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In order to analyse the impact of renewable generation and load uncertainties on the economic operation optimization of the
island microgrid, a multiobjective economic optimal dispatch model under uncertainty based on interval optimization is
proposed in this paper. ,e mathematical model of distributed generation and the prediction model of wind speed and wave
generation are established.,e uncertainties of renewable generation and load are described by the interval mathematical method.
On this basis, the interval multiobjective optimal dispatch model is presented. For the “battery disgusting” users on the island, the
battery cost is regarded as a separate optimization objective, and a multiobjective optimization objective function to minimize the
economic cost, battery cost, and pollution emission of the island microgrid is discussed. An island microgrid, composed of wind
turbine, photovoltaic, wave energy generation, diesel generator, and energy storage system, is chosen as a case study.,eNSGA-II
algorithm is applied to solve the multiobjective optimal problem.,e results for deterministic forecast data and load are analysed,
and the optimal operation scheme is obtained by the improved multiobjective grey target decision-making method.,e influence
of renewable generation fluctuations ±10%, ±20%, and ±30% and the load fluctuations ±10% and ±20% on island microgrid
operation optimization is discussed in detail, respectively.,e relevant research results can provide a reference for formulating the
operating scheme of the island microgrid.

1. Introduction

China is a large coastal country withmany islands [1]. Due to
distance from mainland, these islands cannot obtain power
supply from mainland power system. For a long time, the
power supply of islands has completely relied on traditional
fossil fuel generators [2]. With the rise of fuel prices, the
gradual depletion of fossil fuels, and human’s increasing
attention to environmental protection, the utilization of
renewable resources to satisfy the energy demand of island
locally is becoming more and more popular [3]. As an ef-
fective form of renewable energy utilization, microgrid plays
a more and more important role in solving the electricity
deficit problem on islands.

Due to the intermittent and random features of re-
newable resources such as wind and solar, efficient design

and operation of isolated microgrid are becoming more
important and influential as the penetration of renewable
energy increases in microgrid [4]. Scholars at home and
abroad have carried out a lot of research on the sizing and
operation optimization of isolated microgrid on island.
Ghaffari and Askarzadeh [5] chose the equal annual present
cost of microgrid as the economic index, the renewable
energy penetration as the environmental protection index,
and the power supply economy and environmental pro-
tection as the optimization objectives and established a
multiobjective optimal configuration model of island
microgrid including wind, photovoltaic, diesel generator,
and energy storage system, so as to provide the necessary
basis for the optimal design of island microgrid. Chen et al.
[6] proposed a microgrid economic optimization model
considering equipment loss cost, operation and
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maintenance cost, fuel cost, and environmental protection
conversion cost, the nondominated sorting genetic algo-
rithm-II (NSGA-II) was used to obtain the optimal opera-
tion scheme, but the pollutant emission was not considered.
In order to realize the joint optimization of electricity and
desalted water on island, Liu et al. [7] discussed the impact of
seawater desalination equipment on island microgrid and
established a day-ahead operation optimization model in-
cluding cost of freshwater, but only the operation cost was
considered. Li et al. [8] developed a multiobjective dynamic
optimal dispatching model for isolated microgrid to coor-
dinate multiple different optimization objectives, including
economic cost, environmental factors, and users experience,
using θ-dominance-based evolutionary algorithm. However,
in all the above researches, the wave energy generation is not
considered. Zhao et al. [9] presented a wind and wave
prediction model and proposed a microenergy network
optimization method of multienergy complementary model.
To minimize power and heat load deviation of microenergy
network andmaximize user’s satisfaction, the particle swarm
optimization algorithm was used to address this problem.
However, the impact of cost and pollutant emission on
microgrid optimal dispatch is not considered.

Nevertheless, the deterministic forecast data has been
used in the above research, which is inappropriate for
isolated microgrid on island since the small-scale demand is
hard to predict and the renewable energy generations are
highly changeable [10]. At present, for the optimal operation
of microgrid, the following methods are mostly deployed to
deal with the uncertain factors, namely, prediction error
[11], point estimation [12], fuzzy optimization [13, 14],
stochastic optimization [15], scenario-based stochastic op-
timization [16], robust optimization [17], chance-con-
strained programming [18], interval optimization [19, 20],
and so on. In order to deal with the uncertainties in
microgrid operation optimization, Ahn and Moon [11]
describe the uncertainties of photovoltaic and wind gen-
eration output by a certain percentage of the predicted
values, but the percentage parameters are arbitrary, and the
same values are taken in different dispatching periods, which
is limited. Li et al. [12] deploy the point estimation to settle
with the uncertainty caused by wind and discuss the impact
of uncertain factors on multiobjective dispatching of
microgrid.,e point estimationmethod directly replaces the
whole indicators with sampling indicators, which could
inevitably have errors. In [13], the uncertainty of renewable
resource is expressed as a fuzzy variable, the fuzzy mem-
bership degree is set, and the fuzzy dispatching model is
established. However, the specific values of these mem-
bership degrees are subjectively determined by the power
system dispatcher. In this way, the obtained optimal solution
may be highly subjective. Zakariazadeh et al. [15] take the
uncertainty of renewable energy as a random variable and
consider the wind speed obeys Weibull distribution and the
solar irradiation obeys Beta distribution. ,en Monte Carlo
method is applied to generate a large number of random
numbers. However, whether it is proper to apply such
standard probability density functions in microgrid optimal
dispatch remains to be examined. Talari et al. [16] propose a

