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,e rapid development of science and technology has created favorable conditions for Connected and Automated Vehicles
(CAVs). Accurate localization is one of the fundamental functions of CAV to realize some advanced operations such as vehicle
platooning. However, complicated urban traffic environments, such as the flyover, significantly influence vehicular positioning
accuracy. ,e inability of CAV to accurately perceive self-localization information has become an urgent issue to be addressed.
,is paper proposed a novel cooperative localization method by introducing the relative Direction-of-Arrival (DOA) and Relative
Distance (RD) into CAV to improve the localization accuracy of CAV in the multivehicle environment. First, the three-di-
mensional positioning error model of the host vehicle concerning adjacent vehicles in azimuth angle and pitch angle and
intervehicle distances under the vehicle-to-vehicle communication was established. Second, two least-squares estimation al-
gorithms, linear and nonlinear, are established to decrease the position errors by combining relative DOA and RD measurement
information. To verify the proposed algorithm’s effect, the PreScan-Simulink joint simulation is carried out. ,e results show that
the host vehicle’s localization accuracy by the proposed method can be improved by 25% compared with direct linearization.
Besides, by combining relative DOA and relative RD measurement, the locating capability of the least-square-based nonlinear
optimization method can be enhanced by 22%.

1. Introduction

Connected and automated vehicles (CAV) are promising
methods worldwide to improve traffic safety, enhance
driving comfort, and reduce energy consumption [1–3]. As
an essential CAV function, accurate localization technology
is all-important for CAV to realize high-grade performances
such as vehicle platooning [4] and cooperative merging on
highway ramps [5, 6] and has been widely studied. ,e most
common localization technique used in CAV is realized by
the global navigation satellite system (GNSS). However, the
urban forest in downtowns, such as dense buildings, usually
weakens the signal quality of GNSS and reduces the posi-
tioning precision of vehicles [7–9]. Besides, when cars drive
as a group, the small intervehicle distance demands that the

vehicular positioning accuracy is centimeter-level [10],
which is much higher than the current GNSS road-posi-
tioning accuracy level.

Various techniques have been proposed to improve
vehicular positioning accuracy further to meet multivehicle
cooperative control requirements [11–15]. Differential
GNSS is proposed in [16] to achieve higher positioning
accuracy by eliminating the common biases through a
network of fixed reference stations. ,e real-time kinematic
(RTK) technique is employed based on carrier phase
measurements in [17] to realize centimeter-level accuracy.
Moreover, higher vehicle positioning accuracy is achieved
using the inertial navigation system (INS) in [18, 19].
Nonetheless, the methods mentioned above depend on the
expensive infrastructures or onboard devices. Some scholars
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recently studied cooperative localization-basedmulti-UAVs’
technical possibility to simultaneously reduce costs and
achieve lane-level positioning accuracy [20–22].

,e cooperative localization usually requires two addi-
tional pieces of information to enhance the positioning
accuracy, i.e., Direction-of-Arrival (DOA) and Relative
Distance (RD) between vehicles. Tomic et al. [23] developed
a suboptimal estimator to calculate the location of multiple
targets in a three-dimensional wireless sensor network by
using DOA measurement, whose model is linearized. Wang
et al. presented a DOA estimation method based on sparse
Bayesian learning (SBL) to improve vehicle localization
accuracy [24]. Another study proposed by Yin et al. mea-
sured the RD between the base station and target vehicle by
combining Time Difference of Arrival (TDOA) and Angle of
Arrival (AOA) [25]. Localization errors are reduced by
solving the mean square error matrix.

Also, some researchers attempt to combine the DOA and
RD information by several fusion algorithms to improve the
positioning accuracy. Rohani et al. [26] adopt the particle-
filter probability-statistics method to conduct information
fusion for the distance between the front and rear vehicles to
increase relative position precision. Song et al. [27] develop a
cooperative localization method based on the Bayesian
framework, which uses GPS, distances, and azimuth between
vehicles. ,e effects of vehicle speed, acceleration, and
variable spacing on vehicle localization accuracy are ana-
lyzed. Naseri et al. [28] propose a Message Passing Hybrid
Localization (MPHL) algorithm, a distributed algorithm
based on information propagation andMarkov chainMonte
Carlo sampling. Joint estimation of DOA and RD is con-
ducted to solve the cooperative distributed localization
problem. Additionally, Yin et al. [29] propose a cooperative
multisensor Edge Cloud Cooperative Localization (ECCL)
method, which has relative distance and relative angle ob-
servations from neighbor nodes and absolute coordinate
positioning systems (such as GPS) to obtain relevant in-
formation. A centralized cooperative fusion unit is built in
the cloud to fuse the multiple localization information.

