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We established a mathematical model based on the sense of biological survey in the �eld of agriculture and introduced various
control methods on how to prevent the crops from destructive pests. Basically, there are two main stages in the life cycle of natural
enemies like insects: mature and immature. Here, we construct a food chain model of plant pest natural enemy. In natural
enemies, there are two stages of construction. Also, we consider three classes of diseases in the pest population, namely,
susceptible, exposed, and infectious in this proposed work. In order to categorize the consideredmodels into the class of Impulsive
Di�erential Equations (IDEs), in our study, we speci�cally consider two ecosystems, which de�ne the impact of control
mechanisms on the impulsive releasing of virus particle natural enemies and infectious pests at particular time. Additionally, the
importance of spraying virus particles in pest control is discussed; then, we obtain two types of periodic solutions for the system,
namely, plant pest extinction and pest extinction. By utilizing the small amplitude perturbation techniques and Floquet theory of
the impulsive equation, we obtain the local stability of both periodic solutions. Moreover, the comparison technique of IDE shows
the su�cient conditions for the global attractivity of a pest extinction periodic solution. With the assistance of the comparison
results, we draw a numerical calculation for the addressed models. Finally, we extend the study of the two models for pest
management models: with and without the existence of virus particle.

1. Introduction

Of late, it has been of immense interest to inspect the dy-
namical properties of impulsive perturbations on population
models. In the �eld of agriculture, the main problem faced
by farmers is to �nd an e�ective pest control method.
Numerous methods like physical, chemical control or bio-
logical methods can be used to control pests. It is widely
acknowledged that pest is a destructive insect and its surge

a�ects economic as well as ecological problems critically
[1, 2]. Evidence demonstrates that annually the pests induce
25% shrinkage in rice, 30% in pulses, 5 − 10% in wheat, 20%
in sugar cane, 35% in oil seeds, and 50% in the case of cotton
[3]. One of the most important population models is the
predator-prey system, which has been discussed by various
authors. Acknowledging the predatory-prey model (stock-
ing or harvesting) is essential, as it comprises human actions.
Human action invariably happens instantaneously or in a
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short time. -en, we reintegrate an impulsive perturbation
after detaching the action of humans and models. -ese
human models are based on short-term perturbations
which are generally in the structure of IDE in the modeling.
-erefore, IDEs give instinctive descriptions of similar
systems [4]. Various illustrations are provided by Bainov
[5]: relating impulsive vaccination [6], impulsive birth
[7, 8], population ecology [9, 10], and chemotherapeutic
treatment of disease [11–13]. While considering plant
preservation, we affix considerable emphasis to managing
insect pest systems and diseases biologically, depending on
the respective food chain, and systematically discharge the
natural enemies of pests in order to accomplish or elimi-
nate pests’ purpose. As an illustration, to effectively control
the ectoparasitoid, Scleroderma guani is discharged peri-
odically to execute the dissemination medium of Bursa-
phelenchus xylophilus Nickel and Monochamus alternatus
Hope. -ere are ample measures of literature which can be
used in the control of microbial disease to conceal pests and
making use of mathematical model to discuss the dynamics
of it [14–20]. And for forest insect pests, only a few ap-
plications are there. To manage forest insect pests, dis-
charging of the natural enemies can be considered an
effective method.

In 1760, Daniel Bernoulli, a pioneer in the field, pre-
sented a solution for his mathematical model in small pox.
Mathematical methods are widely used for finding the
mechanisms behind the spreading of infectious diseases; in
particular, the epidemic outbreak among animals has
gained a lot of attention. Epidemic models found an im-
portant category of mathematical ecology. Andreson and
May [21, 22] studied different types of SIR epidemic
models. -e disease’s incubation time is negligible in SIR
models, and as a result, each vulnerable individual becomes
infected and then recovers with either temporary or per-
manent immunity. In many recent works, researchers
divided the diseased population into 2 or 3 components as
in SI and SEI models, using microbial diseases as a control
input. Researchers like Jiao, Wu, Shi, and Song [23–26]

consider SEI models as they give a more realistic expla-
nation of biological problems where the susceptible pop-
ulation moves to exposed pests. Xiang [27] made a study on
a relevant pest management SEI model and hence proposed
a model given as follows:
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(1)

Here, time t, S(t), E(t), and I(t) denote densities of
susceptible, exposed, and infectious pests, respectively. In
the lack of I(t), the growth of S(t) exponentially with
carrying capacity K and r is the intrinsic birth rate constant,
the individual susceptible population S(t) and infectious
population I(t) get in contact with them until the contact
rate is given by ϑ1S(t)I(t)/1 + 􏽢σS(t), and ω represents the
inverse of the latent period. K, r, ϑ1, 􏽢σ, δ1, and 􏽢η1 are positive
constants, and the death rate of the infectious and exposed
pests is denoted by the parameter δ1. If T is the period of the
impulse effect, then the release amount of the infected pests
is denoted by 􏽢η1 at t � nT, n ∈ N.

-e above model is modified by adding natural enemies,
and the corresponding model is given in (2) and (3). Many
authors [24, 28–31] studied the predator-prey system, which
is a relevant population model. Also, we assume that the
ability to attack prey is almost the same for each individual
predator in the classical predator-prey model [32].
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-e individuals of the natural enemy are classified into
either mature or immature in this paper; also, we assume
that immature natural enemy does not attack the prey. -is
can be considered reasonable as in the case of many
mammals in which the immature natural enemy is brought
up by their parents. In these cases, the reproductive rate and
the attacking rate are negligible. Inspired by these models,
we analyze the stability of the eco-epidemiological plant pest
natural enemy model with different impulsive strategies, but
it lacks the ability to attack the infected pest. In our ap-
proach, pests and natural enemies are treated as prey and
predators, respectively. Severe assumptions are made for the
mathematical simplicity of this model. Some details are
given in the coming section. -e key results of this paper are
summarized as follows:

(i) Based on the survey, only a few studies have been
done on plant pest natural enemy paradigm in eco-
epidemiology. In particular, we are considering the
different life stages of natural enemies and also
diseases in pest populations with three classes.

(ii) -is manuscript deals with different impulsive
strategies; particularly, models with viruses and
without viruses are discussed. -e numerical in-
vestigation concludes with a comparative study of
these two models.

(iii) In our model, we are using multiple impulsive
strategies. So, in case of any shortage in any of the
impulsive control inputs, we can stabilize our sys-
tem by altering other control inputs. -at’s why this
model is practically more useful compared to other
models.

(iv) -is model is very effective and the period of re-
leasing these impulsive controls can be lengthened
compared to other integrated models.

And the remaining work is constructed as follows. -is
paper is structured into 5 sections. In S, we construct an eco-
epidemiological model with stage structure and formulate
two different models such as with virus particle and without
virus particle. Section 3 deals with periodic solutions and
main lemmas, followed by global attractivity and local
stability of periodic solutions which are investigated in
Section 4. Comparative study and discussions are given in
Section 5. In the final section, future works and conclusion
are given.

2. Formation of Mathematical Modelling

-e following assumptions are established in order to create
a mathematical model that discusses the entire behavior of a
plant, pest, virus, and natural enemy.

