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Deep learning technology provides novel solutions for localization in complex scenarios. Conventional methods generally suffer
from performance loss in the long-distance over-the-horizon (OTH) scenario due to uncertain ionospheric conditions. To
overcome the adverse effects of the unknown and complex ionosphere on positioning, we propose a deep learning positioning
method based on multistation received signals and bidirectional long short-term memory (BiLSTM) network framework (SL-
BiLSTM), which refines position information from signal data. Specifically, we first obtain the form of the network input by
constructing the received signal model. Second, the proposedmethod is developed to predict target positions using an SL-BiLSTM
network, consisting of three BiLSTM layers, a maxout layer, a fully connected layer, and a regression layer. *en, we discuss two
regularization techniques of dropout and randomization which are mainly adopted to prevent network overfitting. Simulations of
OTH localization are conducted to examine the performance. *e parameters of the network have been trained properly
according to the scenario. Finally, the experimental results show that the proposed method can significantly improve the accuracy
of OTH positioning at low SNR. When the number of training locations increases to 200, the positioning result of SL-BiLSTM is
closest to CRLB at high SNR.

1. Introduction

High-precision location of the over-the-horizon (OTH)
target is a critical issue in the fields of space target sur-
veillance and navigation. Although wireless localization
theories and methods have made great progress in recent
years, there are still many challenging problems existing
in OTH scenarios [1]. *e existing passive localization
algorithm is mainly classified into two modes [2–6], two-
step and direct positioning algorithms. Azimuth of arrival
(AOA), time difference of arrival (TDOA), frequency
difference of arrival (FDOA), and multiparameter joint
estimation methods are two-step positioning mode. Two-
step positioning methods based on the second-level in-
formation fusion inevitably have information loss. *e
location precision is strictly limited by the accuracy and
matching degree of measuring parameters. Another type

of algorithm is direct position determination (DPD)
[7–11], which overcomes the shortcomings in two-step
position methods and significantly improves positioning
performance under low signal-noise ratio conditions. By
establishing the received signal model, DPD obtains in-
formation directly from the signal data according to the
maximum likelihood criterion. DPD can also integrate
channel information (such as ionospheric structure) into
the position estimation model [12]. However, the actual
OTH scene is extremely complicated, and the shortwave
communication often relies on ionospheric reflection,
resulting in a serious decrease in location precision [7, 12].
Uncertain ionospheric conditions and lower signal-noise
ratio make it difficult for the existing position algorithms
to model complex channel scenes. *us, OTH positioning
still faces huge challenges even with current advanced
DPD algorithms.
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Meanwhile, deep learning technology [13] developed
rapidly and had achieved effects comparable to humans in
image recognition [14], speech, and natural language pro-
cessing [15, 16]. Deep neural networks, such as convolu-
tional neural networks (CNN) and long short-term memory
(LSTM) [17], have a high degree of nonlinearity and in-
formation fusion capabilities. Deep learning technology
provides new solutions to solve the localization problem in
complex scenarios. On the one hand, the complex envi-
ronment of indoor localization has greatly promoted the
application and research of deep learning technology in
indoor localization [18–21]. Recently, some fingerprint in-
door positioning methods with deep learning [22, 23] are
proposed to solve the multipath fading effect. In 2020, Zhou
et al. [24] proposed to combine the backpropagation neural
network (BPNN) and adaptive genetic algorithm (AGA)
with CSI tensor decomposition for indoor Wi-Fi fingerprint
localization. On the other hand, scholars also begin to utilize
some deep learning methods for outdoor large-scale sensor
network positioning [22], passive localization [23, 24], and
target tracking [25–27]. Especially when solving the local-
ization problems under many nonideal scenarios, which are
difficult for traditional methods to handle, deep learning
methods show great advantages [28]. However, there is
currently no research on deep learning methods suitable for
OTH positioning. Owing to the powerful ability of LSTM in
handling sequential data and capturing temporal depen-
dencies, we propose an SL-BiLSTM for long-distance OTH
positioning, which is a deep learning structure. In contrast to
the DPD algorithm [7–11], our SL-BiLSTM algorithm can
directly predict the position without any information of the
signal path once it has been well trained.