scenario-based stochastic optimization approach, to con-
sider the uncertainties of PV, wind generation, and load
demand, a large number of scenes and their corresponding
occurrence probabilities are generated by Monte Carlo
simulation, and finally, the mixed-integer linear program-
ming method is used to address the stochastic optimization
model. However, with an increase in the number of the
produced scenes, the calculation burden will rise expo-
nentially, so it is usually computationally expensive. Liu et al.
[17] present a robust multiobjective optimization method,
and a min–max multiobjective optimization model is
established to find the uncertain worst implementation. It
provides a mathematical framework for modelling uncertain
values by uncertainty set and optimizing problems based on
the worst scenario. However, the worst scenario determined
by robust optimization is often too conservative, which
increases the operation cost of microgrid. Li et al. [18]
propose a new optimal dispatching model by using chance-
constrained programming for the isolated microgrids. In
this model, not only are the uncertainties of load and re-
newable resources considered, but also the uncertainty
modelling of spinning reserves of energy storage system is
included by means of probability constraints. ,e model is
transformed into a solvable mixed-integer linear pro-
gramming formulation via the proposed discretized step
transformation approach in GAMS. But the optimization
objective function only considers the total operation cost.
Interval mathematics is used to deal with the uncertainties in
microgrid [19]. Wang et al. [20] discuss the grid-connected
microgrid with interval numbers. Take the minimum total
operation cost of microgrid in one day as the objective
function and realize the optimal operation of a grid-con-
nected microgrid. However, in this work, the objective
function needs to be linearized.

Although many fundamental microgrid optimal
scheduling problems are formulated and solved, some re-
search gaps still exist in the area as follows: (1) In previous
works, wave energy generation was usually not considered in
the economic operation optimization of isolated microgrid
on island, but with the fast development of ocean energy
utilization technology in the past decades, wave energy
generation has gradually become a feasible approach to
provide electric energy for offshore isolated islands.
,erefore, it is necessary to take the wave energy generation
into account for island microgrid optimal dispatch. (2) At
the same time, most of the existing studies on the economic
operation optimization of island microgrid do not consider
the uncertainty of renewable resources and load demand;
that is, the predicted data is directly used as a determined
value for operation optimization and results in a gap be-
tween the optimization results and the actual operation to a
certain extent. (3) In researches where uncertainties of re-
newable resources or load demand are considered, the
uncertainty modelling process is often complex and has
many parameters, the probability distribution needs to be
specified upfront, or the optimization results can only give
the possible scenarios and their probability of occurrence.
,ere is a lack of an easy-to-understand and simple mod-
elling method considering uncertainty.
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To address the above concerns, this work proposes a
multiobjective economic dispatch model based on interval
optimization to deal with the optimal problem of island
microgrid under uncertainties. ,e main contributions of
this study are as follows:

(i) An optimal dispatch model for island isolated
microgrid incorporating multiobjective operation
optimization and interval uncertainties is proposed.
In this model, the interval mathematical method is
used to cope with the uncertainties of renewable
generation and load demand.,emodelling process
is easy to implement and the model has fewer
parameters.

(ii) For the “battery disgusting” users on islands, the
battery cost is taken as a separate optimization
objective, and the multiobjective optimization
model to minimize the economic cost, battery cost,
and pollutant emission is established in this paper.
An improved multiobjective grey target decision-
making method is applied to balance the tradeoff
among multiple objectives.

(iii) ,e wave energy generation is taken into account
for the island isolatedmicrogrid system. At the same
time, a prediction model between wind speed and
wave energy generation output power is presented.

(iv) ,e optimization results directly present the dis-
tribution interval of multiple objectives, which is
convenient for microgrid system operators to
evaluate the impact caused by uncertainties. ,is
approach is computational efficiency, which will be
shown in the case study section.

,e structure of this paper is as follows.,e introduction
is given in Section 1. In Section 2, the mathematical model of
distributed generation is established. Section 3 presents the
multiobjective optimization modelling. Section 4 explains
the proposed methodology. ,e results are discussed in
Section 5. ,e conclusion is given in Section 6.

2. Modelling of an Island Microgrid

2.1. Microgrid Structure. ,e structure of an island micro-
grid is shown in Figure 1. ,e system is composed of
photovoltaic system (PV), wind turbines (WT), wave energy
generation (WEG), diesel generator (DG), energy storage
system (ESS), power conversion system (PCS), energy
management system (EMS), and load demand.