Although the information of DOA, RD, or DOA-RD is
fused by filter algorithms in [23–29], the filter algorithms
may not meet real-time localization performance because of
the computational complexity. ,is paper investigates the
fusion of DOA-RD information without filter algorithms to
achieve the cooperative localization of CAVs in the flyover
environment. ,e localization framework based on least-
squares DOA-RD information fusion is also established.,e
main contributions of this article are threefold. First, host
vehicles’ three-dimensional positioning error model con-
cerning adjacent vehicles in azimuth angle and pitch angle
and intervehicle distances was established. Second, to
eliminate the position errors, a least-square-based linear
localization method is designed by combining relative DOA
and RD measurement information. ,en, in light of the
positioning results obtained by the linear localization
method, a nonlinear calculation method fusing DOA- and
RD-related communication between vehicles is proposed to
optimize cars’ positioning accuracy further. ,e presented
cooperative localization method based on connected and

automated vehicles on the localization accuracy is finally
analyzed.

,e remainder of this paper is organized as follows:
Section 2 introduces the systemmodel and the framework of
cooperative localization. In Section 3, the calculation process
of the cooperative localization optimization algorithm is
presented. Section 4 gives the simulation and results. Section
5 concludes this paper.

2. System Model and Cooperative Localization

,is paper will focus on the cooperative localization of
multiple vehicles by using the DOA and RD information.
,is section will introduce the modeling of cooperative
localization and its fundamental principle.

2.1. System Model. ,e localization in the multistack in-
terchange is challenging due to the intricate positions of the
vehicles. ,is paper will focus on this scenario. Figure 1
shows a typical multistack interaction, where the cars drive
on different levels.

Figure 2 is the simplified model of the cooperative lo-
calization for n vehicles. ,e position of the target vehicle is
Vt � [vxt

, vyt
, vzt

]T, and the position of the assistance vehicle
isVi � [vxi

, vyi
, vzi

]T. Note that only the vehicle with onboard
sensors to measure the DOA and RD could be the assistance
vehicle. Each car could obtain the basic localization infor-
mation using the GNSS. ,e relative DOA between vehicles
are azimuth angles α1, α2, α3, . . . , αi and pitch angles
β1, β2, β3, . . . , βi, while the relative RD between vehicles is
D12, D13, D23, . . . , Dij.

,ere are n CAVs communicating with the target vehicle
to measure the DOA and RD. ,e DOA and RD between
target and assistance vehicles are

αi � arctan
vyt

− vyi

vxt
− vxi

,

βi � arctan
vzt

− vzi���������������������

vxt
− vxi

􏼐 􏼑
2

+ vyt
− vyi

􏼐 􏼑
2

􏽱 ,

Dij �

��������������������������������

vxi
− vxj

􏼒 􏼓
2

+ vyi
− vyj

􏼒 􏼓
2

+ vzi
− vzj

􏼒 􏼓
2

􏽳

,

(i, j � 1, 2, . . . ; i≠ j),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where αi, βi, and Dij are the azimuth, pitch, and intervehicle
distance between the target and assistance vehicles. Besides,
the azimuth angle, pitch angle, and distance between ve-
hicles can be expressed as W � [αi, βi, Dij]

T. Since sensor
noise exists, the system model is depicted as

􏽢αi

􏽢βi

􏽢Dij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

αi

βi

Dij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

εαi

εβi

εDij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (i, j � 1, 2, . . . , n; i≠ j), (2)
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where 􏽢W � [􏽢αi,
􏽢βi,

􏽢Dij]
T is the measurement value of sensors

with noise and εαi
∼ (0, σ2αi

), εβi
∼ (0, σ2βi

), and εDij
∼ (0, σ2Dij

)

are the measurement noise of azimuth angle, pitch angle,
and intervehicle distance, respectively. ,ey are Gaussian
white noises and uncorrelated.