*e rest of this paper is organized in the following
manner: in Section 2, we build the received signal model of
the OTH target and get the appropriate data form to input
into the network. In Section 3, the SL-BiLSTM network is
constructed to learn the localization features from signal
data based on the bidirectional LSTM structure. We utilize
two regularization methods to avoid network overfitting and
give a summary of our method. In Section 4, we build the
simulation scenario of OTH positioning to get signal data for
network learning. Hyperparameters and the number of
training locations are discussed to train our model. *en, a
comparison between traditional methods, DPD, and the
proposed SL-BiLSTM is investigated. Finally, our work is
summarized in Section 5.

2. The Received Signal Model of OTH Target

*e multiarray passive location of the OTH target is pre-
sented in Figure 1. *e antenna arrays of multiple receiving
stations receive signals and transmit the signal data to the
central station. *e central station combines the signals
received by each station and the prior observation infor-
mation of the ionosphere to directly estimate the target
position. OTH positioning has the characteristics of non-
line-of-sight and long target distance, which is mainly re-
alized by shortwave communication and ionosphere re-
flection. To simplify the model, the positioning model in this

paper only considers the influence of ionospheric virtual
heights on the signal propagation path, assuming that the
geometric structure of the signal reflected by the ionosphere
is symmetrical.

Consider a transmitter and L base stations intercepting
the transmitted signal. Each base station is equipped with an
antenna array composed of M elements. In this paper, we
mainly consider an X-Y plane coordinate of localization.
*us, the two-dimensional coordinates of target position
and lth base station position are defined as p � [x0, y0]

T and
ql � [xl, yl]

T. *e signal observed by the lth base station
array is given by

rl(t) � al(p)Ol(p)s t − t0(  + nl(t), 0≤ t≤T, (1)

where rl(t) is a time-dependent M × 1 vector, al(p) is the lth
array response to a signal transmitted from position p,Ol(p)

is a complex matrix representing the channel effect, and
s(t − t0) is the signal waveform, transmitted at time t0. *e
vector nl(t) represents noise and interference, including
multipath observed by the array. T presents the length of
observing time. *e sampled version of the signal in (1) is
given by

rl(k) � al(p)Ol(p)s(k) + nl(k), 0≤ k≤Ns − 1, (2)

sl(k) � s t − t0( |t�kT, (3)

rl(k) � rl(t)|t�kT, (4)

nl(k) � nl(t)|t�kT. (5)

*e received data of each station can be combined into a
matrix:

r(k) � rT
1 (k), rT

2 (k), . . . , rT
l (k) 

T
. (6)

*en, the discrete Fourier transform (DFT) of the signal
in (2) is given by

rl(j) � al(p)Ol(j)s(j)e
− iωjt0 + nl(j), j � 1, 2, . . . , J,

(7)

where j � 1, 2, . . . , J indicates the DFT coefficient of the
corresponding time samples. We assume that the propa-
gation path of electromagnetic waves is mainly affected by
ionospheric virtual heights at reflection points [12].
*erefore, the channel effect Ol(p) which is mainly com-
posed of signal transmission delay and attenuation can be
calculated as

Ol(j) � ble
− iωjτl(p,h)

, (8)

where bl is an unknown complex scalar representing the
attenuation related to the lth base station, τl(p,h) is the lth
station signal delay transmitted from position p, and h �

[h1, h2, . . . , hl]
T is the unknown ionospheric virtual heights

at reflection points. It is well known that the distribution of
the ionosphere is related to the spatial position. In this paper,
we define hl � f(plr) � f(xlr, ylr), where plr � [xlr, ylr]

T is
the coordinate reflection point, and f(·) is the nonlinear
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mapping from space position to ionospheric virtual height.
We set T≫ max τl(p,h)  to ensure a reasonable range of
time delay estimation.