(i) H1 Logistically, the plant population P(t) is in-
creasing.-e density of pest population S(t) captures
plant P(t) represented by P(t)S(t) with rate p1: plant
predation rate by susceptible pests. -us, the evo-
lution equation is

dP(t)

dt
� P(t)(1 − P(t)) − p1P(t)S(t). (4)

H2 Diseases in pest populations can be divided into
three categories: susceptible, exposed, and infectious.
Varied contexts necessitate different functional re-
actions, according to Holling [33] in 1965. As a result,
the typical Lotka-Volterra systems were more prac-
tical than they had ever been. Holling II response
function means nonlinear saturated incidence rate,
ϑ1S(t)I(t)/1 + 􏽢σS(t), where ϑ1 is the contact number
of susceptible pest and infected pest per unit time, so
ϑ1I(t)S(t) gives the force of infection and the effect of
inhibition caused by behavioral changes in sensitive
individuals owing to their increased numbers or
crowding effect is determined by 1/1 + 􏽢σS(t). ω de-
notes the inverse of the latent period. Natural ene-
mies’ mature and immature life phases are
represented by N1 and N2, respectively. As the
density of pests increases, the natural enemies with a
predation rate ϑ2 can only consume a limited quantity
of pests. Susceptible pests are consumed only by the
mature natural enemy, while the exposed and in-
fective pests are not affected by them. δ is the death
rate of susceptible pests. Also, the mortality rates of
exposed and infected pests are represented by δ1.
-us, the equations are

dS(t)

dt
� p1P(t)S(t) −

ϑ1S(t)I(t)

1 + 􏽢σS(t)
− ϑ2S(t)N2(t) − δS(t),

dE(t)

dt
�
ϑ1S(t)I(t)

1 + 􏽢σS(t)
− ω + δ1( 􏼁E(t),

dI(t)

dt
� ωE(t) − δ1I(t).

(5)

H3 N1(t) depends on N2(t) and the natural enemy’s
death rate andmaturity rate are δ3 and κ, accordingly.
-en, the corresponding equation is

dN1(t)

dt
� ϑ2S(t)N2(t) − δ3 + κ( 􏼁N1(t). (6)

H4 At a rate of κ, when the immature natural enemy
population N1(t) grows, the mature natural enemy
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population N2(t) grows as well. δ4 is the mortality
rate of a mature enemy population. -us, evolution
model is

dN2(t)

dt
� κN1(t) − δ4N2(t). (7)

H5 Releasing the number of infected pests, the im-
mature and mature natural enemies are 􏽢η1, 􏽢]1, and 􏽢]2,
respectively, which are released periodically at a

particular time t � nT, where T is the impulsive
period and n ∈ Z+.

By using the above-stated hypotheses, we will propose 2
mathematical models: the first model: without a virus
particle and the second model: with a virus particle.

2.1. Model without Virus Particle
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-e use of pesticides can even affect nontarget species
badly. To prevent this, we can use some biological control like
viruses. Take, for example, the case of North America where
certain forest areas to a large extent were affected by defo-
liation due to the presence of larvae of gypsy moths. Here,
Lymantria dispar multicapsid nuclear virus was sprayed ex-
tensively to control the larvae.-ose larvae that consumed the
virus perished and the carcasses that remained on foliage
further facilitated the presence of the virus to infect the rest of
the larvae still present on the foliage as well. Another prime
example for the use of viruses as a biological control measure
was seen in Australia where the mammalian virus and rabbit
hemorrhagic disease virus were used to control the invasive
European rabbit population. However, the control measure
turned counterproductive since an extensive amount of rabbit
population in the country got eliminated when some rabbits
which were under quarantine managed to get away [34]. To

control specific insect pests, baculoviruses are well-known
substitutes for chemical pesticides. -ese viruses cause in-
fection only if they get exposed to the host [35]. But certain
viruses can live on nonliving organisms for a time duration,
and when the host gets in control of these viruses, it will get
infected. As we know, even COVID-19 can live for about 3 hr
in air, 4 hr in copper, 24 hr in cardboard, 2 − 3 days in
stainless steel, and 3 days in polypropylene plastic. -e most
commonly used virus or baculovirus will hereafter refer to
nucleopolyhedroviruses. And these viruses are characterized
for their species-specific, narrow spectrum insecticidal ap-
plications. Also, they are characterized for not having any
negative impacts on any other living species like plants, birds,
mammals, etc. From these, we can see the importance of using
virus particles in pest control. Now, we are going to modify
the above mathematical model by introducing the virus
particle as one more control input.
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2.2.Model withVirus Particle. -e virus is thought to spread
mainly from pests to pests. -is can happen between pests
that are in close contact with one another. But the virus can
also spread from contact with infected surfaces or objects.
For example, if we spread a virus particle, a pest can be
infected by touching a surface or object that has the virus on
it. By using this concept, we modify the above model.

Further assumptions can be added to the above as-
sumptions [H1] − [H5] for modification of system (8) and

(9). Let V(t) be the virus particle; they attack susceptible
pests and make them infected. Infected pests when die re-
lease the virus. ϑ3 is the production rate of virus from in-
fected pests and δ2 represents the death rates of virus
particles.

If the virus is released periodically, with releasing
amount 􏽢η2, when t � nT, n ∈ Z+. -en, (8) and (9) becomes
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-e parametric description of the above-mentioned
models is given in Table 1.

3. Preliminaries

Consider the solution X(t) � (P(t), S(t), E(t), I(t), N1(t),

N2(t))′ of system (8) & (9) and is a piecewise continuous
function X: R+⟶ R6

+, therefore, X(t) is continuous in
(nT, (n + 1)T], n is a natural number, and X(nT+) exists.

Here, we recall some preliminaries and establish results for
the following sections.

Lemma 1 (see [4]): @e left continuous function
v ∈ PC′[R+, R] at tk, k ∈ N, satisfies the inequalities

v′(t)≤g(t)v(t) + h(t), t≥ t0, t≠ tk,

v t
+
k( 􏼁≤ δkv tk( 􏼁 + lk, t � tk, k ∈ N,

⎧⎨

⎩ (12)

where g, h ∈ PC[R+, R] and δk ≥ 0, lk are constants; thus,
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v(t)≤ v t0( 􏼁 􏽙
t0<tk< t

δk exp 􏽚
t

t0

g(u)du􏼠 􏼡 + 􏽘
t0 < tk < t

􏽙
tk < tj < t

δj exp 􏽚
t

tk

g(u)du􏼠 􏼡⎛⎝ ⎞⎠lk

+ 􏽚
t

t0

􏽙
u< tk < t

δk exp 􏽚
t

u
g(x)dx􏼠 􏼡h(u)du, t≥ t0.

(13)

If we reverse the directions of (12), we will also reverse
the directions of inequality in (13).

Lemma 2. Consider C> 0, with P(t)≤C, S(t)≤C, E(t)≤C,

N1(t) ≤ C , andN2(t)≤C for all solutions X(t) � (P(t),

S(t), E(t), I(t), N1(t), N2(t)) for large t in system (8) and
(9).

Proof. Consider (P(t), S(t), E(t), I(t), N1(t), N2(t)) is a
solution of (8) and (9).