2.2. Component Modelling

2.2.1. PV System. ,e output power of the PV system is not
only related to its own technical parameters but also related
to solar irradiation and temperature. Its output power can be
expressed as [21]

PPV(t) � PPV−rate ·
IPV(t)

ISTC
· 1 − αTP TPV(t) − TSTC( 􏼁􏼂 􏼃,

(1)

where PPV(t) is the real output power of PV system, kW,
PPV_rate is the rated capacity of PV array, IPV(t) is the actual
solar irradiation on the PV panel, αTP is the temperature
factor of PV panel (%/°C), ISTC and TSTC are the solar ir-
radiation and temperature under standard test condition,
respectively, and TPV(t) is the temperature on the surface of
PV panel; it is related to solar irradiation and ambient
temperature [22]:

TPV(t) � Tamd + εPV ·
IPV(t)

1000
, (2)

where Tamd is the ambient temperature and εPV is the
proportional coefficient related to the PV panel itself, with a
value of 30.

2.2.2. Wind Turbine. ,e relationship between the output
power of wind turbine and wind speed can be formulated by
a piecewise function [23]:

PWT(t) �

0, v(t) < vci, v(t) > vco,

k1v + k2, vci ≤ v(t)< vr

PWT rate, vr ≤ v(t) ≤ vco,

k1 �
PWT rate

vr − vci
, k2 � −k1vci,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where PWT_rate is the rated power of wind turbine, v(t) is the
actual wind speed, m/s, vr is the rated wind speed of wind
turbine, and vci and vco refer to the cut-in and cut-out wind
speed of WT, respectively.

2.2.3. Wave Energy Generation. Wave energy has large
reserves and high energy density and has strong seasonal
characteristics. In China’s sea areas, the power generated by

wave energy is usually large in autumn and winter, especially
near islands [24]. Wave is essentially driven by wind. At
present, wind speed prediction has been widely studied and
applied in power system. Based on the wave generation
mechanism, it is feasible to use wind and wave correlation to
predict wave data.

In the field of marine research, the wave power density is
generally evaluated by the wave power on the wavefront
width, it is formulated as
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PW �
ρg

2

64π
h
2
WTW, (4)

where ρ is the density of seawater, kg/m3, g is the gravi-
tational acceleration, 9.8m/s2, and hW and TW are the height
and period of the wave, respectively.

Wave is closely related to wind speed. ,e parameters
can be obtained indirectly through wind data.,e prediction
model of wind speed and wave is [25]

hW � av
b
,

TW � cv
d
,

⎧⎨

⎩ (5)

where v is the wind speed, m/s, a, b, c, and d are the model
parameters, which can be obtained by fitting the measured

data, and the values are 0.03, 1.62, 5.15, and 0.46, respectively
[26].

2.2.4. Diesel Generator. ,e fuel consumed by diesel gen-
erator is related to its structure and characteristics, and the
expression of fuel cost is [27]

FDG(t) � a + b · PDG(t) + c · P
2
DG(t), (6)

where a, b, and c are cost parameters of diesel generator,
which are 6, 0.012, and 8.4×10−4, respectively.

2.2.5. Energy Storage System. ,e state of charge (SOC) and
output power of energy storage system satisfy the following
relationship [28]:

SOC(t) �

(1 − δ) · SOC(t − 1) +
1

ηcha
· PESS(t), PESS(t)≤ 0,

(1 − δ) · SOC(t − 1) + ηdischa · PESS(t), PESS(t)> 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where SOC(t) is the SOC of energy storage system at time t,
%, δ is the self-discharging rate, PESS(t) is the output power at
time t, positive indicates discharging and negative indicates
charging, and ηcha and ηdischa are the charging and dis-
charging efficiency, respectively.

3. Objective Function

3.1. MultiobjectiveModel. For the “battery disgusting” users
on island, this paper takes the battery cost as a separate
optimization objective and establishes a multiobjective

function with minimizing the economic cost, battery cost,
and pollutant emission simultaneously for island microgrid:

min f1(x,u), f2(x, u), . . . , fM(x, u)􏼂 􏼃

s.t. g(x, u) � 0

h(x, u)≤ 0

u ∈ u−
, u+

􏼂 􏼃,

(8)

where fi(x,u) is the optimization subobjective, x is the decision
variable, g(x, u) represents the equality constraints, h(x,u)
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Figure 1: ,e structure of the island microgrid.
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expresses the inequality constraints, and u− and u+ are the
lower and upper limits of uncertain variables; namely,

PPV(t) ∈ P
−
PV(t), P

+
PV(t)􏼂 􏼃,

PWT(t) ∈ P
−
WT(t), P

+
WT(t)􏼂 􏼃,

PWEG(t) ∈ P
−
WEG(t), P

+
WEG(t)􏼂 􏼃,

PLoad(t) ∈ P
−
Load(t), P

+
Load(t)􏼂 􏼃,

(9)

where PPV(t), PWT(t), PWEG(t), and PLoad(t) represent the
output power of PV system, wind turbine, wave energy
generation, and load at time t, respectively.

3.1.1. Economic Cost. Economic cost mainly considers
equipment depreciation cost, fuel cost, and operation and
maintenance (O&M) cost.

(1) Depreciation Cost

CDP � 􏽘
m

i�1
􏽘

T

t�1

CACC,i

8760ki

·
r(1 + r)

ni

(1 + r)
ni − 1

· Pi(t), (10)

where CACC,i is the installation cost per unit capacity of the
ith distributed generation, $/kW, r is the annual interest rate,
%, ni is the service lifetime of the ith distributed generation,
ki represents the capacity factor of the ith distributed gen-
eration, and its calculation formula is

ki �
􏽐

8760
t�1 Pi(t)

􏽐
8760
t�1 Pr,i

, (11)

where Pr,i and Pi(t) represent the rated power of the ith
distributed generation and the power at the tth period, kW.