Define the vectors:

Al(j) � blal(p)e
− iωjτl(p,h)

� F(j, p, h)Z,

F(j) � diag aT
1 (p)e

− iωjτ1(p,h)
, . . . , aT

L (p)e
− iωjτL(p,h)

 ,

s(j) � s(j)e
− iωjt0 ,

b � b1, b2, . . . , bL 
T
,

Z � IL×L ⊗ 1M×1,

(9)

where ⊗ represents the Kronecker product, IL×L represents
the unit matrix of size L× L, and 1M×1 is M column vector
whose elements are all one. We can rewrite (7) as

rl(j) � A(j)bs(j) + n(j), j � 1, 2, . . . , J. (10)

*en, the received data of each station can be combined
into a matrix:

r(j) � r
T
1 (j), r

T
2 (j), . . . , r

T
l (j) 

T
. (11)

*e next step is to determine the probable location
information of the Q radio sources from r(j). If we
assume that the virtual height h of the ionosphere is
known, the Cramér–Rao lower bound (CRLB) of the
conventional DPD algorithm is provided in [7, 12].
However, ionospheric parameters including virtual
height distribution are uncertain and changeable, so we
need highly nonlinear algorithms to handle the locali-
zation of complex scenes.

3. Proposed Location Method

3.1. Signal-Based Localization BiLSTM. Since LSTM has the
powerful ability in handling sequential data and capturing
temporal dependencies in data, it has been successfully
applied in many applications [29–31]. In this paper, we
utilize a BiLSTM network based on signal data for the OTH
target localization. A standard structure of BiLSTM can be

found in Figure 2, and the architecture of LSTM is for-
mulated as follows:

ik � σ Wixk + Qihk−1 + bi( ,

fk � σ Wfxk + Qfhk−1 + bf ,

ok � σ Woxk + Qohk−1 + bo( ,

θk � tanh Wgxk + Qghk−1 + bg ,

ck � fk ∘ ck−1 + ik ∘ θk,

hk � ok ∘ tanh ck( ,

(12)

where ◦ denotes Hadamard product, tanh is the hyperbolic
tangent function, and xk is the input vector.
Wm,Qm, bm(m ∈ i, f, o, g ) are learnable parameters. *e
output of LSTM at time k is hk.

Location features of OTH targets are difficult to model
and have high complexity. *e received signal segments
from each base station at their specific location can be
treated as data with complex position feature distribution
and multiple noises. Our proposed architecture of SL-
BiLSTM is shown in Table 1, which is developed with a
BiLSTM encoder (including three BiLSTM layers and a
maxout layer [32]), a fully connected layer, and a regression
layer. Received signal segments are fed into the BiLSTM
encoder to obtain the high-level encoding for the localiza-
tion feature. *e fully connected layer and linear regression
layer are utilized to estimate final target positions. To learn
the target position from the complex data, a large amount of
signal data from different positions is required.

Under the same assumption as [7, 12] that the signal
waveform is known to the receivers, we consider the
problem of OTH localization as learning the mapping from
received signal segments X � ri(t) 

n

i�1 to the target location
Y � (xi

0, yi
0) 

n

i�1. In our model, X are the T long signal
segments of L base stations. As shown in Figure 1, we
compute r(k) as equation (6) of these signal segments and
use both their real and imaginary parts as the network input.
*rough the SL-BiLSTM encoder and regression layer, we
can get the predicted coordinates of target locations
pi � (xi

0, yi
0). *en, we calculate the mean square errors of
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Figure 1: *e multiarray passive location of the OTH target.
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the predicted locations and the true locations of training
samples and backpropagate the prediction loss to update our
SL-BiLSTM parameters. *e prediction loss is calculated as

LY(X, Y) � FY(X) − Y
����

����
2
2, (13)

where FY(X) � FY(ri(t), Wb, Wr) and Wb, Wr are the
weight of BiLSTM and regression layer. We adopt an op-
timization method named Adam [33] to calculate the
adaptive learning rate of network parameters Wb and Wr

and then optimize the parameters on the objective function:

Wb, Wr  � arg min
Wb, Wr

LY(X, Y). (14)

Specifically, assuming that θt is the parameter of the
network and gt is the corresponding gradient, Adam al-
gorithm gets the updating θt+1 as

αt � λ1αt−1 + 1 − λ1( gt,

βt � λ2βt−1 + 1 − λ2( g
2
t ,

αt �
αt

1 − λ1( 
,

βt �
βt

1 − λ2( 
,

θt+1 � θt +
c

��
βt


+ ε

αt,

(15)

where αt and βt are the first and second moments of the
gradient, respectively; c is the learning rate; and λ1, λ2, and ε are
set to be 0.9, 0.999, and 10− 8, respectively. In this paper, we
select the step declining learning rate (StepLR) as our learning
rate reduction strategies with an initial learning rate c.

3.2. Regularization Methods. Deep networks often become
overfitting, especially in regression problems where the
number of training samples is limited. To obtain a robust

network that avoids overfitting the training data, appropriate
regularization methods are essential [34]. In this paper,
techniques of dropout and randomization are mainly
adopted to prevent overfitting.

3.2.1. Dropout Layers. First, we adopt two dropout layers
after the last layer of the LSTM and the fully connected layer,
respectively. In the dropout layer, parts of the neuron are
randomly masked with a certain probability during each
round of parameter update. Assuming that the dropout
probability is pd and wi is the node weight during round i,
the output zi at (l + 1) th layer during the training process
can be expressed as

z
(l+1)
i � w(l+1)

i ri ∗y
(l)
i  + b

(l+1)
i , (16)

where ri ∼ Bernoulli(pd), y(l)
i is the output of the previous

layer, and b
(l+1)
i is the network bias parameter. To achieve

better generalizability for coordinate regression, the dropout
rate is increased from 0.1 to 0.6. *e maxout layer is also a
dropout method which deletes a part of the network that is
not sensitive to the input data to reduce the risk of
overfitting.

3.2.2. Sample Randomization. Second, since the number of
training samples in actual scenes is limited, the distri-
bution characteristics of training samples that are not
related to the localization scene may also cause overfitting.
For example, we cannot directly apply the grid points in
the area as training samples, because this will cause the
neural network to overlearn “on-grid” as one of the lo-
cation features. *erefore, we uniformly randomize the
positions of the training samples in the target area. *e
specific operation is illustrated in Figure 3. We divide the
normalized area evenly (gray line) according to the
predetermined sample number and then randomly select
the training sample position (blue dots) within the divided
subregions. *is regularization method not only ensures
the adaptability of the network to the entire positioning
area but also avoids the overfitting problem caused by the
limited training samples.

We take It target emission source location as training
samples (blue dots) to train our network, and randomly
generate Iv validation samples (red circles) to verify the
network convergence performance. Finally, 100 Monte
Carlo simulation experiments were performed under several
SNR conditions at five test positions (red asterisks).

Input

BiLSTM layer

Time sampling

r (k – 1) r (k) r (k + 1)

BSl BSl BSl

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

H1 (k – 1) H1 (k + 1)H1 (k)

Figure 2: Structure of the standard BiLSTM. BSl: lth base station.
H1(k): the output of the first BiLSTM layer.

Table 1: Network structure of SL-BiLSTM.

Name Configuration
Input layer Initial size: M × L, length: Ns
BiLSTM Block 1 Hidden size: 256, dropout: 0.2, length: Ns
BiLSTM Block 2 Hidden size: 256, dropout: 0.2, length: Ns
BiLSTM Block 2 Hidden size: 512, dropout: 0.2, length: Ns
Maxout layer Output size: 128, sigmoid, dropout: 0.2
FCL layer Output size: 64, sigmoid, dropout: 0.5
Output layer Output size: 2, linear
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3.3. Summary. Based on the OTH localization model, our
SL-BiLSTM is summarized in Algorithm 1. We first create
two different datasets to train and update our network which
can directly output the predicted location once well-trained.