Assume 􏽢V(t) � P(t), S(t), E(t), I(t), N1(t), N2(t) and
δ � min δ, δ1, δ3, δ4􏼈 􏼉. Let t≠ nT. We get

D
+ 􏽢V(t) + δ􏽢V(t)≤ (1 + δ)P(t) − P

2
(t)≤C0, C0 �

(1 + δ)
2

4
.

(14)

Let t � nT and 􏽢V(t+) � 􏽢V(t) + 􏽢η1 + 􏽢]1 + 􏽢]2. From
Lemma 1 for t ∈ (nT, (n + 1)T], we get

􏽢V(t)≤ 􏽢V (0)exp(− δ t) + 􏽚
t

0
C0 exp(− δ(t − s))ds + 􏽘

0<nT<t
􏽢η1 + 􏽢]1 + 􏽢]2􏼂 􏼃exp(− δ(t − nT))

� 􏽢V(0)exp(− δt) +

C0
δ

[1 − exp(δt))] + 􏽢η1 + 􏽢]1 + 􏽢]2􏼂 􏼃 exp(− δ(t − T)) − exp(− δ(t − (n + 1)T))

1 − exp(− δT)
< 􏽢V(0)exp(− δt)

+
C0

δ
[1 − exp(δt))] +

􏽢η1 + 􏽢]1 + 􏽢]2􏼂 􏼃exp(− δ(t − T))

1 − exp(− δT)
+

􏽢η1 + 􏽢]1 + 􏽢]2􏼂 􏼃exp(δT)

exp(δT) − 1
⟶

C0

δ
+

􏽢η1 + 􏽢]1 + 􏽢]2􏼂 􏼃exp(δT)

exp(δT) − 1
,

when t is large enough.

(15)

As a result, 􏽢V is uniformly bounded; there is a constant

Table 1: Parametric values for the models.

Parameter Description
ϑ1 Contact number of susceptible pest per unit time for infected pest
R1 Predation rate of plant
ϑ3 Production rate of virus from infected pest
k Conversion rate of immature to mature natural enemy
δ1 Death rate of exposed and infected pest population
δ3 Death rate of immature natural enemies
δ4 Death rate of mature natural enemies
δ Death rate of susceptible pest population
δ2 Death rate of a virus particle
σ⌢ Half saturation constant
v
⌢

1 Impulsive releasing amount of immature natural enemies
η⌢1 Impulsive releasing amount of infected pest
ϑ
⌢

2 Impulsive releasing amount of mature natural enemies
η⌢2 Impulsive releasing amount of virus particle
ω Inverse of a latent period
v2 Predation rate of mature natural enemy
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C, :�
C0

δ
+

􏽢η1 + 􏽢]1 + 􏽢]2􏼂 􏼃exp(δT)

exp(δT) − 1
> 0, (16)

such that P(t)≤C, S(t)≤C, E(t)≤C, N1(t)≤C, and
N2(t)≤C, for all t large enough. □

Lemma 3. Consider C> 0, with P(t)≤C, S(t)≤C,

E(t)≤C, V(t)≤C, N1(t)≤C, and N2(t)≤C for all solutions
X(t) � (P(t), S(t), E(t), I(t), V(t), N1(t), N2(t)) for large t

in (10) and (11).

Proof. We can easily prove this lemma by similar tech-
niques used in Lemma 2. □

Lemma 4. Let 􏽢y(t) be a positive periodic solution of the
system

y′(t) � k − ]y(t), t≠ nT

y t
+

( 􏼁 � y(t) + η, t � nT, n ∈ N,

⎧⎨

⎩ (17)

and for every solution y(t) of (17), we obtain |y(t) −

􏽢y(t)|⟶ 0 as t⟶∞, for t ∈ (nT, (n + 1)T],

􏽢y(t) �
k

]
+
η exp(− ](t − nT))

1 − exp(− ]T)
with 􏽢y 0+

( 􏼁

�
k

]
+

η
1 − exp(− ]T)

.

(18)

When pests become extinct, we have

dI(t)

dt
� − δ1I(t),

dN1(t)

dt
� − δ3 + κ( 􏼁N1(t),

dN2(t)

dt
� κN1(t) − δ4N2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT, (19)

I t
+

( 􏼁 � I(t) + 􏽢η1,
N1 t

+
( 􏼁 � N1(t) + 􏽢]1,

N2(t)
+

� N2(t) + 􏽢]2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
t � nT. (20)

For (19) and (20), from Lemma 4,

􏽢I(t) �
􏽢η1 exp − δ1(t − nT)( 􏼁

1 − exp − δ1T( 􏼁
and 􏽢I 0+

( 􏼁 �
􏽢η1

1 − exp − δ2T( 􏼁
,

􏽢N1(t) �
􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
and 􏽢N1 0+

( 􏼁 �
􏽢]1

1 − exp − δ3 + κ( 􏼁T( 􏼁
,

(21)

is a positive solution of the system (19) and (20), which is
globally asymptotically stable.

Using 􏽢N1(t) on (19) and (20),

dN2(t)

dt
� κ 􏽢N1(t) − δ4N2(t) t≠ nT,

N2 t
+

( 􏼁 � N2(t) + 􏽢]2 t � nT.

(22)

Then, t ∈ (nT, (n + 1)T],

N2(t) �
κ 􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁 − exp − δ4(t − nT)( 􏼁􏼂 􏼃

δ4 − δ3 − κ( 􏼁 1 − exp − δ3 + κ( 􏼁T( 􏼁( 􏼁
+ N2 nT

+
( 􏼁exp − δ4(t − nT)( 􏼁. (23)

We get the following stroboscopic map of (22) by fol-
lowing the periodic discharge of impulses:

N2 (n + 1)T
+

( 􏼁 �
κ 􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁 − exp − δ4(t − nT)( 􏼁􏼂 􏼃

δ4 − δ3 − κ( 􏼁 1 − exp − δ3 + κ( 􏼁T( 􏼁( 􏼁

+ N2 nT
+

( 􏼁exp − δ4(t − nT)( 􏼁 + 􏽢]2,

(24)

� f N2 nT
+

( 􏼁( 􏼁. (25)
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Then, (24) has a fixed point which is unique and positive

N
∗
2 �

κ 􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁 − exp − δ4T( 􏼁􏼂 􏼃

δ4 − δ3 − κ( 􏼁 1 − exp − δ3 + κ( 􏼁T( 􏼁( 􏼁 1 − exp − δ4T( 􏼁( 􏼁
+

􏽢]2
1 − exp − δ4T( 􏼁( 􏼁

, (26)

which satisfy N2 <f(N2)<N∗2 if 0<N2 <N∗2 and
N∗2 <f(N2)<N2 ifN2 >N∗2 . By [36], we obtained thatN∗2 is

globally asymptotically stable. -en, the periodic solution of
(22) is

􏽢N2(t) �
κ􏽢]1

δ4 − δ3 − κ
exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
􏼢 􏼣 +

− κ􏽢]1/δ4 − δ3 − κ + 􏽢]2( 􏼁 exp − δ4(t − nT)( 􏼁( 􏼁

1 − exp − δ4T( 􏼁
􏼢 􏼣, (27)

with initial value

􏽢N2 0+
( 􏼁 �

κ􏽢]1
δ4 − δ3 − κ

1
1 − exp − δ3 + κ( 􏼁T( 􏼁

􏼢 􏼣 +
− κ􏽢]1/δ4 − δ3 − κ + 􏽢]2( 􏼁

1 − exp − δ4T( 􏼁
􏼢 􏼣. (28)

That is globally asymptotically stable.
In the case of system (10) and (11), when pests are ex-

tinct, we obtain the (19) and (20) together with the following
equations:

dV(t)

dt
� ϑ3δ1I(t) − δ2V(t) t≠ nT,

V t
+

( 􏼁 � V(t) + 􏽢η2 t � nT.