(2) Fuel Cost. Since photovoltaic and wind power generation
use renewable resources, the fuel costs of both are not
considered.,e fuel cost of diesel generator can be expressed
as

CF � 􏽘
T

t�1
FDG(t), (12)

where FDG(t) is the fuel cost of diesel generator at time t.

(3) O&M Cost. ,e O&M cost of distributed generation unit
is linearly related to the electric energy generated. ,e ex-
pression is

COM � 􏽘
T

t�1
􏽘

m

i�1
KOM,i·Pi(t), (13)

where Pi(t) represents the output power of PV, wind turbine,
wave energy generation, and diesel generator and kOM,i is the
operation and maintenance cost coefficient of each dis-
tributed generation, $/kWh.

3.1.2. Battery Cost. During the operation of energy storage
batteries, depreciation costs and O&M expenses occur at the
same time.

(1) Battery Depreciation Cost. ,e depreciation cost of
battery is calculated by using the replacement cost and the

times of charging and discharging within the battery’s
lifetime [29].

CESS,loss � nB ·
CESS,rep

nBN
, (14)

whereCESS,rep is the battery replacement cost, nB refers to the
charging and discharging times of energy storage battery in a
dispatching period, nBN is the rated charging and dis-
charging times of battery in its life cycle, and its relationship
with depth of discharging (DOD) of the battery can be
expressed as [30]

nBN � a1 + a2 · e
−a3 ·DOD

+ a4e
−a5 ·DOD

, (15)

where DOD is the depth of discharging of battery,
DOD� 1− SOC, and a1 to a5 are constants, which can be
obtained by fitting the experimental data.

(2) O&M Cost of Battery

CESS,OM � 􏽘
T

t�1
COM,ESS(t) � 􏽘

T

t�1
KOM,ESS· PESS(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (16)

where PESS(t) is the charging and discharging power of
battery in the tth period, which is positive during dis-
charging and negative during charging, and KOM,ESS(t) is the
unit operation and maintenance cost coefficient of battery,
$/kWh.

(3) Pollutant Emission. Traditional fossil fuel generators will
not only release a large amount of greenhouse gas CO2 but
also emit toxic and harmful gases such as SO2 and NOX,
which is harmful to the ecological environment and human
survival. ,erefore, the environmental protection depart-
ment will levy corresponding environmental damage
compensation for the environmental treatment of pollutant
emission, that is, environmental protection cost [31]:

Em � 􏽘
m

i�1
􏽘

n

j�1
􏽘

T

t�1
Qij · Pi(t), (17)

where Qij is the emission of the j-th pollutants of the ith
distributed generation, g/kWh, m is the number of dis-
tributed generations, and n is the number of types of pol-
lutants. Due to the different degree of toxicity caused by
different pollutant emissions, in order to facilitate com-
parison, the emissions of SO2 and NOX are uniformly
transformed into CO2 emissions according to the envi-
ronmental protection punishment imposed by the envi-
ronmental protection department for unit harmful
emissions.

3.2. ConstraintCondition. Considering the power balance of
microgrid system and the physical limitations of distributed
generation units, the above multiobjective optimization
model must also meet the following constraints.

3.2.1. Power Balance Constraint. In order to ensure a reliable
power supply, in any case, the total output power of various
power generation units and load consumption in one system
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must always be balanced. Considering that the equality
constraint described by the predicted data of load and re-
newable energy generation are actually difficult to satisfy, the
interval mathematical method is used to describe the power
balance constraint [32]:

PLoad(t)􏼂 􏼃 − PDG(t)􏼂 􏼃 − PESS(t)􏼂 􏼃 � P
−

􏽐(t), P
+

􏽐(t)􏼔 􏼕,

(18)

where P−

􏽐
(t) and P+

􏽐
(t) represent the upper and lower

limits of the fluctuation range of the linear combination of
PV, wind turbine, and wave energy generation, respectively.

For the equality constraint that uses interval numbers to
describe uncertainties, they can be transformed into de-
terministic equality constraint:

P
−
Load(t) − P

−
DG(t) − P

−
ESS(t) � P

−
PV(t) + P

−
WT(t) + P

−
WEG(t),

P
+
Load(t) − P

+
DG(t) − P

+
ESS(t) � P

+
PV(t) + P

+
WT(t) + P

+
WEG(t).

􏼨

(19)

3.2.2. Generation Capacity Constraint. Due to the physical
limitation of distributed generation unit, in order to maintain
the operation stability and safety, its actual output power will be
strictly limited between the upper and lower limits.

Pi,min ≤Pi(t)≤Pi,max, (20)

where Pi(t) is the output power of DG, PV, WT, and WEG
and Pi,min and Pi,max represent the upper and lower limits of
power generation units. For PV, WT, and WEG, the min-
imum output power is zero and the maximum output power
is its installed capacity. For diesel generator, considering
operation economy and spinning reserves, its maximum and
minimum power can be set according to the manufacturer’s
recommendations. For the energy storage system, the output
power is positive and its range is (0, Pmax) when the battery is
discharging; the output power is negative and its range is
(−Pmax, 0) when the battery is charging.

