicness of ST, ∇EE ∈ TST) in the previous equation, we
obtain

g ANGG,ϕ∇EE( 􏼁 � ∇EE ln ψ2‖G‖
2
. (60)

By (6), the equation above has the following form:

g ANGG, ϕ∇EE − ϕσ(E, E)( 􏼁 � ∇EE ln ψ2‖G‖
2
. (61)

It is simple to verify that σ(E, F) ∈ μ, for all E, F in TST

by using the fact that the first factor ST is totally geodesic in S.
Substituting this and (12) in the last equation, we obtain

g σ ∇EϕE, G( 􏼁, NG( 􏼁 � ∇EE ln ψ2‖G‖
2
. (62)

Adopting similar steps, we can put

g σ ∇ϕEE, G􏼐 􏼑, NG􏼐 􏼑 � − ∇ϕEϕE ln ψ2‖G‖
2
. (63)

By part (ii) of Lemma 4 and (23), we get

g σ ϕX,∇EG( 􏼁, NG( 􏼁 � E ln ψ2( 􏼁
2
‖G‖

2
, (64)

g σ E,∇ϕEG􏼐 􏼑, NG􏼐 􏼑 � − ϕE ln ψ2( 􏼁
2
‖G‖

2
. (65)

Substituting values of (49) and (57)–(65) in (51), we
obtain

−
c − 1
2

sin2 θ‖E‖
2
‖G‖

2
� E

2 ln ψ2‖G‖
2

+(ϕE)
2 ln ψ2‖G‖

2

− E ln ψ2( 􏼁
2cos2 θ‖G‖

2
− ϕE ln ψ2( 􏼁

2cos2 θ‖G‖
2

− σμ(E, G)
�����

�����
2

− σμ(ϕE, G)
�����

�����
2

− ∇EE ln ψ2‖G‖
2

− ∇ϕEϕE ln ψ2‖G‖
2

+ g(σ(ϕE, G), σ(E, TG)) − g(σ(E, G), σ(ϕE, TG)).

(66)

On using (30), (32), (6), and (3), the previous equation
becomes
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−
c − 1
2

sin2 θ‖E‖
2
‖G‖

2
� E

2 ln ψ2‖G‖
2

+(ϕE)
2 ln ψ2‖G‖

2

− E ln ψ2( 􏼁
2cos2 θ‖G‖

2
− ϕE ln ψ2( 􏼁

2cos2 θ‖G‖
2

− σμ(E, G)
�����

�����
2

− σμ(ϕE, G)
�����

�����
2

− ∇EE ln ψ2‖G‖
2

− ∇ϕEϕE ln ψ2‖G‖
2

+ csc2 θ 􏽘

2q

j�1

g σ(ϕE, G), NFj􏼐 􏼑g σ(E, TG), NFj􏼐 􏼑

− g σ(ϕE, G), NFj􏼐 􏼑g σ(ϕE, TG), NFj􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Fj

�����

�����
2

+ 2g σμ(ϕE, G), σμ(E, TG)􏼐 􏼑.

(67)

Let u0 � ξ, u1, u2, . . . ,􏼈 up, up+1 � ϕu1, up+2 � ϕu2, . . . ,

u2p � ϕup} be the orthonormal frame on TST and
u1, u2, . . . , uq, sec θTu1, sec θTu2, . . . , sec θTuq􏼈 􏼉 be an
orthonormal frame on TSθ. Taking sum of the above

equation with the indices i � 1, 2, . . . , p and j � 1, 2, . . . 2q

and making use of (25) and (26) and part (iii) of Lemma 4,
we get

2qΔ ln ψ2( 􏼁 � pq(c − 1)sin2 θ − 2qcos2 θ ∇ ln ψ2
����

����
2

− 􏽘

2p

i�1
􏽘

2q

j�1
σμ ui, u

j
􏼐 􏼑

�����

�����
2

− 4qcot2 θ ∇ ln ψ2
����

����
2

+ 2􏽘

p

i�1
􏽘

2q

j�1
g σμ ϕui, u

j
􏼐 􏼑, σμ ui, Tu

j
􏼐 􏼑􏼐 􏼑.

(68)

In the similar way, for E ∈ TST and F ∈ TS⊥ again using
the Codazzi equation, we can prove the following:

−
c − 1
2

‖E‖
2
‖F‖

2
� E

2 ln ψ1‖F‖
2

+(ϕE)
2 ln ψ1‖F‖

2

− σμ(E, F)
�����

�����
2

− σμ(ϕE, F)
�����

�����
2

− ∇EE ln ψ1‖F‖
2

− ∇ϕEϕE ln ψ1‖F‖
2
.