(29)

Substituting 􏽢I(t) into (29), then we obtain

dV(t)

dt
� ϑ3δ1I(t) − δ2V(t) t≠ nT,

V t
+

( 􏼁 � V(t) + 􏽢η2 t � nT.

(30)

Then, t ∈ (nT, (n + 1)T],

V(t) �
ϑ3δ1􏽢η1 exp − δ1(t − nT)( 􏼁 − exp − δ2(t − nT)( 􏼁􏼂 􏼃

δ2 − δ1( 􏼁 1 − exp − δ1T( 􏼁( 􏼁
+ V nT

+
( 􏼁exp − δ2(t − nT)( 􏼁. (31)

We get the following stroboscopic map of (30) by fol-
lowing the periodic discharge of impulses:

V (n + 1)T
+

( 􏼁 �
ϑ3δ1􏽢η1 exp − δ1(t − nT)( 􏼁 − exp − δ2(t − nT)( 􏼁􏼂 􏼃

δ2 − δ1( 􏼁 1 − exp − δ1T( 􏼁( 􏼁
+ V nT

+
( 􏼁exp − δ2(t − nT)( 􏼁 + 􏽢η2

� f V nT
+

( 􏼁( 􏼁.

(32)

Then, (32) has a unique positive fixed point

V
∗

�
ϑ3δ1􏽢η1
δ2 − δ1( 􏼁

exp − δ1T( 􏼁 − exp − δ2T( 􏼁

1 − exp − δ1T( 􏼁( 􏼁 1 − exp − δ2T( 􏼁( 􏼁
􏼢 􏼣 +

􏽢η2
1 − exp − δ2T( 􏼁( 􏼁

􏼢 􏼣, (33)
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which satisfy V<f(V)<V∗ if 0<V<V∗ and
V∗ <f(V) <V if V>V∗. By [36], we obtained that V∗ is
globally asymptotically stable. -en,

􏽢V(t) �
ϑ3δ1􏽢η1
δ2 − δ1( 􏼁

􏼠 􏼡
exp − δ1(t − nT)( 􏼁

1 − exp − δ1T( 􏼁( 􏼁
􏼢 􏼣 + 􏽢η2 −

ϑ3δ1􏽢η1
δ2 − δ1( 􏼁

􏼠 􏼡
exp − δ2(t − nT)( 􏼁

1 − exp − δ2T( 􏼁( 􏼁
􏼢 􏼣, (34)

with initial value

􏽢V 0+
( 􏼁 �

ϑ3δ1􏽢η1
δ2 − δ1( 􏼁

􏼠 􏼡
1

1 − exp − δ1T( 􏼁( 􏼁
􏼢 􏼣 + 􏽢η2 −

ϑ3δ1􏽢η1
δ2 − δ1( 􏼁

􏼠 􏼡
1

1 − exp − δ2T( 􏼁( 􏼁
􏼢 􏼣. (35)

which is globally asymptotically stable.
After that, we will take a look at the subsystem of (8) and

(9),
dP(t)

dt
� P(t)(1 − P(t)). (36)

Then, there exist a P � 1 stable equilibrium which is
globally asymptotic and P � 0, unstable equilibrium. Peri-
odic solutions are as follows:

(1) (0, 0, 0, 􏽢I, 􏽢N1,
􏽢N2): plant pest extinction periodic

solution
(2) (1, 0, 0, 􏽢I, 􏽢N1,

􏽢N2): pest extinction periodic solution

4. Stability Analysis

By Floquet’s theory of the linear T-periodic impulsive
equation, we are deriving the stability of pest eradication
periodic solution and plant pest eradication periodic solu-
tion of models with and without virus particles. And also, we
give a comparative result in this section, which shows the
effectiveness of the model with virus particles.

Theorem 1. Let (P(t), S(t), E(t), I(t), N1(t), N2(t)) be any
solution (8) and (9); the plant pest eradication periodic so-
lution (0, 0, 0, 􏽢I, 􏽢N1, 􏽢N2) is unstable.

Proof. Considering the local stability of the periodic so-
lution (0, 0, 0, 􏽢I, 􏽢N1,

􏽢N2), we have

P(t) � τ1(t),

S(t) � τ2(t),

E(t) � τ3(t),

I(t) � 􏽢I(t) + τ4(t),

N1(t) � 􏽢N1(t) + τ6(t),

N2(t) � 􏽢N2(t) + τ7(t),

(37)

where τi(t), i � 1, 2, 3, 4, 6, and 7 are small-amplitude per-
turbations of the solution. -e linearized form of (8) and (9)
is

dτ1(t)

dt
� τ1(t)

dτ2(t)

dt
� − ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + δ􏼐 􏼑τ2(t)

dτ3(t)

dt
� ϑ1􏽢I(t)τ2(t) − ω + δ1( 􏼁τ3(t)

dτ4(t)

dt
� ωτ3(t) − δ1τ4(t)

dτ6(t)

dt
� ϑ2 􏽢N2(t)τ2(t) − δ3 + κ( 􏼁τ6(t)

dτ7(t)

dt
� κτ6(t) − δ4τ7(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT, (38)
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τ1 t
+

( 􏼁 � τ1(t)

τ2 t
+

( 􏼁 � τ2(t)

τ3 t
+

( 􏼁 � τ3(t)

τ4 t
+

( 􏼁 � τ4(t)

τ6 t
+

( 􏼁 � τ6(t)

τ7 t
+

( 􏼁 � τ7(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � nT. (39)

Let τ(t) be the fundamental matrix of (38) and (39):

dτ(t)

dt
� Aτ(t), (40)

where

A �

1 0 0 0 0 0

0 − ϑ1(t)􏽢I + ϑ2 􏽢N2(t) + δ􏼐 􏼑 0 0 0 0

0 ϑ1􏽢I(t) − ω + δ1( 􏼁 0 0 0

0 0 ω − δ1 0 0

0 ϑ2 􏽢N2(t) 0 0 − δ3 + κ( 􏼁 0

0 0 0 0 κ − δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

-en, linearization of impulsive conditions of (8) and (9)
yields

τ1 t
+

( 􏼁

τ2 t
+

( 􏼁

τ3 t
+

( 􏼁

τ4 t
+

( 􏼁

τ6 t
+

( 􏼁

τ7 t
+

( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ1(t)

τ2(t)

τ3(t)

τ4(t)

τ6(t)

τ7(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

-e corresponding monodromy matrix of (8) and (9) is

M �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ(T). (43)

We obtain τ(T) � τ(0)e
(􏽒

T

0
Adt), where τ(0) is the

identity matrix (38) and (39). -e fundamental solution
matrix is as follows:

τ(T) �

e
T 0 0 0 0 0

0 e
− 􏽚

T

0
ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + δ􏼐 􏼑dt

0 0 0 0

0 ⋆ e
− ω+δ1( )T 0 0 0

0 0 ⋆ e
− δ1T 0 0

0 ⋆ 0 0 e
− δ3+κ( )T 0

0 0 0 0 ⋆ e
− δ4T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

It is not necessary to compute the exact value of (⋆) in
the following research. -is is a list of the eigenvalues of the
monodromy matrix M:
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λ1 � e
T > 1,

λ2 � e
− 􏽚

T

0
ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + δ􏼐 􏼑dt

< 1,

λ3 � e
− ω+δ1( )T < 1,

λ4 � e
− δ1T < 1,

λ6 � e
− δ3+κ( )T < 1,

λ7 � e
− δ4T < 1.