3.2.3. Climbing Rate Constraint. ,e operation of diesel
generator is also limited by the climbing rate.

r
down
DG Δt≤PDG(t) − PDG(t − 1)≤ r

up
DGΔt, (21)

where rdownDG and r
up
DG represent the downward and upward

climbing rates of diesel generator, respectively.

3.2.4. Battery SOC Constraint. In order to protect the energy
storage system from being damaged and prolong its service
lifetime, the battery will avoid overcharging or over-
discharging, and its state of charge should be limited within a
reasonable range. At the beginning and end of a dispatching
period, the state of charge would be consistent.

SOCmin ≤ SOC(t)≤ SOCmax, (22)

SOC0 � SOCT. (23)

4. Methodology

In 2002, to overcome the disadvantages of traditional
nondominated sorting genetic algorithm (NSGA), such as
high computational complexity, lack of elites, and the need
to specify sharing parameters, Deb et al. proposed a fast
nondominated sorting genetic algorithm with elite strategy,
namely, the NSGA-II algorithm [33].

4.1. Overview of NSGA-II. ,e basic idea of NSGA-II is as
follows. Firstly, the initial population with sizeN is randomly
generated, the value of each objective function is calculated,
the nondominated ranking is carried out, and the individual
crowding distance is calculated. Secondly, the first genera-
tion offspring population is produced through three basic
operations, namely, selection, crossover, and mutation, re-
spectively. ,irdly, the parent population and child pop-
ulation are merged by fast nondominated sorting method.
At the same time, the crowding distance of individuals in
each nondominated layer is calculated. According to the
nondominated relationship and the crowding distance of
individuals, appropriate individuals are chosen to form a
new parent population. Finally, a new population is gen-
erated by preserving elite strategy operation. ,e flowchart
of NSGA-II is shown in Figure 2.

4.2. ConstraintDominatingMechanism. ,e general form of
multiobjective optimization objective function can be
expressed as the following formula:

min F � f1(x), f2(x), . . . , fm(x)􏼈 􏼉

s.t.
gj(x)≤ 0, j � 1, 2, . . . , p

hj(x) � 0, j � p + 1, . . . , q,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

where x is the decision variable, fi(x) represents the ith
optimization subobjective, and gj(x) and hj(x) represent the
inequality and equality constraints, respectively.

,ere are many equality and inequality constraints in
the microgrid optimization model. How to treat these
constraints directly affects the final optimization results.
,ese constraints can be divided into two categories: unit
level constraints and system level constraints. ,e unit
level constraints are mainly restricted by the physical
limitations of distributed generation unit, which can be
easily addressed by restricting its output power between
the upper and lower limits. System level constraints
mainly include system power balance constraints
(equation (18)) and energy storage system constraints
(equations (22) and (23)), which are directly related to
the spatiotemporal state of decision variables and are
often difficult to deal with.

In order to facilitate calculation, the equality constraints
are transformed into inequality constraints in this paper.
,erefore, the constraint violation (CV) of individual x on
the j-th constraint can be expressed as
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Gj(x) �

max gj(x), 0􏽮 􏽯, 1≤ j≤p,

max hj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − δ, 0􏼚 􏼛, p + 1≤ j≤ q,

⎧⎪⎪⎨

⎪⎪⎩
(25)

where δ is the tolerance parameter of equality constraint,
usually a small positive number. ,erefore, the total con-
straint violation of individual x is

CV � 􏽘

q

j�p+1
Gj(x). (26)

,is paper adopts the constrained domination principle
(CDP) [34], as follows:

(1) Feasible solutions take priority over infeasible
solutions

(2) If both are feasible solutions, the nondominated
solution takes priority

(3) If both are infeasible solutions, the solution with
small constraint violation takes priority

4.3. Multiobjective Decision-Making. In order to improve
the authenticity and feasibility of multiobjective decision-
making and avoid the preference of artificial weight or expert
judgment, the multiobjective grey target decision-making
method based on entropy is adopted to select the optimal
scheme from the Pareto optimal front solution set in this
paper. Considering the influence of correlation, different

dimensions, and important differences among indicators on
decision-making effect, the weighted Markov distance is
used to improve the traditional grey target decision-making
method [35].

Step 1. Initialize the m-dimensional multiobjective decision
matrix.

X � xij􏼐 􏼑
m×n

�

x11 · · · x1n

⋮ ⋱ ⋮

xm1 · · · xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (27)

Step 2. Calculate the weight coefficient of each objective by
entropy weight method.

yij �
xij

􏽐
m
i�1xij

, xij ≥ 0,

Ej � −
1

ln m
􏽘

m

i�1
xij ln yij, Ej > 0,

ωj �
1 − Ej􏼐 􏼑

􏽐
n
j�1 1 − Ej􏼐 􏼑

,

􏽘
m

j�1
ωj � 1.

(28)

Step 3. Normalize the decision matrix.

Result output

Terminate

Start

Set parameters

Yes

Maximum iteration
number reached?

