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Computer-aided modeling and simulation are a crucial step in developing, integrating, and optimizing unit operations and
subsequently the entire processes in the chemical/pharmaceutical industry. This study details two methods of reducing the
computational time to solve complex process models, namely, the population balance model which given the source terms can be
very computationally intensive. Population balancemodels are also widely used to describe the time evolutions and distributions of
many particulate processes, and its efficient and quick simulation would be very beneficial. The first method illustrates utilization
of MATLAB’s Parallel Computing Toolbox (PCT) and the second method makes use of another toolbox, JACKET, to speed up
computations on theCPU andGPU, respectively. Results indicate significant reduction in computational time for the same accuracy
using multicore CPUs. Many-core platforms such as GPUs are also promising towards computational time reduction for larger
problems despite the limitations of lower clock speed and device memory.This lends credence to the use of highfidelity models (in
place of reduced order models) for control and optimization of particulate processes.

1. Introduction

Modeling and simulation are powerful tools universally
employed in designing, analyzing, and controlling particulate
processes. These particulate processes such as crystallization,
granulation, milling, and polymerization are some of the
major unit operations carried out in the manufacture of
bulk commercial products like pharmaceuticals, detergents,
fertilizers, and polymers. Research work focusing on the
modeling and simulation of these particulate processes,
specifically those involving granular materials, has been
growing at a steady pace over the last few decades [1–3].
This is a significant achievement in itself, considering the fact
that these systems are inherently dynamic in behavior and
are driven by complex microscale phenomena [4]. Although
the underlying mechanisms of such processes are yet to be
thoroughly grasped, granulation, a particle design process, is
one such area where substantial progress has been made over
the years [5]. The approaches for modeling such systems are
as numerous as they are varied: Discrete Element Modeling
(DEM) [6], Population Balance Modeling (PBM) [3, 7–13],
hybrid models by combining PBM with DEM [14], PBM

with Volume of Fluid (VoF) methods [15], and PBM with
Computational Fluid Dynamics (CFD) [16], to name a few.
Of the aforementioned, the most widely used are the DEM
andPBMmethods. Population Balance (PB)models aremore
suited to simulate a very large number of particles over
lengthy time periods due to the semimechanistic approach
(compared to more mechanistic approaches such as DEM
and VoF) it utilizes to describe the dynamics of granulation
processes [17]. Because of these advantages, PBMoffers a very
efficient manner of developing a comprehensive model of a
granulation process, which can be simulated within a realistic
time frame to be further used in control and optimization
[18], since it provides a convenient mathematical framework
whereby the detail of the model is user specific and depends
on the kernel formulations specified by the user [7].

However, as with all model-based simulations, the util-
ity of the PBM technique depends on the computational
expenses it incurs in terms of run time and hardware
resources. In addition to increased numerical accuracy, the
need for speed has always been a demand for the scientific
community to handle larger and more complex problems as
well as the industrial community who use process models to
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study their processes in silico.This is demonstrable by the fact
that even in a high-level language environment like MAT-
LAB, the computational load increases almost polynomially
on increasing the dimensionality of a system, leading to
longer run times. MATLAB is one of the preferred languages
of development for scientific computing due to the ease with
which algorithms can be developed and prototyped, which
in turn is enabled by its array-based semantics, powerful
visualization capabilities, and subject-specific toolboxes, all
encased in an integrated framework [19]. While MATLAB
excels on the “ease of programmability” and “portability”
fronts, it has been found to be lacking in the “performance”
department [20]. This is partly due to the abnormally high
memory requirements of modern scientific applications, and
partly due to the fact that MATLAB itself consumes a sizable
portion of the system memory. In addition, a MATLAB
code for a distributed process such as granulation typically
has several nested for loops and multiple operations over
large data sets that are executed “serially” or “sequentially”
by default, drastically bringing down the rate of simulation.
Further discussion of observed execution bottlenecks in a
PBM code can be found in the next section. Although
researchers are continuously upgrading their hardware to
include the latest CPUs (Central ProcessingUnits) and higher
amounts of RAM (RandomAccessMemory) in an attempt to
improve calculation efficiencies, most of them do not develop
codes that fully leverage the parallel processing capabilities
of the current generation of multicore/multiprocessor CPUs.
Furthermore, due to limitations on the power density that can
be supplied, attainable peakCPU clock frequency is restricted
(6GHz for an Intel Core i5 [21]).