(45)

Since |λ1|> 1, by Floquet’s theory of IDE, we found that
the (8) and (9)’s plant pest extinction periodic solution is
unstable. □

Theorem 2. (P(t), S(t), E(t), I(t), N1(t), N2(t)) is any
solution (8) and (9); the pest eradication periodic solution
(1, 0, 0, 􏽢I, 􏽢V, 􏽢N1,

􏽢N2) is locally asymptotically stable iff
T≤Tmax, where

Tmax �
ϑ1

p1 − δ( 􏼁

􏽢η1
δ1

􏼢 􏼣 +
ϑ2

p1 − δ( 􏼁

κ􏽢]1
δ4 − δ3 − κ

􏼠 􏼡
1

δ3 + κ( 􏼁
􏼠 􏼡 +

− κ􏽢]1
δ4 − δ3 − κ

+ 􏽢]2􏼠 􏼡
1
δ4

􏼢 􏼣. (46)

Proof. As in the previous case, we may establish the local
stability of the periodic solution (1, 0, 0, 0, 􏽢N1,

􏽢N2). Let

P(t) � 1 + τ1(t), S(t) � τ2(t), E(t) � τ3(t), I(t) � τ4(t), N1(t) � 􏽢N1(t) + τ6(t), N2(t) � 􏽢N2(t) + τ7(t), (47)

where τi(t), i � 1, 2, 3, 4, 6, and 7 are small-amplitude per-
turbations of the solution. -at is, the linearized form of (8)
and (9) is

dτ1(t)

dt
�� − τ1(t) − p1τ2(t)

dτ2(t)

dt
�� − − p1 + ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + δ􏼐 􏼑τ2(t)

dτ3(t)

dt
� ϑ1􏽢I(t)τ2(t) − ω + δ1( 􏼁τ3(t)

dτ4(t)

dt
� ωτ3(t) − δ1τ4(t)

dτ6(t)

dt
�� ϑ2τ2(t) 􏽢N2(t) − δ3 + κ( 􏼁τ6(t)

dτ7(t)

dt
� κτ6(t) − δ4τ7(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT, (48)
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τ1 t
+

( 􏼁 � τ1(t)

τ2 t
+

( 􏼁 � τ2(t)

τ3 t
+

( 􏼁 � τ3(t)

τ4 t
+

( 􏼁 � τ4(t)

τ6 t
+

( 􏼁 � τ6(t)

τ7 t
+

( 􏼁 � τ7(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � nT. (49)

If τ(t) is the fundamental matrix of (48) and (49), then
τ(t) holds:

dτ(t)

dt
� Aτ(t), (50)

where

A �

− 1 − p1 0 0 0 0

0 − − p1 + ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + δ􏼐 􏼑 0 0 0 0

0 ϑ1􏽢I(t) − ω + δ1( 􏼁 0 0 0

0 0 ω − δ1 0 0

0 ϑ2 􏽢N2(t) 0 0 − δ3 + κ( 􏼁 0

0 0 0 0 κ − δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (51)

-e linearization of impulsive conditions of (8) and (9)
gives

τ1 t
+

( 􏼁

τ2 t
+

( 􏼁

τ3 t
+

( 􏼁

τ4 t
+

( 􏼁

τ6 t
+

( 􏼁

τ7 t
+

( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ1(t)

τ2(t)

τ3(t)

τ4(t)

τ6(t)

τ7(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (52)

-e monodromy matrix that corresponds to (8) and (9)
is

M �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ(T). (53)

-en, the eigenvalues are

λ1 � e
− T < 1,

λ2 � e
􏽚

T

0
p1 − ϑ1􏽢I(t) − ϑ2 􏽢N2(t) − δ􏼐 􏼑dt

,

λ3 � e
− ω+δ1( )T < 1,

λ4 � e
− δ1T < 1,

λ6 � e
− δ3+κ( )T < 1,

λ7 � e
− δ4T < 1.

(54)

-e periodic solution of the system (8) and (9) for plant
pest extinction is locally asymptotically stable iff |λ2|≤ 1 i.e.,
T≤Tmax. Hence, the proof.

Next, we are going to consider the subsystem of (10) and
(11). -e two periodic solutions are as follows:

(1) (1, 0, 0, 􏽢I, 􏽢V, 􏽢N1,
􏽢N2): pest extinction periodic

solution
(2) (1, 0, 0, 􏽢I, 􏽢V, 􏽢N1,

􏽢N2): plant pest extinction periodic
solution □
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Theorem 3. Let (P(t), S(t), E(t), I(t), V(t), N1(t), N2(t))

be any solution of the system (10) and (11); then
(i) @e pest eradication periodic solution (1, 0, 0, 􏽢I, 􏽢V,

􏽢N1,
􏽢N2) is locally asymptotically stable iff T≤ 􏽢Tmax,

where

􏽢Tmax �
ϑ1

p1 − δ( 􏼁

􏽢η1
δ1

􏼢 􏼣 +
ϑ2

p1 − δ( 􏼁

κ􏽢]1
δ4 − δ3 − κ

􏼠 􏼡
1

δ3 + κ( 􏼁
􏼠 􏼡 +

− κ􏽢]1
δ4 − δ3 − κ

+ 􏽢]2􏼠 􏼡
1
δ4

􏼢 􏼣

+
ϑ3

p1 − δ( 􏼁

ϑ3δ1􏽢η1
δ2 − δ1

􏼠 􏼡
1
δ1

+ 􏽢η2 −
ϑ3δ1􏽢η1
δ2 − δ1

􏼠 􏼡
1
δ2

􏼢 􏼣.

(55)

(ii) @e plant pest eradication periodic solution (0, 0, 0, 􏽢I,
􏽢V, 􏽢N1,

􏽢N2) is unstable.

Proof

(i) It is possible to determine the local stability of pe-
riodic solution (1, 0, 0, 0, 􏽢V, 􏽢N1,

􏽢N2) in a similar way
to the earlier study.
Consider P(t) � 1 + τ1(t), S(t) � τ2(t), E(t) � τ3
(t), I(t) � τ4(t), V(t) � 􏽢V(t) + τ5(t), N1 (t) � 􏽢N1
(t) + τ6(t), N2(t) � 􏽢N2(t) + τ7(t).