No

Non-inferior stratification of
initial population and calculation
of individual crowding distance

Selection of parents by binary
tournament method

Offspring populations generation
by simulated binary crossover

and polynomial mutation

Retain the elite and form a new
population

Initialize population and
calculate objective function

Merge the parent Population and
child population

Non-inferior stratification of the
new population and calculation of

crowding distance

Figure 2: ,e flowchart of NSGA-II.
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zj �
1
m

􏽘

m

i�1
xij, j � 1, 2, . . . , n,

vij �
xij − zj

max max
1≤i≤m

xij􏽮 􏽯 − zj, zj − min
1≤i≤m

xij􏽮 􏽯􏼚 􏼛

.

(29)

Step 4. Define the bull’s-eye vector.

v0j � min vij|1≤ i≤m􏽮 􏽯, j � 1, 2, . . . , n,

v0 � v01, v
0
2, . . . , v0n􏽮 􏽯.

(30)

Step 5. Calculate the bull’s-eye distance.
According to the grey target theory, the closer the ob-

jective of each solution is to the target centre, the better the
solution is. ,e bull’s-eye distance is

di �

���������������������

vi − v0􏼐 􏼑
T
Ωσ−1Ω vi − v0􏼐 􏼑

􏽲

, (31)

where σ is the sample covariance matrix, Ω is the weight
matrix, and Ω � diag(

���ω1
√

,
���ω2

√
, . . . ,

���ω3
√

).

5. Results and Discussion

5.1. Case Study. In order to verify the effectiveness and
performance of the proposed multiobjective optimal dis-
patch model based on interval optimization, an island
microgrid including PV/WT/WEG/DG/ESS is taken as an
example. ,e optimization model takes into account the
daily dispatch period with one hour as the time interval. In
this study, the proposed optimal dispatch model and the
solving algorithm are developed and simulated in MATLAB
software R2020b. ,e workstation Dell Precision M3800
with Intel (R) Core™ i7-4712HQ is chosen as the computing
platform.

,e hourly forecast load demand is shown in Figure 3.
,e hourly predicted output power of PV, WT, andWEG in
one day is depicted in Figure 4.

,e operating parameters of different generation units
are presented in Table 1. ,e specification of energy storage
system is given in Table 2. ,e pollutant emission and
corresponding penalty coefficient are shown in Table 3. ,e
parameters of the NSGA-II algorithm are set as follows: the
population size is 100, the maximum number of iterations is
1000, and the crossover rate and mutation rate are 1.0 and
0.1, respectively.

5.2. Results’ Analysis. In this paper, the NSGA-II algorithm
is used to realize the interval optimization for the day-ahead
economic optimal operation of island microgrid. On the
basis of the predicted renewable generation and load curve,
three objective Pareto front solutions set are calculated.,en
the optimization results of four schemes are compared,
namely, scheme 1 the lowest economic cost, scheme 2 the
lowest battery cost, scheme 3 the lowest pollutant emission,
and scheme 4 the optimal operation scheme obtained, by

using the grey target decision-making method. Finally, the
multiobjective interval optimization considering load and
renewable generation uncertainties is discussed in detail.
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Figure 4: ,e hourly forecast output of renewable generations.

Table 1: Operating parameters of different generation units.

Type Pr,i
(kW)

CACC,i
($/kW) Ni (year)

KOM,i
($/kWh) ki (%)

PV 300 2.375 20 0.0096 29.34
WT 50 1.2 15 0.0296 22.13
WEG 50 1.2 15 0.0296 22.13
DG 400 1.306 10 0.0880 55.94
ESS 300 2.5 10 0.0648 32.47

Table 2: ,e specification of the energy storage system.

Type SOCmin SOCmax η δ Crep ($/kWh)
Battery 0.4 0.9 0.9 0.01 1000

Table 3: Pollutant emission coefficients of different generation
units.

Type Penalty coefficient ($/kg)
Pollutant emission

(g·kW−1·h−1)
PV WT WEG DG

NOx 10.49 0 0 0 9.89
CO2 0.035 0 0 0 647
SO2 2.47 0 0 0 0.206

Lo
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Figure 3: ,e hourly forecast load demand.
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5.2.1. Deterministic Optimization. ,e three objective Par-
eto front solutions set is obtained by using the above ap-
proach, as shown in Figure 5. It can be seen that, for the
island microgrid, the economic cost is linearly positively
correlated with CO2 emission, and the battery cost is neg-
atively correlated with economic cost. ,erefore, for island
microgrid, there is a multiobjective optimal decision-making
problem between economic cost and battery cost. ,e
multiobjective grey target decision-makingmethod based on
entropy weight is used to obtain the optimal operation
scheme of microgrid from the multiobjective Pareto front
solution set, as shown in Figure 5(a). ,erefore, the opti-
mization results corresponding to the four schemes are
obtained, as shown in Table 4. When the battery cost reaches
the maximum, the economic cost and CO2 emission drop to
the minimum at the same time, which are 2284.01$ and
870.46 kg, respectively. When the economic cost and CO2
emission are the largest, the battery cost is the lowest, which
is 70.91$. Each objective value corresponding to the optimal
scheme is between the maximum and the minimum, which
reflects the idea of tradeoff among multiple objectives.