4. Experiments

In order to examine the method’s performance and compare
it with existing approaches, we perform extensive Monte
Carlo simulations. Since the OTH localization problem is
related to the ionosphere, traditional localization systems
usually utilize the multistation direction finding and in-
tersection method for positioning. *us, AOA and DPD
methods based on the MUSIC algorithm [2, 11] and the
OTH DPD (ODPD) [7, 12] method with fixed virtual height
hypothesis are selected for performance comparison.We use
machines equipped with Intel Core i7CPU, 32GB RAM, and
NVIDIA GeForce RTX 2080Ti GPUs to train our model and
complete simulation experiments.

4.1. Simulation Scenarios. Consider three base stations
placed at three corners of 2000 km× 2000 km square as
shown in Figure 4, and their coordinates are shown in Table
2. Each base station is equipped with a circular array of nine
antenna elements. *e radius of the array is set at one
wavelength. *e OTH target area is 1000 km× 1000 km
square. As shown in Table 2, these 5 test locations are not the
same as the 100 locations (denoted as training locations with
labels 1, 2, . . . , 100 in Table 2 and Figure 3) in the training
dataset and the coordinates are accurate to two decimal
places to ensure high-precision positioning capability.

*e actual distribution of the ionosphere changes with
time and geographic location. In this scenario, we ignore
time-varying effects and the influence of the Earth sphere.
Conventional methods often assume that the ionospheric
virtual height is a known constant, which increases the
positioning error. Without loss of generality, we use the
DCT low-dimensional coefficients of a random matrix
(uniformly distributed in [160 km, 240 km]) to simulate the
spatial distribution of the ionospheric virtual height, as
shown in Figure 5. Since the reflection point is difficult to
measure, we assume that the reflection is geometrically
symmetric to simplify the model. *en, we consider the
situation that the propagation path of the signal through the
ionosphere is only affected by ionospheric virtual heights at
reflection points. *us, ionospheric virtual height can be
written as hl � fc(plr) � fc[(p + ql)/2]. *e emission signal
is an 8PSK signal with a known waveform, the sampling
frequency is 1MHz with ten times of sampling per symbol.
*e number of signal samples per position is 100. Each
location prediction is based on 64 times of samples of the
signal. *e path-loss attenuation magnitude is set to be
normal distribution (mean� 1, STD� 0.1) with phase uni-
formly distributed in [−π, π]. *en, we can calculate the
received signal waveformmatrix of the corresponding target
position according to the model in Section 2 as the network
input data. We combine all the position labels and the
corresponding received waveform data to finally form the
dataset required for network training. We utilize the root
mean square error (RMSE) of the target positioning ob-
tained by the Monte Carlo experiment to measure the lo-
calization performances:

RMSE �

������������

1
N



N

i�1
pi − p

����
����
2
2




. (17)

4.2. Discussion on Training Hyperparameters. In this sub-
section, we discuss the training hyperparameters, including
the learning rate, batch size, dropout rate, and training loss
threshold. Appropriate hyperparameters will improve net-
work convergence performance to a certain extent. *e
method of selecting network hyperparameters is usually
based on data characteristics and empirical. In this paper,
considering the data dimension and network scale, we first
adjust the batch sizes and the corresponding learning rate
(initial rate and delay step) according to the training loss.
*en, we adjust the dropout rate from 0 to 0.5 according to
the validation loss to avoid the network from falling into
overfitting.

In the entire training procedure, different hyper-
parameters are used to train the network. Both 64 and 128
are suitable batch sizes. Considering the GPU parallel effi-
ciency and learning rate decay strategy, Nb � 128 is finally
selected. In addition, if the initial learning rate is too large or
too small, it maymake it difficult for the network to converge
to the best result. After multiple sets of parameters
debugging, we finally select 0.001 as the initial learning rate.