2.2. Cooperative Localization Principle. ,e main idea of
cooperative localization is using the measured azimuth,
pitch angle, and distances between vehicles to improve the
positioning accuracy of all cars in the multivehicle system.
Assuming that the DOA and RD errors are zero, we will
derive the following vehicle positions. Since there exist er-
rors by using GNSS for each vehicle, the position can be
expressed as

􏽢vxi
� vxi

+ εvxi
,

􏽢vyi
� vyi

+ εvyi
,

􏽢vzi
� vzi

+ εvzi
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where εvxi
, εvyi

, and εvzi
represent the localization noise of

GNSS, which are Gaussian white noises.

According to the distance between the CAVs, the lo-
cation of the assistance vehicle i can be calculated by the
target vehicle t, i.e.,

vxi
� vxt

+ Δxi,

vyi
� vyt

+ Δyi,

vzi
� vzt

+ Δzi,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where Δxi, Δyi, and Δzi are the distances in three directions.
Since the measured values are independent of each other, the
measured location of vehicle i is

􏽢vxi
� vxt

+ Δxi + εvxi

,

􏽢vyi
� vyt

+ Δyi + εvyi
,

􏽢vzi
� vzt

+ Δzi + εvzi
.

⎧⎪⎪⎨

⎪⎪⎩
(5)

If the locations are measured by n times, the position of
the target CAV can be obtained as

vxt
�
1
n

􏽘

n

i�1
􏽢vxi

− Δxi − εvxi
􏼒 􏼓,

vyt
�
1
n

􏽘

n

i�1
􏽢vyi

− Δyi − εvyi
􏼒 􏼓,

vzt
�
1
n

􏽘

n

i�1
􏽢vzi

− Δzi − εvzi
􏼒 􏼓.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

At the same time, the variances of the least-squares
method are

Var 􏽢vxt
􏽨 􏽩 �

Var 􏽢vxi
− Δxi − εvxi

􏼔 􏼕

n
�
σ2x
n

,

Var 􏽢vyt
􏽨 􏽩 �

Var 􏽢vyi
− Δyi − εvyi

􏼔 􏼕

n
�
σ2y
n

,

Var 􏽢vzt
􏽨 􏽩 �

Var 􏽢vzi
− Δzi − εvzi

􏼔 􏼕

n
�
σ2z
n

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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Figure 1: CAV driving on the road scene of a flyover.
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Figure 2: Simplified diagram of multiple vehicles.
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,e positioning accuracy of the target vehicle is im-
proved with the increase in the cooperation vehicle number.

3. Cooperative Localization Algorithm Design

,is section will introduce the linear and nonlinear least-
squares optimization methods to improve the positioning
accuracy by fusing the DOA and RD information between
vehicles.

3.1. Vehicle Initial Position. ,e initial position of assistance
vehicle is provided by the GNSS, i.e., Vn0 � [vx10

, vy10
,

vz10
, . . . , vxn0

, vyn0
, vzn0

]T. According to the three-point posi-
tioning principle, the position of the target CAV,
vt0 � [vxt0

, vyt0
, vzt0

]T, can be calculated by using the posi-
tions of two known CAVs and the DOA information be-
tween them. ,en, if two assistance vehicles are selected, the
position of the target CAV is calculated by

vxt0
�

vxi0
tan αi − vxj0

tan αj − vyi0
+ vyj0

tan αi − tan αj

,

vyt0
�
tan αi tan αj vxi0

− vxj0
􏼒 􏼓 − vyi0

tan αj + vyj0
tan αi

tan αi − tan αj

,

vzt0
�
1
2

vzi
+ vzj

− tan βi

���������������������

vxt0
− vxi

􏼐 􏼑
2

+ vxt0
− vxi

􏼐 􏼑
2

􏽲

− tan βi

���������������������

vxt0
− vxi

􏼐 􏼑
2

+ vxt0
− vxi

􏼐 􏼑
2

􏽲

􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

,erefore, the positions of all vehicles are

V0 � vx10
, vy10

, vz10
, . . . , vxn0

, vyn0
, vzn0

, vxt0
, vyt0

, vzt0
􏽨 􏽩

T
. (9)

3.2. Linear Least-SquaresOptimization. Assuming that there
are n CAVs in a flyover scene, the corresponding coordinate
positions in three directions can be set as x