,e output power curve of each distributed generation
unit corresponding to the optimal operation scheme is
shown in Figure 6. It can be seen that solar resources are
abundant during daytime, the battery will be charged for
about 7 hours until 16 : 00 p.m., and the maximum SOC
will reach 0.9. After discharging during the peak load at
night, the SOC drops to the daily minimum at 21 : 00,
which is about 0.65. ,e SOC at the beginning and the end
in one scheduling period is basically equal, with a dif-
ference of 0.7%, and the SOC value satisfies the con-
straints. Due to the positive correlation between wave
energy and wind speed, the output power of wave energy
generation is consistent with that of wind energy gen-
eration, which proves the effectiveness of the wind speed
and wave prediction model. Because of the high gener-
ation cost of diesel generator, the output power of diesel
generator operates at the minimum economic output
power when the solar irradiation is strong in the daytime
and the load valley in the early morning, and the output
power fluctuation of diesel generator is small throughout
the whole day. ,e smooth output of diesel generator is
advantageous to ease the mechanical wear of diesel
generator and reduce the operation expenses of the whole
system. At the same time, the optimal economic operation
of microgrid is achieved by using the electricity trans-
ferability of energy storage system.

5.2.2. Renewable Energy under Uncertainty. ,e maximum
fluctuation of renewable energy is ±20% in [23]. Considering
that the meteorological conditions on island are more
changeable than those on mainland, the maximum fluctu-
ation is selected as ±30% in this paper. Assuming that the
load curve is determined, the fluctuations of wind speed and
solar irradiation based on the forecast data are ±10%, ±20%,
and ±30%, respectively. ,e influence of renewable gener-
ation uncertainty on the multiobjective operation optimi-
zation of microgrid is analysed. ,e multiobjective Pareto

front is shown in Figure 7, and the interval values corre-
sponding to each objective are shown in Table 5.

,e interval width of economic cost and battery cost
corresponding to renewable energy output greater than the
predicted values is larger than that of renewable energy
output less than the forecast data, which is more favourable
to optimal dispatching between diesel generator and energy
storage system. When the output power of renewable energy
is less than the predicted values, the maximum value of
economic cost and CO2 emission rises with the increase of
the fluctuation of renewable generation, but the battery cost
decreases. ,e reason is that, with the increase of the vol-
atility of renewable generation, the net power (P−

NET(t) �

P−
PV(t) + P−

WT(t) + P−
WEG(t) − PLoad(t)) of the microgrid

system decreases, and the diesel generator needs to generate
more electricity to balance the power shortage of the whole
system. Consequently, the economic cost and CO2 emission
increase. Consider that the economic cost of diesel generator
is greater than that of renewable generation. ,e system has
no excess net power need to be stored by energy storage
battery. ,erefore, the battery cost reduces. At this time, it is
necessary to meet the load demand as much as possible, and
the space for system operation optimization is small.

When the output power of renewable generation is
greater than the forecast data, the net power (P+

NET(t) �

P+
PV(t) + P+

WT(t) + P+
WEG(t) − PLoad(t)) of the system rises

with the increase of the fluctuation of renewable energy. ,e
more the net power is the better the time-shifting capacity of
the energy storage system can be used to realize the “peak
shaving and valley filling” of the whole microgrid system.
,erefore, the maximum cost and interval width of energy
storage system increase significantly, while the economic
cost and CO2 emission decrease.

At the same time, it can also be found that parts of the
Pareto front of renewable energy fluctuation of +10% and
+20% are completely overlapped. Due to the charging
and discharging cost of battery is lower than that of diesel
generator, the energy storage system absorbs more low-
cost renewable generation and releases electric energy to
the microgrid system during the peak load. While there is
more excess of renewable energy, the energy storage
system cannot fully absorb the surplus renewable gen-
eration completely. When the fluctuation of renewable
energy reaches +30%, the wind and solar abandoning is
more serious. Finally, the interval width of renewable
energy fluctuation −10% intersects with +10% and +20%,
which just reflects the impact of uncertainties on the
multiobjective operation optimization of the microgrid
system.

5.2.3. Load under Uncertainty. Due to the influence of
weather, holidays, and living habits, there is often a de-
viation between the predicted load curves and the actual
ones. Assuming that the renewable generation outputs
power according to the forecast data, the fluctuation of load
curve based on the predicted value is ±10% and ±20%,
respectively. ,e impact of load fluctuation on microgrid
operation optimization is discussed, and the multiobjective
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Pareto front is shown in Figure 8. ,e interval values
corresponding to each objective are shown in Table 6. It can
be seen that the larger the load fluctuation is, the smaller
the interval width corresponding to economic cost, CO2
emission, and battery cost is, that is, the more stable each
objective is. As the load increases from −20% to +20%, the
maximum value of economic cost and CO2 emission be-
comes larger and larger, and the maximum value of battery
cost becomes smaller and smaller. ,is reflects the am-
plitude and direction of load fluctuation based on the
predicted data will have an important influence on the
optimal operation of microgrid.