1

0.9

0.7

0.3

0.3

0.2

0.2

0.1

0.1

0.4

0.4

0.5
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Figure 3: Training samples, validation samples, and test samples in
the normalized target area. *e dotted lines indicate the division of
subregions, the blue dots indicate the location of training samples,
the red circles indicate the location of validation samples, and the
red asterisks indicate the location of test samples.
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Finally, increasing the dropout rate to 0.5 can effectively
avoid network overfitting and the loss of validation data
gradually converges. *e five sets of parameters and cor-
responding network losses are given in Table 3, where pa-
rameter (d) is set as the final parameter. We use machines
equipped with NVIDIA GeForce RTX 2080 Ti GPUs to train
our model.

4.3. ExperimentalResults andDiscussions. In this subsection,
we evaluate the performance of our method through the
experimental results ofNM � 100 Monte Carlo simulations
at 5 testing target locations. First, Figure 5 shows the pre-
dicted locations of 5 testing targets for 100 experiments and
their RMSE at SNR 10 dB, and the corresponding CDF
curves of localization error are shown in Figure 6. *en, we

Input: *e received signals Xt � ri(t) 
It

i�1, Xv � ri(t) 
Iv

i�1, Yt � (xi
0, yi

0) 
It

i�1, Yv � (xi
0, yi

0) 
Iv

i�1.
Initialize: Learning rate c, decline step d, training batch size Nb, maximum train epoch 500; the initial state (h0

l , c0l ) of LSTM is (0, 0);
and network weight W0 is zeros;

(1) Dataset creation: Training dataset Dt(data, label) � Xt, Yt , validation dataset Dv(data, label) � Xv, Yv .
(2) for each epoch do
(3) for batch indexk(Xk

t , Yk
t ) in Dt

(4) pk=SL-BiLSTM(Xk
t ; Wk− 1).

(5) LYt
(Xk

t , Yk
t ) � ‖pk − Yk

t ‖
2
2.

(6) Update Wk←Adma(Wk− 1 + (c/
��
β


+ ε)α).

(7) end for
(8) Evaluate network performance on Dv(data, label) � Xv, Yv 

(9) for Xv, Yv in Dv

(10) LYv
(Xv, Yv) � ‖SLBiLSTM(Xv; W) − Yv‖22

(11) end for
(12) end for
Output: Training and validation loss and network weights W.
Test: New received signals X � ri(j) 

N

i�1 from positions Y � (xi
0, yi

0) 
N

i�1. *e predicted locations are p 
N

i�1 � SLBiLSTM(X; W).

ALGORITHM 1: SL-BiLSTM for OTH localization.
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Figure 4: Geometry diagram of the OTH localization scenario and the target area.

Table 2: Configuration of base stations, training locations, and test locations.

BS 1 2 3
X(km) 0 0 2000
Y(km) 0 2000 0
Training 1 2 3 · · · 99 100
X(km) 1065.87 1070.35 1043.12 · · · 1972.30 1909.17
Y(km) 1036.99 1109.90 1253.71 · · · 1827.53 1921.63
Test A B C D E
X(km) 1500 1150.25 1640.75 1250.25 1720.50
Y(km) 1500 1610.50 1770.25 1270.75 1260.50
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select several SNR values between −10 dB and 10 dB. At each
SNR value, we conducted 100 experiments on target A to
obtain the performance statistics of our proposedmethod. In

traditional positioning systems, the OTH problem usually
adopts the method of multistation direction finding and
intersection. *erefore, we select the following different
approaches for performance comparison: AOA estimation
based on MUSIC algorithm, MUSIC-DPD, ML-DPD, and
ODPD [11, 12]. *e comparison curve of the localization
RMSE performance of the above-mentioned methods is
shown in Figure 7.