-en, the linearized form of (10) and (11) is

dτ1(t)

dt
� − τ1(t) − p1τ2(t)

dτ2(t)

dt
� − − p1 + ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + ϑ3 􏽢V(t) + δ􏼐 􏼑τ2(t)

dτ3(t)

dt
� ϑ1􏽢I(t)τ2(t) − ω + δ1( 􏼁τ3(t) + ϑ3 􏽢Vτ2(t)

dτ4(t)

dt
� ωτ3(t) − δ1τ4(t)

dτ5(t)

dt
� ϑ3δ1τ4(t) − δ2τ5(t)

dτ6(t)

dt
� ϑ2 􏽢N2(t)τ2(t) − δ3 + κ( 􏼁τ6(t)

dτ7(t)

dt
� κτ6(t) − δ4τ7(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT, (56)

τ1 t
+

( 􏼁 � τ1(t)

τ2 t
+

( 􏼁 � τ2(t)

τ3 t
+

( 􏼁 � τ3(t)

τ4 t
+

( 􏼁 � τ4(t)

τ5 t
+

( 􏼁 � τ5(t)

τ6 t
+

( 􏼁 � τ6(t)

τ7 t
+

( 􏼁 � τ7(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � nT. (57)

If τ(t) is the fundamental matrix of (56) and (57),
then τ(t) holds:
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τ(t)

dt
� Aτ(t),

A �

− 1 − p1 0 0 0 0 0

0 − − p1 + ϑ1􏽢I(t) + ϑ2 􏽢N2(t) + ϑ3 􏽢V(t) + δ􏼐 􏼑 0 0 0 0 0

0 ϑ1􏽢I(t) + ϑ3 􏽢V(t) − ω + δ1( 􏼁 0 0 0 0

0 0 ω − δ1 0 0 0

0 0 0 ϑ3δ1 − δ2 0 0

0 ϑ2 􏽢N2(t) 0 0 0 − δ3 + κ( 􏼁 0

0 0 0 0 0 κ − δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)

-e linearization of impulsive conditions of (10) and
(11) becomes

τ1 t
+

( 􏼁

τ2 t
+

( 􏼁

τ3 t
+

( 􏼁

τ4 t
+

( 􏼁

τ5 t
+

( 􏼁

τ6 t
+

( 􏼁

τ7 t
+

( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ1(t)

τ2(t)

τ3(t)

τ4(t)

τ5(t)

τ6(t)

τ7(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

-e corresponding monodromy matrix of (10) and
(11) is

M �

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ(T). (60)

(i) And the eigenvalues are
λ1 � e

− T < 1,

λ2 � e
􏽚

T

0
p1 − ϑ1􏽢I(t) − ϑ2 􏽢N2(t) − ϑ3 􏽢V(t) − δ􏼐 􏼑dt

,

λ3 � e
− ω+δ1( )T < 1,

λ4 � e
− δ1T < 1,

λ5 � e
− δ2T < 1,

λ6 � e
− δ3+κ( )T < 1,

λ7 � e
− δ4T < 1.

(61)

-e periodic solution of the system (10) and (11) for
plant pest extinction is locally asymptotically stable
iff |λ2|≤ 1, that is, T≤ 􏽢Tmax.

(ii) It is possible to determine the periodic solution is
unstable in a similar way to the earlier study.

Next, we are going to establish the global attractivity of
the pest eradication periodic solution of (8) and (9). □

Theorem 4. (P(t), S(t), E(t), I(t), N1(t), N2(t)) is any
solution (8) and (9); the pest eradication periodic solution
(1, 0, 0, 􏽢I, 􏽢V, 􏽢N1,

􏽢N2) is globally attractive provided T<Tmax,

Proof. Consider (P(t), S(t), E(t), I(t), N1(t), N2(t)) is any
solution of (8) and (9). -e first equation of system (8) and
(9) can be rewritten as

dP(t)

dt
≤P(t)(1 − P(t)), (62)

which yields lim supt⟶∞P(t) � 1; therefore, there is an
integer m1 > 0; if t>m1, then P(t)< 1 + ε0. From the fourth
and tenth equations of (8) and (9),

dI(t)

dt
≥ − δ1I(t), t≠ nT,

I t
+

( 􏼁 � I(t) + 􏽢η1, t � nT.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(63)

Let us have a look at the comparison system

dw1(t)

dt
� − δ1w1(t), t≠ nT,

w1 t
+

( 􏼁 � w1(t) + 􏽢η1, t � nT.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(64)

Lemma 4 shows that the system (64) has a periodic
solution:

􏽢w1(t) �
􏽢η1 exp − δ1(t − nT)( 􏼁

1 − exp − δ1T( 􏼁
(nT, (n + 1)T], n ∈ Z+

,

(65)

14 Mathematical Problems in Engineering



i.e, 􏽢w1(t) is globally asymptotically stable. When
t⟶∞, by Lemma 4 and comparison theorem of the IDE,
I(t)≥w1(t) and w1(t)⟶ 􏽢w1(t). -us, there exist
m2 >m1, t>m2 with

I(t)≥w1(t)> 􏽢I(t) − ε0, (nT, (n + 1)T], n ∈ Z+
, n>m2.

(66)

Using the fifth and twelfth equations of (8) and (9),

dN1(t)

dt
≥ − δ3 + κ( 􏼁N1(t), t≠ nT,

N1 t
+

( 􏼁 � N1(t) + 􏽢]1, t � nT.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(67)

Comparison system is

dw2(t)

dt
� − δ3 + κ( 􏼁w2(t), t≠ nT,

w2 t
+

( 􏼁 � w2(t) + 􏽢]1, t � nT.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(68)

From Lemma 4, we get (68) has a periodic solution

􏽢w2(t) �
􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
(nT, (n + 1)T], n ∈ Z+

,

(69)

i.e, 􏽢w2(t) is globally asymptotically stable. When
t⟶∞, by Lemma 4 and comparison theorem of the IDE,
N1(t)≥w2(t) and w2(t)⟶ 􏽢w2(t). -us, there exist
m3 >m2, t>m3 with

N1(t)≥w2(t)> 􏽢N1(t) − ε0, (nT, (n + 1)T], n ∈ Z+
, t>m3

(70)

By using (70), the sixth and thirteenth of (8) and (9), we
get the following subsystem:

dN2(t)

dt
≥ κ

􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
− ε0􏼢 􏼣 − δ4N2(t), t≠ nT,

N2 t
+

( 􏼁 � N2(t) + 􏽢]2, t � nT.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(71)

Consider the following comparison system:

dw3(t)

dt
� κ

􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
− ε0􏼢 􏼣 − δ4w3(t), t≠ nT,

w3 t
+

( 􏼁 � w3(t) + 􏽢], t � nT.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(72)

From the above manner, we get the system (72) has a
periodic solution

􏽢w3(t) �
κ􏽢]1

δ4 − δ3 − κ
exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
􏼢 􏼣

+
− κ􏽢]1/δ4 − δ3 − κ + 􏽢]2􏼁 exp − δ4(t − nT)( 􏼁(( 􏼁

1 − exp − δ4T( 􏼁
􏼢 􏼣 −

ϑ2κε0
δ4

(nT, (n + 1)T], n ∈ Z+
,

(73)

i.e, 􏽢w3(t) is globally asymptotically stable. When
t⟶∞, by Lemma 4 and comparison theorem of the IDE,
N2(t)≥w3(t) and w3(t)⟶ 􏽢w3(t). -en, there exist
m4 >m3, t>m4 with

N2(t)≥w3(t)> 􏽢N2(t) − ε0, (nT, (n + 1)T], n ∈ Z+
, t>m4.