→, y
→, and z

→,
which can be represented as

􏽢x

􏽢y

􏽢z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x
→

y
→

z
→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

ε
x

→

ε
y

→

ε
z

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

,e mean values of ε
x

→ ∼ (0, σ2
x
→), ε

y
→ ∼ (0, σ2

y
→), and

ε
x

→ ∼ (0, σ2
z
→) in the three-dimensional coordinates are zero

while satisfying the uncorrelated white Gaussian noise.
According to equations (2) and (10), we can define

linearized solution observation value ω � [αi, βi, Dij,

x
→

, y
→

, z
→

]T; then,

􏽢ω �

􏽢αi

􏽢βi

􏽢Dij

􏽢x

􏽢y

􏽢z
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�

αi

βi

Dij

x
→

y
→

z
→
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

εαi

εβi

εRij

ε
x

→

ε
y

→

ε
z

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (i, j � 1, 2, . . . , n; i≠ j),

(11)

where 􏽢ω � [􏽢αi,
􏽢βi,

􏽢Dij, 􏽢x, 􏽢y, 􏽢z]T represents the actual mea-
sured value with noise.

According to systemmodel (1), it is necessary to perform
a first-order Taylor expansion at the initial vehicle value V0
(the error of the second order and above is small and can be
ignored). ,e linearization solution is as follows.

Azimuth linearization is

αi ≈ ϕ1ivxi
+ ϕ2ivyi

+ ϕ3ivxt
+ ϕ4ivyt

+ ϕ5i, (12)

where

ϕ1i �
1
c

vyt0
− vyi0

􏼐 􏼑,

ϕ2i � −
1
c

vxt0
− vxi0

􏼐 􏼑,

ϕ3i � −
1
c

vyt0
− vyi0

􏼐 􏼑,

ϕ4i � −
1
c

vxt0
− vxi0

􏼐 􏼑,

ϕ5i � arctan
vyt0

− vyi0

vxt0
− vxi0

,

c � vxt0
− vxi0

􏼐 􏼑
2

+ vyt0
− vyi0

􏼐 􏼑
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Linearization of the pitch angle is

βi ≈ Ψ1ivxi
+ Ψ2ivyi

+ Ψ3ivzi
+ Ψ4ilxt

+ Ψ5ilyt
+ Ψ6ilzt

+ Ψ7i,

(14)
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where

Ψ1i �
1
λ

vxt
− vxj

􏼒 􏼓 vzi0
− vzj0

􏼒 􏼓,

Ψ2i �
1
λ

vyt0
− vyj0

􏼒 􏼓 vzi0
− vzj0

􏼒 􏼓,

Ψ3i � −
1
λ

vxt
− vxj

􏼒 􏼓
2

+ lyt
− vyj

􏼒 􏼓
2
,

Ψ4i � −
1
λ

vxt
− vxj

􏼒 􏼓 vzi0
− vzj0

􏼒 􏼓,

Ψ5i � −
1
λ

vyt0
− vyj0

􏼒 􏼓 vzi0
− vzj0

􏼒 􏼓,

Ψ6i �
1
λ

vxt
− vxj

􏼒 􏼓
2

+ vyt
− vyj

􏼒 􏼓
2
,

Ψ7i � arctan
vzi0

− vzj0������������������������

vxt0
− vxj0

􏼒 􏼓
2

+ vyt0
− vyj0

􏼒 􏼓
2

􏽲 ,

A � vxt0
− vxj0

􏼒 􏼓
2

+ vyt0
− vyj0

􏼒 􏼓
2

+ vzi0
− vzj0

􏼒 􏼓
2
,

B �

���������������������

vxt
− vxj

􏼒 􏼓
2

+ vyt
− vyj

􏼒 􏼓
2

􏽲

,

λ � A∗B.
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(15)

Linearization of vehicle distance can be written as

Dij ≈ μ1ivxi
+ μ2ivyi

+ μ3ivzi
+ μ4ivxt

+ μ5ivyt
+ μ6ivzi

. (16)

,e positions of vehicles can be solved as

V � vx1
, vy1

, vz1
, . . . , vxn

, vyn
, vzn

, vxt
, vyt

, vzt
􏽨 􏽩

T
. (17)

,e relationship of the observation equation
􏽢ω � [􏽢αi,

􏽢βi,
􏽢Dij, 􏽢x, 􏽢y, 􏽢z]T is

􏽢ω � ηV + ψ, (18)

where

η �

R . . . [

. . . ⋱ . . .