Figures 5 and 6 indicate that although the locali-
zation accuracy of different geometric positions is dif-
ferent, the results of 100 location experiments on five
test targets are still stable. Target B has the highest
accuracy, with 50% and 80% localization errors within
8.57 km and 12.54 km, respectively. Location accuracy of
target D is relatively low, and 50% and 80% localization
errors are within 11.13 km and 16.96 km. *e plots in
Figure 7 indicate that SL-BiLSTM is superior to AOA,
MUSIC-DPD, ML-DPD, and ODPD, especially at low
SNR. Owing to the uncertainty of ionospheric distri-
bution, all methods fail to reach the theoretical level
even at high SNR.

To adapt to complex situations that are difficult to model
by conventional mathematical methods, deep learning
models often need a large number of parameters and gra-
dient calculations, which makes the training process take
more time. However, the training process of deep learning
models is generally completed offline, and the trained model
can be directly used for online positioning tasks. *e
comparison results of the online positioning time com-
plexity of 100 Monte Carlo experiments are given in Table 4.
*e results show that the well-trained SL-BiLSTM model is
significantly faster than other methods when performing
online positioning.

4.4. Impact of theNumber ofTrainingLocations. *e network
performance depends on the training dataset to a certain
extent. In this paper, the impact of the dataset is mainly
reflected in the number and distribution of training loca-
tions. *erefore, we further study the influence of the
number of training locations on the positioning accuracy in
the target area in Figure 5.*e localization RMSE varies with
SNR, corresponding to the number of training locations 50,
100, and 200, shown in Figure 8.

*e experimental results show that, as training positions
increase, the positioning accuracy increases accordingly.*e
performance advantage of the proposed method is more
obvious at low SNR.When training locations are insufficient
such as the number of 50, the network performance does not
reach the desired accuracy even at a high SNR. In addition,
training locations represent the global reference of the entire
area, while the accuracy of different locations is different.
Using global reference data to estimate a single target may
lose part of the local accuracy. Choosing appropriate ref-
erence locations according to actual scenarios is also one of
the issues that worth further researching. In summary, SL-
BiLSTM can learn complex channel features from signal data
after proper training and finally give more accurate location
predictions.

Table 3: Configuration of base stations, training locations, and test
locations.

Parameters (a) (b) (c) (d) (e)
Nb 64 64 128 128 200
c 0.0001 0.001 0.001 0.001 0.001
d 50 50 20 20 20
pd 0 0.2 0.2 0.5 0.5
Training epoch 500 500 500 400 400
Training loss 0.05379 0.03940 0.03581 0.03581 0.03547
Validation loss 0.12884 0.06163 0.07201 0.03616 0.03624
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Figure 5: Predicted locations of five testing targets for 100 ex-
periments and their RMSE at SNR 10 dB.
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Figure 6: CDF curves of localization error using the proposed SL-
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E).
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5. Conclusions

In this paper, a deep learning method for OTH positioning
called SL-BiLSTM was proposed. *e proposed SL-BiLSTM
encodes location features in signal data based on BiLSTM
structure and obtains a position estimationmodel by training on
reference locations.*e number of reference positions is limited
in practical applications. We utilize regularization methods to
solve the network overfitting caused by these limitations. Sim-
ulation experiments verify that SL-BiLSTM has higher posi-
tioning accuracy in OTH scenarios, while conventional
localization methods generally suffer performance losses.

Our work provides a novel method and experimental
basis for long-distance OTH positioning. *ere are still
many points worthy of further study, such as how to choose
as few reference locations as possible to achieve high ac-
curacy. *e experimental results further also illustrate that
deep learningmethods have obvious advantages especially in
complex scenarios that cannot be modelled.

*e deep learning method is affected by the scene data,
so in the application with the proposed method, we need to
consider different OTH positioning problems with different
distributions of the ionosphere. When the ionosphere dis-
tribution is significantly different, the model will need more
data to be further adjusted. In addition, since the ionosphere
distribution will change with time, to improve the gener-
alization performance of our SL-BiLSTM network, data with
sufficient observation time and improved models are

required for sufficient pretraining of the network, which is a
promising direction for future work.
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