(69)

Let f1, f2, . . . , fr􏼈 􏼉 be an orthonormal frame of TS⊥.
Taking sum by using i � 1, 2, . . . , p and l � 1, 2, . . . , r and
simultaneously using (24) and (25), the above equation
yields the following:

rΔ ln ψ1( 􏼁 �
(c − 1).p.r

2
− 􏽘

2p

i�1
􏽘

r

l�1
σμ ui, f

l
􏼐 􏼑

�����

�����
2
. (70)

From (69),

􏽘

2p

i�1
􏽘

2q

j�1
σμ ui, u

j
􏼐 􏼑

�����

�����
2
≤pq(c − 1)sin2 θ − 2q cos2 θ + 2 cot2 θ􏼐 􏼑 ∇ ln ψ2

����
����
2

􏽘

p

i�1
􏽘

2q

j�1
g σμ ϕui, u

j
􏼐 􏼑, σμ ui, Pu

j
􏼐 􏼑􏼐 􏼑≥ 0.

(71)
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,is means Δ ln ψ2 ≥ 0, so by application of Hopf’s
Lemma, ln ψ2 is constant that indicates ψ2 is constant.
Moreover, in (70), if

􏽘

2p

i�1
􏽘

r

l�1
σμ ui, f

l
􏼐 􏼑

�����

�����
2
≤

(c − 1).p.r

2
, (72)

then Δ ln ψ1 ≥ 0, so by Hopf’s lemma, ln ψ1 is constant that
implies that the W–F ψ1 is constant. We get the necessary
result when these two statements are combined.

,e squared norm of the second fundamental form is
obtained using the warping functions and the slant function
in the following theorem.

Theorem 6. Let S(c) be a (2n + 1)− dimensional S-C-F and
ST×ψ1

S⊥×ψ2
Sθ be an m− dimensional BW-P submanifold such

that ST is a 2p− dimensional invariant submanifold, S⊥ is a r−

dimensional anti-invariant submanifold, and Sθ be a
2q− dimensional proper pointwise slant submanifold of S(c).
If

􏽘

p

i�1
􏽘

2q

j�1
g σ ϕui, u

j
􏼐 􏼑, σ ui, Pu

j
􏼐 􏼑􏼐 􏼑≥ 0, (73)

then

(i) 0e squared norm of the second fundamental form σ
satisfies

‖σ‖
2 ≥p(c − 1) q sin2 θ +

r

2
􏼒 􏼓

+ 2qsin2 θ ∇ ln ψ2
����

����
2

+ r ∇ ln ψ1
����

����
2

− 2qΔ ln ψ2( 􏼁 − rΔ ln ψ1( 􏼁.

(74)

(ii) 0e equality sign of (74) satisfies identically if and
only if

(i) ST is T-G invariant submanifold of S(c). Hence,
ST is a S–C-F.

(ii) S⊥ and Sθ are T-U submanifolds of S(c).
(iii) 􏽐

p
i�1 􏽐

2q
j�1g(σ(ϕui, uj), σ(ui, Puj)) � 0.

Proof. From (69), we have

􏽘

2p

i�1
􏽘

2q

j�1
σμ ui, u

j
􏼐 􏼑

�����

�����
2
≥pq(c − 1)sin2 θ − 2q cos2 θ + 2 cot2 θ􏼐 􏼑‖∇ ln ψ‖

2
− 2qΔ(ln ψ). (75)

For the orthonormal frames u0 � ξ,􏼈 u1, u2, . . . ,

up, up+1 � ϕu1, up+2 � ϕu2, . . . , u2p � ϕup} and u1, u2, . . . ,􏼈

uq, sec θTu1, sec θTu2, . . . , sec θTuq}, in view of formulae
(31) and (32) and part (ii) of Lemma 4, we get

􏽘

2p

i�0
􏽘

2q

j�1
σNDθ

ui, u
j

􏼐 􏼑
�����

�����
2

� 􏽘

2p

i�0
􏽘

2q

j,k�1
csc2 θg σ ui, u

j
􏼐 􏼑, Nu

k
􏼐 􏼑

2

� csc2 θ􏽘

2p

i�0
􏽘

2q

j�1
g σ ui, u

j
􏼐 􏼑, Nu

j
􏼐 􏼑

2
+ 􏽘

2q

j≠ k�1
g σ ui, u

j
􏼐 􏼑, Nu

k
􏼐 􏼑

2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� csc2 θ􏽘

2p

i�0
2q ui ln ψ( 􏼁

2
+ sec2 θ 􏽘

q

j�1
g σ ui, u

j
􏼐 􏼑, NTu

j
􏼐 􏼑

2
+ g σ ui, Tu

j
􏼐 􏼑, Nu

j
􏼐 􏼑

2
􏼚 􏼛⎡⎢⎢⎣ ⎤⎥⎥⎦.