5.2.4. Computational Efficiency Analysis. In order to
evaluate the computational efficiency of the proposed
method, the simulation for different scenarios runs 100
times, and the minimum, maximum, and average value of
calculation time are obtained, as demonstrated in Table 7.
In each simulation, the NSGA-II algorithm has a pop-
ulation size of 100, and the simulation iterates 1000 times
at each run.

From Table 7, the average calculation time of deter-
ministic optimization is just 11.77 seconds. Due to the
consideration of uncertainties, the computation cost in-
creases significantly but still does not exceed 30 seconds.

200
180

160
140

120
100

80 60

Battery cost ($
)Economic cost ($)

CO
2 e

m
iss

io
n 

(k
g)

1100

1050

950

1000

900

850
2250

2300
2350

2400
2450

2500
2550

2600

(a)

2250 2300 2350 2400 2450 2500 2550 2600

Ba
tte

ry
 co

st 
($

)

Economic cost ($)

60

80

100

120

140

160

180

200

(b)

CO
2 e

m
iss

io
n 

(k
g)

850

900

950

1000

1050

1100

80 100 120 140 160 180 20060

Battery cost ($)

(c)

2250

2300

2350

2400

2450

2500

2550

2600

Ec
on

om
ic

 co
st 

($
)

900 950 1000 1050 1100850

CO2 emission (kg)

(d)

Figure 5: ,e multiobjective Pareto front solution set. (a) Triple-objective Pareto front. (b) Pareto front of economic cost and battery cost.
(c) Pareto front of battery cost and CO2 emission. (d) Pareto front of CO2 emission and economic cost.

Table 4: Costs and CO2 emission of different schemes.

Scheme Economic cost Battery cost CO2 emission
,e minimum of economic cost 2284.01 195.39 870.46
,e minimum of battery cost 2573.18 70.91 1067.57
,e minimum of CO2 emission 2284.01 195.39 870.46
,e optimal scheme 2443.44 88.59 979.14
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Figure 7: ,e multiobjective Pareto front of renewable energy under uncertainty. (a) ,e triple-objective Pareto front. (b) ,e Pareto front
of economic cost and battery cost.

Table 5: ,e multiobjective optimization interval of renewable energy under uncertainty.

Fluctuation rate (%) Economic cost Battery cost CO2 emission
−10 [2406.22, 2560.66] [108.81, 175.44] [959.48, 1064.76]
+10 [2211.60, 2462.13] [103.86, 245.51] [817.95, 988.72]
−20 [2506.30, 2614.36] [65.49, 103.43] [1031.78, 1105.43]
+20 [2209.75, 2404.60] [112.14, 252.66] [812.66, 945.48]
−30 [2506.30, 2614.36] [65.49, 103.43] [1031.78, 1105.43]
+30 [2209.75, 2404.60] [112.14, 252.66] [812.66, 945.48]
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,erefore, we can draw a conclusion: the computational
efficiency of the proposed approach can meet the real-time
requirements of the microgrid operation optimization.

6. Conclusions

With the increased penetration of renewable generation, the
uncertainties caused by renewable generation and load have
gained more and more attention in operation and energy
management for an isolated microgrid. In this paper, an
optimal dispatch model for island microgrid incorporating
multiobjective operation optimization and interval uncer-
tainties is proposed. ,e modelling process is easy to im-
plement and the model has fewer parameters. ,e
multiobjective interval optimization results can directly
present the distribution interval of multiple objectives,
which is convenient for operators to evaluate the influence
caused by renewable generation and load uncertainties. A

multiobjective optimization objective function to minimize
the economic cost, battery cost, and pollutant emission of an
island microgrid is established, in which the battery cost is
regarded as a separate optimization objective. An improved
multiobjective grey target decision-making method is put
forward to realize the tradeoff between economic cost and
battery cost. ,e computational efficiency of the proposed
approach satisfies the real-time requirements of the
microgrid operation optimization.

In the future work, we will use historical data of re-
newable resources to analyse correlations of their uncer-
tainties and establish the correlation model of different
uncertainties and also select the most suitable algorithm for
solving the multiobjective optimization model based on
interval uncertainty proposed in this paper by study the
performance of different multiobjective optimization algo-
rithms. ,is could further improve the optimal operation of
microgrids and enhance the utilization of renewable energy.
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Figure 8: ,e multiobjective Pareto front of load under uncertainty. (a) ,e triple-objective Pareto front. (b) ,e Pareto front of economic
cost and battery cost.

Table 6: ,e multiobjective optimization interval of load under uncertainty.

Fluctuation rate (%) Economic cost Battery cost CO2 emission
−10 [2022.86, 2277.26] [97.70, 276.01] [735.66, 919.92]
+10 [2395.93, 2575.24] [66.76, 121.43] [1005.85, 1135.71]
−20 [1985.47, 2150.34] [132.87, 271.25] [708.60, 828.00]
+20 [2580.03, 2706.92] [66.96, 88.14] [1139.18, 1231.07]

Table 7: Calculation time of the proposed approach.

Scenarios
Time (s)

Minimum Maximum Average
Deterministic optimization 10.86 12.86 11.77
Renewable energy under uncertainty 28.79 31.01 29.93
Load under uncertainty 29.15 30.16 29.63
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