(74)

By system (8) and (9) we obtain
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dS(t)

dt
≤ S(t) p1 1 + ε0( 􏼁 −

ϑ1 􏽢I(t) − ε0􏼐 􏼑

1 + 􏽢σK
− ϑ2 􏽢N2(t) − ε0􏼐 􏼑 − δ⎡⎣ ⎤⎦t≠ nT,

S t
+

( 􏼁 � S(t) t � nT.

(75)

Integrating the preceding equation over the pulses,

S(t)≤ S nT
+

( 􏼁exp􏽚
(n+1)T

nT
p1 1 + ε0( 􏼁 −

ϑ1 􏽢I(t) − ε0􏼐 􏼑

1 + 􏽢σK
− ϑ2 􏽢N2(t) − ε0􏼐 􏼑 − δ⎡⎣ ⎤⎦dt. (76)

We get the stroboscopic map after the periodic discharge
of impulses:

S (n + 1)T
+

( 􏼁≤ S nT
+

( 􏼁exp􏽚
(n+1)T

nT
p1 1 + ε0( 􏼁 −

ϑ1 􏽢I(t) − ε0􏼐 􏼑

1 + 􏽢σK
− ϑ2 􏽢N2(t) − ε0􏼐 􏼑 − δ⎡⎣ ⎤⎦dt

� S nT
+

( 􏼁Γ,

(77)

where Γ � exp􏽒
(n+1)T

nT
[p1(1 + ε0) − ϑ1(􏽢I(t) − ε0)/1 + 􏽢σK−

ϑ2( 􏽢N2(t) − ε0) − δ]dt< 1, as T<Tmax.
-us, S(nT+)≤ S(0+)Γn and so S(nT+)⟶ 0 as

n⟶∞. Hence, S(t)⟶ 0 as n⟶∞. -en, there exists
an ε1 > 0, sufficiently small, so that 0< S(t)< ε1 for all t>m5.
As a result, we can obtain an integer m6 > 0 such that
ϑ1I(t)S(t)/1 + 􏽢σK< ε2 for all t≥m6 .

Again, in the system (8) and (9), we have
dP(t)/dt≥P(1− p1ε1 − P),

-at implies liminf t⟶∞P(t) � 1, i.e., P(t)⟶ 1 as
t⟶∞.

By the third equation of (8) and (9),

dE(t)

dt
≤ ε2 − ω + δ1( 􏼁E(t), (78)

which implies

E(t)≤E 0+
( 􏼁e

− ω+δ1( )t
+

ε2
ω + δ1( 􏼁

−
ε2

ω + δ1( 􏼁
e

− ω+δ1( )t⟶ 0 as t⟶∞.

(79)

-us, there exists an integer m7 >m6 such that E(t)< ε3
for all t≥m7.

By the fourth and tenth equations of (8) and (9),

dI(t)

dt
≤ωε3 − δ1I(t), t≠ nT. (80)

Let us consider

dw
∗
4(t)

dt
� ωε3 − δ1w

∗
4(t), t≠ nT,

w
∗
(t) � w

∗
4(t) + 􏽢η1, t � nT.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(81)

By Lemma 4, the system (81) has a periodic solution

􏽢w
∗
4(t) �

ωε3
δ1

+
􏽢η1 exp − δ1(t − nT)( 􏼁

1 − exp − δ1T( 􏼁
(nT, (n + 1)T], n ∈ Z+

,

(82)

i.e, 􏽢w∗4(t) is globally asymptotically stable. When
t⟶∞, by Lemma 4 and comparison theorem of the IDE,
I(t)≤w∗(t) and w∗(t)⟶ 􏽢w∗(t); there is an integer m8, so,

I(t)≤w
∗
4(t)< 􏽢w

∗
4(t) + ε0, t≥m8. (83)

Using the fifth and eleventh equations of (8) and (9) we
get

dN1(t)

dt
≤ ϑ2ε2M − δ3 + κ( 􏼁N1(t), t≠ nT,

N1 t
+

( 􏼁 � N1(t) + 􏽢]1, t � nT.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(84)

By Lemma 4 and the comparison theorem of the IDE,
there is ε4 > 0 such that

N1(t)<
ϑ2ε1M
δ3 + κ( 􏼁

+
􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
+ ε4

(nT, (n + 1)T], n ∈ Z+
,

(85)

By (8) and (9),
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dN2(t)

dt
≤ κ

ϑ2ε1M
δ3 + κ( 􏼁

+
􏽢]1 exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
− ε4􏼢 􏼣 − δ4N2(t), t≠ nT,

N2 t
+

( 􏼁 � N2(t) + 􏽢]2, t � nT.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(86)

Obtaining the previous manner, then there exists ε5 > 0
such that

N2(t)<
κ􏽢]1

δ4 − δ3 − κ
exp − δ3 + κ( 􏼁(t − nT)( 􏼁

1 − exp − δ3 + κ( 􏼁T( 􏼁
􏼢 􏼣 +

− κ􏽢]1/δ4 + δ3 − κ + 􏽢]2( 􏼁 exp − δ4(t − nT)( 􏼁( 􏼁

1 − exp − δ4T( 􏼁
􏼢 􏼣

−
κ
δ4

ϑ2ε1M
δ3 + κ( 􏼁

+ ε4􏼢 􏼣 + ε5, (nT, (n + 1)T], n ∈ Z+
.

(87)

As t⟶ +∞, we get I(t)⟶ 􏽢I(t), N(t)⟶ 􏽢N1(t),
and N2(t)⟶ 􏽢N2(t), accounting that εi is small enough.
-erefore, the pest eradication periodic solution
(1, 0, 0, 􏽢I, 􏽢N1,

􏽢N2) is globally attractive. □

Theorem 5. (P(t), S(t), E(t), V(t), I(t), N1(t), N2(t)) is
any solution (10) and (11); the pest eradication periodic so-
lution (1, 0, 0, 􏽢I, 􏽢V, 􏽢N1,

􏽢N2) is globally attractive provided
T< 􏽢Tmax.

Proof. Same as that of -eorem 4. □

Remark 1. If the (1, 0, 0, 􏽢I, 􏽢V, 􏽢N1,
􏽢N2) of system (10) and

(11) and the (1, 0, 0, 􏽢I, 􏽢N1,
􏽢N2) of system (8) and (9) are

locally asymptotically stable, then
􏽢Tmax >Tmax. (88)

5. Numerical Simulations and Discussion

-is research discusses an integrated eco-epidemiological
plant pest natural enemy model with several impulsive
methods. -e impulsive influence of infected pests, virus
particles, and natural enemies on pest depopulation has
already been studied. Next, we will calculate the impact of
releasing a certain number of infected pests, virus particles,
and mature and immature natural enemies on the systems
(8) and (9) and (10) and (11). -e impact of a variety of
impulsive techniques is also explored. -e matching para-
metric values are supplied in Table 2 and Table 3.