F . . . H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R �

ϕ11 ϕ12 0 0 . . .

. . . ϕ1i ϕ2i ϕ3i ⋮

. . . Ψ1i Ψ1i Ψ1i ⋮

. . . μ1i μ2i μ3i ⋮
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,

[ �

0 0 0 ϕ31 ϕ41 0

0 0 0 ϕ3i ϕ4i 0

0 0 0 Ψ1i Ψ5i Ψ6i

μ4i μ5i μ6i . . . 0 0
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,

F �

. . . 0 μ1i μ2i μ3i

1
n

0 0
1
n

. . .

0
1
n

0 0
1
n

0 0
1
n

0 0
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,

H �

μ4i μ5i μ6i 0 0 0

1
n

0 0 0 0 0

. . .
1
n

0 0 0 0

1
n

. . .
1
n

0 0 0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ψ � ϕ51,Ψ71, 0, . . . , 0,ϕ5i,Ψ7i, 0􏼂 􏼃
T

.
(19)

According to Taylor expansion coefficients and constant
terms, least-squares equation (18) is solved as

V � ηTη􏼐 􏼑
−1
ηT

􏽢ω − ψ. (20)

,e high-precision position coordinates of CAVs can be
solved as

V � vx1
, vy1

, vz1
, . . . , vxn

, vyn
, vzn

, vxt
, vyt

, vzt
􏽨 􏽩

T
. (21)

,e position of the target CAV can be solved by
Vt � [vxt

, vyt
, vzt

]T.

3.3. Nonlinear Least-Squares Optimization. ,e nonlinear
optimization algorithm mainly adopts the minimum re-
sidual sum of squares (RSS). Let h(Vt) be the functional
relationship from the position Vt to the observation W. We
can obtain the following equation:

􏽢W � h Vt( 􏼁 + δ, (22)

where 􏽢W is the measured value with noise and
δ � [εαi

, εβi
, εDij

]T (i, j � 1, 2, . . . , n) is Gaussian white noise.
Assuming that the measurement error of each sensor is zero
mean and Gaussian white noise is not correlated with each
other, the positioning error formula is

δ � H · dvt, (23)
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where dvt � [dvxt
, dvyt

, dvzt
]T and H � zh/zvt is the Jaco-

bian matrix as follows:

H �

vxt
− vx1

Dt1

vyt
− vy1

Dt1

vzt
− vz1

Dt1

vy1
− vyt

d
2
1

vxt
− vx1

d
2
1

0

A B
d1

D
2
t1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Also,

A �
− vxt

− vx1
􏼐 􏼑∗ vzt

− vz1
􏼐 􏼑

D
2
t1 ∗ d1

,

Β �
− vyt

− vy1
􏼐 􏼑∗ vzt

− vz1
􏼐 􏼑

D
2
t1 ∗d1

,

d1 � vxt
− vx1

􏼐 􏼑
2

+ vyt
− vy1

􏼐 􏼑
2
.

(25)

Among them, according to 􏽢W � hvxt
+ δ, when the value

of 􏽢W − hvxt
tends to 0, the residual δ reaches a minimum.

When 􏽢W − hv2xt
achieves the minimum value, the optimal

state quantity is obtained, which can be calculated by using
the Gauss–Newton iteration method:

􏽢W � Hj Δvxt􏼐 􏼑j + hvxt􏼐 􏼑j,

Δvxt􏼐 􏼑j � HT
j Hj􏼐 􏼑

−1
HT

j
􏽢W − h vxt􏼐 􏼑j􏼒 􏼓,

vxt+1􏼐 􏼑j � vxt􏼐 􏼑j + Δvxt􏼐 􏼑j,

(26)

where j is the number of iterations.
According to the estimation of the least-squares method,

the root mean square error (RMSE) matrix is obtained:

E dvxtdv
T
xt􏽨 􏽩 � HTH􏼐 􏼑

−1
HTQH HTH􏼐 􏼑

−1
, (27)

where E[dvxtdv
T
xt ], Q is the variance error matrix,

and Q � diag[σε2αi
, σε2βi

, σε2Dij
] (i, j � 1, 2, . . . , n)， where

σεαi
, σεβi

, and σεDij
are the standard deviation of the error for

the azimuth angle, pitch angle, and distance between ve-
hicles. ,e azimuth angle obtains the initial value of the
target CAV V0 � [vx10

, vy10
, vz10

]T, which is treated as the
starting point of the least-squares iteration. By the New-
ton–Raphson method, Δvxt

is continuously iterated until
‖ 􏽢W − hVxt

‖2 reaches the minimum value. ,e target local-
ization can be obtained as the optimal solution.

4. Simulation Results and Discussion

4.1. Simulation Method. We use PreScan-Simulink joint
simulation software to perform Monte Carlo simulations on
the flyover driving scene and analyze the localization

accuracy according to the RMSE. ,e localization accuracy
in the x − y − z direction is defined as follows:

RMSEx �

����������������������

1
M

􏽘

M

i�1

1
N

􏽘

N

j�1
vxit

− vxit true
􏼐 􏼑

2

􏽶
􏽴

,

RMSEy �

����������������������

1
M

􏽘

M

i�1

1
N

􏽘

N

j�1
vyit

− vyit true
􏼐 􏼑

2

􏽶
􏽴

,

RMSEz �

����������������������

1
M

􏽘

M

i�1

1
N

􏽘

N

j�1
vzit

− vzit true
􏼐 􏼑

2

􏽶
􏽴

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

4.2. Simulation Conditions. We set up a flyover scenario to
conduct the simulation analysis. ,e initial positions, di-
rections, and speeds of multi-CAVs have been given. ,e
accuracy of the onboard sensors is shown in Table 1.

4.3. Simulation Results. We can only solve the target CAV’s
localization when using the relative direction information to
obtain the RMSE of the target vehicle. ,e simulation results
show that the single relative direction information cannot
improve each connected vehicle’s localization accuracy. ,e
RMSE result of the target CAV is shown in Figure 3, and the
RMSE statistics of the target CAV are shown in Table 2.

In single relative direction information, the RMSE after
linearization is solved by the least-squares method. ,e
RMSE obtained by the linear optimization solution method
is shown in Figure 4, and the RMSE statistics are shown in
Table 3.

When the target CAV’s initial position is obtained by
single relative direction information, the RMSE of the target
CAV is obtained as shown in Figure 5 through combining
the least-squares method with the nonlinear optimization
method, and the RMSE statistics are shown in Table 4.

When the target CAV’s initial position is obtained by
relative-direction finding and ranging, the nonlinear opti-
mization algorithm solves the RMSE of the target CAV. ,e
simulation results are shown in Figure 6, and the RMSE
statistics are shown in Table 5.

4.4. Analysis of Factors Affecting Localization Accuracy.
Vehicle speed is one of the most important factors for road
safety. ,erefore, the reasonable target speeds of CAVs and
the distance between the assistance CAVs are necessary to
guarantee the flyover scenario’s driving safety. ,e
localization accuracies of the target CAV under different
conditions are simulated and analyzed by using the linear
least-squares fusion algorithm. ,e simulation results are
shown in Figures 7–9. In Figure 7, two assistance CAVs are
assumed driving on the road with constant speeds of
30 km/h and the distance between them is 100m. ,e
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Table 1: Sensor measurement accuracy.

Type Azimuth accuracy (°) Ranging accuracy (m) Self-localization accuracy (m)
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Figure 3: RMSE of the relative DOA solution for the target CAV.

Table 2: RMSE statistics of direction-finding solution for target CAV.

x-label (m) y-label (m) z-label (m)
RMSE 8.0960 8.1532 9.7026
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Figure 4: RMSE of linear optimization solution.
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Figure 5: ,e RMSE of the downward nonlinear optimization solution.

Table 4: RMSE statistics of the target CAV measuring downward nonlinear solution.

x-label (m) y-label (m) z-label (m)
RMSE 4.5475 4.6351 4.9571
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Figure 6: RMSE of nonlinear optimization solution under direction finding and ranging.