(76)

Further, using Lemma 5 and (25), the above equation is
reduced to

􏽘

2p

i�0
􏽘

2q

j�1
σFDθ

ui, u
j

􏼐 􏼑
�����

�����
2

� 2q csc2 θ‖∇ ln ψ‖
2

+ 2q cot2 θ‖∇ ln ψ‖
2
.

(77)

Now, for any E ∈ TNT and F ∈ TN⊥, from part (iii) of
Lemma 1, we have

g(σ(ϕE, F), ϕF) � E ln ψ1‖F‖
2
,

g(σ(ξ, F), ϕF) � 0.
(78)

By the above equations for the frame u0 �􏼈

ξ, u1, u2, . . . , up, up+1 � ϕu1, up+2 � ϕu2, . . . , u2p � ϕup} and
f1, f2, . . . , fr􏼈 􏼉, it is simple to conclude that

􏽘

2p

i�1
􏽘

r

l�1
hϕD⊥ ui, f

l
􏼐 􏼑

�����

�����
2

� r ∇ ln ψ1
����

����
2
. (79)

Moreover, from (3) and (23), we get
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g(σ(E, G), ϕF) � 0,

g(σ(E, F), NG) � 0,
(80)

for all E ∈ TST, G ∈ TSθ, and F ∈ TS⊥. We can deduce the
following from these two findings:

􏽘

2p

i�1
􏽘

2q

j�1
σϕD⊥ ui, u

j
􏼐 􏼑

�����

�����
2

� 0, (81)

􏽘

2p

i�1
􏽘

r

k�1
σϕDθ ui, f

k
􏼐 􏼑

�����

�����
2

� 0. (82)

From (75), (77), (79), (81), and (82), we get the required
inequality.

To prove the part (ii), let σ′ and σ″ be the second
fundamental forms for the immersion of Sθ and S⊥ in S,
respectively. ,en, for any G, K ∈ TSθ and E ∈ TST, using
the Gauss formula, we have

g σ′(G, K), E( 􏼁 � g ∇GK, E( 􏼁 � − E ln ψ2g(G, K). (83)

By (24), we obtain

g σ′(G, K), E( 􏼁 � − g(G, K)g ∇ ln ψ2, E( 􏼁, (84)

or

σ′(G, K) � − g(G, K)∇ ln ψ2. (85)

Accordingly, for any F1, F2 ∈ TS⊥ and E ∈ TST, we have

σ″ F1, F2( 􏼁 � − g F1, F2( 􏼁∇ ln ψ1. (86)

If the equality sign of (74) holds identically, then we have

σ(D, D) � 0,

σ D
⊥

, D
⊥

( 􏼁 � 0,

σ D
θ
, D

θ
􏼐 􏼑 � 0,

(87)

g σμ ϕ D, D
θ

􏼐 􏼑, σμ D, TD
θ

􏼐 􏼑􏼐 􏼑 � 0. (88)

,e first condition of (87) suggests that ST is T-G
submanifold in S. ,en, again it is not difficult to see that
g(σ(E1,ϕE2),NG) � 0 andg(σ(E, ϕE2), ϕF) � 0, for all
E1, E2 ∈ TST, G ∈ TSθ, andF ∈ TS⊥ It follows that ST is T-G
in S(c) and hence is a S-C-F. ,e second condition of (87)
with (86) implies that S⊥ is T-U. Besides, the third condition
of (87) along with (85) suggests that Sθ is a T-U submanifold.
,is demonstrates the proof. □

4. Conclusion

In this paper, by utilizing Hopf’s Lemma, we acquired the
describing inequalities for the existence of biwarped product
submanifolds of Sasakian space forms. Besides, we addi-
tionally worked out an assessment for the squared norm of
the second fundamental form in terms of the warping
function and slant function. To fortify our study, we gave a
nontrivial example of a biwarped product submanifold in a
Sasakian manifold.
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