Initially, an infected pest and natural enemies are used as
control inputs in a pest control model. -ey are released on
the spur of the moment. -e -reshold Limit for the Im-
pulsive Period (TLIP) is provided by Tmax � 9.55 in this
model (8) and (9). If T � 9.55, the pest extinction periodic
solution also is locally and globally stable, according to
-eorem 2 and -eorem 4.

We have included an extra impulsive control termed
virus particle in our model. -e TLIP in this model (10) and
(11) is 􏽢Tmax � 16.893. If T< 16.893, the pest extinction

periodic solution is both locally and globally stable,
according to -eorem 3 and -eorem 4.

-ere may be a lack of natural enemies, infected pests, or
viral particles in some real-life scenarios. -is will have an
impact on the impulsive period’s threshold limit. As can be
seen, Table 4 provides a clear image of the impulsive period’s
threshold limit in various conditions. As a result, the sta-
tistics in Table 4 are quite useful in dealing with these crises.
It is clear that the model with virus particles is very effective
and the period of releasing these impulsive control can be
lengthened. Again, we can also conclude that if 􏽢]1 � 􏽢]2 � 0,
then the pests stay alive and natural enemies become extinct,
so we need to release more amount of natural enemies and
infected pests. For pest extinction, the impulsive discharging
amount of mature natural enemy (􏽢]1 > 0) should be in-
creased when there is no impulsive discharging amount of
immature natural enemy (􏽢]1 � 0). Related outcomes are also
obtained when 􏽢]2 � 0. If 􏽢η1 � 0 and the rest of the pa-
rameters are the same, then we need to release natural
enemies to make the susceptible and exposed pests extinct.
In other words, the virus particle has a noticeable effect on
pest population size and influences the size of the pest
population to a great extent.-e natural enemy can properly
control pests only when Tmax is large.

From Table 4, it is evident that the TLIP of the model
with virus particle (10) and (11) is always greater than the
TLIP of the model without virus particle (8) and (9); that is,
􏽢Tmax >Tmax.

In this study, we focused mainly on TLIP. From the
detailed study, it is noticed that changing the parameter
creates a greatimpact on the threshold limit. -is is well
picturized in the following 3D contour plot in Figures 1–9. In
Figures 1–4, the dynamics of Tmax in terms of p1, ϑ1, 􏽢]1, 􏽢η1,
and 􏽢]2 is shown. And also Figures 5–9 represent the dynamics
of 􏽢Tmax in terms of p1, ϑ3, 􏽢]1, 􏽢η1, 􏽢]2, and 􏽢η2.

6. Comparison with Other Models

-is paper considered twomodels.-e first model deals with
two pest control techniques and the second deals with three
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pest control techniques, respectively. If we consider the
other authors’ models, they discussed biological controls in
different manners. Xiang et al. in 2009 made a study on
model (1), in which natural enemy is not considered as an
impulsive control. And the TLIP is given by

Tmax �
ϑ1􏽢η1
rδ1

� 3.64. (89)

Song in 2010 formulated an SEI model using infected
pests, whose functioning is the same as a microbial pesticide.

Table 2: Parametric values for numerical.

Parameter Description Value per week
ϑ1 Contact number of susceptible pest per unit time for infected pest 2.6
k Conversion rate of immature to mature natural enemy 0.4
σ⌢ Half saturation constant 0.1
δ Death rate of susceptible pest 0.2
δ3 Death rate of immature natural enemies 0.2
δ1 Death rate of exposed and infected pest population 0.5
δ4 Death rate of mature natural enemies 0.4
v
⌢

1 Impulsive releasing amount of immature natural enemies 2
η⌢1 Impulsive releasing amount of infected pest 0.7
v
⌢

2 Impulsive releasing amount of mature natural enemies 4
ω Inverse of the latent period 0.3
p1 Predation rate of plant 1
ϑ2 Predation rate of mature natural enemy 0.3

Table 3: Parametric values for numerical.

Parameter Description Value per week
δ2 Death rate of the virus particle 0.2
􏽢η2 Impulsive releasing amount of virus particle 2
ϑ3 Production rate of virus from infected pest 0.5

Table 4: Comparison of our models: TLIP.

Parameters Tmax
􏽢Tmax

􏽢η1 > 0, 􏽢]1 > 0, 􏽢]2 > 0 9.55 16.893
􏽢η1 � 0, 􏽢]1 > 0, 􏽢]2 > 0 5 12.5
􏽢η1 � 0, 􏽢]1 � 0, 􏽢]2 > 0 3.75 10
􏽢η1 � 0, 􏽢]1 > 0, 􏽢]2 � 0 1.25 7.5
􏽢η1 > 0, 􏽢]1 � 0, 􏽢]2 > 0 8.3 15.643
􏽢η1 > 0, 􏽢]1 � 0, 􏽢]2 � 0 4.55 11.893
􏽢η1 > 0, 􏽢]1 > 0, 􏽢]2 � 0 5.8 13.143
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Figure 1: -e contour plot of Tmax in terms of p1 and ϑ1.
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-ese infected pests can also attack healthy pests. For the
extinction of pests, the authors only considered the im-
pulsive releasing of infected pests and did not consider the
importance of natural enemies. Mathur et al. in 2016 for-
mulate an eco-epidemiologymathematical model (2) and (3)

which includes natural enemies also as a control input. And
the TLIP is

Tmax �
1
r

ϑ1􏽢η1
δ1

+
ϑ2􏽢]2
δ4

􏼢 􏼣 � 6.64. (90)
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Figure 2: -e contour plot of Tmax in terms of p1 and 􏽢]1.
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-e impulsive releasing of both natural enemies and
infected pests affects the extinction period. And in case of
Xiang et al. and Song, releasing the number of infected pests
only matters. In our model, we consider natural enemies has
two phases of life and this gives a more accurate result and
also introduces one more control input as virus particle. If
there is a shortage in the availability of infected pest, we
manage the pest by spraying virus particle or by releasing

natural enemies in large quantity. Even then, it is not
possible to optimize the pest population after a limit without
natural enemies. -is forces us to produce large amounts of
virus particles and infected pests. -at is to say, we need to
introduce more biological controls to make models more
practical. Also, the TLIP is more in our model and impulsive
strategy with virus particle gives more fruitful results than
the other models. -is study can be described as in Table 5.
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Figure 5: -e contour plot of 􏽢Tmax in terms of p1 and ϑ3.
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7. Conclusion

-is paper deals with the dynamic behavior of two integrated
pest management models with and without periodic re-
leasing of virus particles at fixed times. -is work is
attempting for a comparative analysis of models which
provide pest control methods in the sense of IPM. IPM
constitutes an eco-friendly blend of several control methods
like incorporating infected pests, virus particles, and pre-
dation through natural enemies. Microbial pesticides and
virus spray have the same functions. -ey can affect healthy
pests and weaken this pest function till death. -e behavior
of models is analyzed using numerical methods. -e in-
fluences of natural enemy populations, infected pests, and
virus particles are measured numerically. For instance, a
higher rate of predation decreases the size of the population
of pests. -e numerical analysis shows that the virus particle
is more effective and this is because of the interaction be-
tween the pest and virus particle.

Further research on our models will contribute to the
improvement and evaluation of pest control methods in

ecosystems. How does the stochastic release of natural en-
emies and infected pests affect the model dynamics? An-
swering these questions will give good results.
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