Table 3: RMSE statistics for linear optimization to solve the target CAV.

x-label (m) y-label (m) z-label (m)
RMSE 6.361 7.0571 7.3956
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velocity of target CAV is changed between 10 and 80 km/h.
In Figure 8, the target CAV and the assistance CAVs are
hypothesized to run along different roads and the relative
speeds of assistance vehicles vary from 10 km/h to 80 km/h.
,e previous figure changes the distance between the as-
sistance CAVs from 20m to 200m. Note that the cooper-
ative positioning method proposed in this paper is based on
the azimuth and the distance between the assistance CAVs.
,erefore, similar to the spatial three-point positioning
principle, at least two assistance CAVs are needed to

complete the cooperative positioning of the host vehicle in
the application.

From Figures 7 and 8, we can see that both the host
vehicle speed and the relative speeds of assistance vehicles
can affect the position accuracy of the host vehicle and the
location accuracy is weakened with augments of these two
factors. By observing Figure 9, one can get that the posi-
tioning error of the host vehicle decreases first and then
increases and reaches the lowest point between 80 km/h and
120 km/h. When the distance between two assistance CAVs
is 20m, a significant positioning error occurs because the
GNSS system works. However, with the functioning of the
cooperative location method, the positioning error is
gradually reduced and the positioning error is less than 5m
at between 80 km/h and 120 km/h. As the distance between
the two cars grows, the localization accuracy of the target
CAV decreases, possibly due to the phenomena of com-
munication delay and data dropout in vehicle-to-vehicle
wireless communication networks. ,erefore, the changing
trend of target vehicle positioning RMSE is finally shown in
Figure 9.

4.5. Result Analysis. By Figures 3–6, the average value of
vehicle localization errors is calculated and a method to
reduce the error percentage is proposed. When the self-
localization accuracy of CAVs given by the simulation is
10m, the result shows the following:

(1) When only relative DOA is employed to obtain the
localization of the target CAV, the low-accuracy
position values of CAVs are directly used for cal-
culation. Due to the low accuracy of the comparative
DOA method, the positioning error of the target
CAV is about 9–12m, unable to improve the lo-
calization accuracy of the CAVs.

(2) ,e least-squares method linearization optimization
for solving the localization of the target CAV can be
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Figure 7: RMSE of speed change to the target CAV.
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Figure 8: RMSE of the speed change of the multivehicles to the
target CAV.
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Figure 9: Effect of assistance CAV distance on target CAV lo-
calization accuracy.

Table 5: RMSE statistics of nonlinear optimization solution under
direction finding and ranging.

x-label (m) y-label (m) z-label (m)
RMSE 0.6174 0.6935 0.8287
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concluded that the target CAV’s localization error is
about 5–7m, which improves the target’s localiza-
tion accuracy of CAV.

(3) Using the least-squares linearization optimization
solution method combining relative DOA and rel-
ative RDmeasurement, the target CAV’s localization
value is about 4–5m. Compared with direct line-
arization, the accuracy is improved by 25%.

(4) Using the nonlinear optimization solutionmethod of
the least-squares method combining relative DOA
and relative RD measurement, the target CAV’s
localization value is about 3–4m. Compared with the
linear optimization solution method, the improve-
ment of the least-squares method nonlinear opti-
mization solution method is about 22%.

(5) ,e localization accuracy of the target CAV among
the multi-CAVs decreases and increases as the dis-
tance of the assistance multi-CAVs increases. When
the assistance CAV space is 100–120m, the locali-
zation error reaches the minimum.

5. Conclusion

,is paper studies the localization accuracy of the CAV in
the flyover scenario when the accurate localization infor-
mation of the vehicle is hard to obtain. ,e fusion algo-
rithm that assists the relative DOA and relative RD
measurement of multi-CAVs for cooperative localization is
also researched. Using nonlinear optimization estimation
and linearized least-squares estimation algorithm, the
simulation results show that the proposed method im-
proves the localization accuracy of the target CAV in road
scenes such as flyover without increasing infrastructure
costs. It can also conclude that reducing the CAV speed in
the multivehicle cooperative of the CAV can increase the
localization accuracy of the vehicle and enable driving.
Reducing the distance between the assistance CAVs can
increase the localization accuracy of the target CAV. ,is
method is used for the cooperative localization of multi-
vehicles in the flyover road scene. It can also be used for
multi-aircraft combined attacks or target tracking in
aerospace.
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