By parallelizing an existing code, the programmer is able
to circumvent the restriction of running a code sequentially
on one core and in addition exploit other massively parallel
processors like the GPU (Graphics Processing Unit) [22].
Since 2006, MATLAB comes standard with a toolbox for
this purpose called the Parallel Computing Toolbox (PCT),
although for GPU computation, the toolbox from “Accel-
ereyes inc.” named “JACKET” is chosen as it clearly outper-
forms MATLAB’s built-in capabilities [23]. There has been
some recent work on the parallelization of PBM simulations
prior to this study. Gunawan et al. formulated an efficient way
of parallelizing High-Resolution Finite Volume- (HRFV-)
solved PBEs by assigning the operations on particles in the
first half of the size range that were more computationally
intensive to processors of greater rank and operations on the
other size range half of decreasing load intensity to higher
ranked processors [24]. Their strategy enabled efficient load
distribution and resulted in a near linear speedup. More
recently, Ganesan and Tobiska [25] built upon this work by
developing a finite element approach of splitting the PBE
dimensionally into spatial and internal coordinates, permit-
ting the problem to be parallelized easily without the need for
load balancing. Both papers outlined innovative techniques
for parallelization of a PBM for multiple processing units.
This paper intends to provide a means of significantly
mitigating the handicaps of PB simulations by demonstrating
how parallel processing capabilities of multicore CPUs, as
well as GPUs, can be harnessed within a high-level language

environment like MATLAB by using both in-built func-
tionalities as well as third-party toolboxes. The focus here
will not be on developing specialized parallel codes from
the ground up that will eventually be application and/or
hardware limited, but rather provide the modelling and
research community at large with the aforesaid tools to
parallelize their codes withminimum effort. GPU computing
has also been applied to mixing processes described by DEM
as seen in the work of Radeke et al. [26] thus confirming
its usefulness in mitigating computational times of complex
process models.

2. Background

2.1. Population Balance Models. Population balance models
have traditionally been one dimensional described by a single
intrinsic property such as particle size [27]. A general form
of the population balance equation (1) highlighting the
temporal variation of the distribution of one ormore intrinsic
properties is given as follows [28]:

𝜕𝐹

𝜕𝑡
(x, 𝑡) + 𝜕

𝜕x
[𝐹 (x, 𝑡) 𝑑x

𝑑𝑡
] = Rformation (x, 𝑡)

−Rdepletion (x, 𝑡) ,
(1)

where𝐹 is the particle number distribution and x is the vector
of internal coordinates, which are of interest for studying the
process.Rformation andRdepletion represent the net formation
and depletion rates of particles occurring from all discrete
granulationmechanisms such as aggregation, nucleation, and
breakage.

However, dependence on particle size only was found to
be inadequate in characterizing the variability in granulation
behavior and thereafter, other factors like granule porosity
were also found to exert a dominating effect on the process
[29, 30]. Consequently, in addition to granule size, binder
content and granule porosity are typically selected as
decisive factors in optimizing and controlling the process, as
evidenced in the current research on granulation [11], which
involves model development within a three-dimensional
population balance framework. Verkoeijen et al. [31] had
previously described an efficient way of implementing
such a framework by expressing the intrinsic properties of
granules—that is, the volume of solids 𝑠, volume of liquid 𝑙,
and volume of gas 𝑔—as a vector in volume space with three
coordinates, that is, 𝑠, 𝑙, and 𝑔. Particle internal coordinates
(2) are now represented as

x = [𝑠 𝑙 𝑔] , (2)

where each of these three coordinates (𝑠, 𝑙, 𝑔) comprises
unique distributions of phase volumes (solid, liquid, or gas)
of all particles belonging to a predefined volume class, and
can therefore be represented as three separate discretized
domains or “grids,” containing the distributions. These grids
are composed of “bins” that denote the volume classes to
the particles present in the population. The first bin in the
solid volume grid represents the particles that have the least
solid content. This way, the individual solid volumes of
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the particles can be represented by allocating them in the
corresponding bins. The same principles apply to the other
two phase fraction grids, liquid (𝑙) and gas (𝑔). From now on,
the term “grid size” will be used to refer to the total number
of bins in a grid. This approach has two important benefits:
(a) it enables decoupling of individual mesoscopic processes
like aggregation, consolidation, and layering; (b) it improves
the numerical solution of the aggregation model due to the
mutually exclusive nature of the internal coordinates [7].
This 3-dimensional model can now describe changes in the
volume distribution of particle volume with respect to time
[3], as follows:

𝜕

𝜕𝑡
𝐹 (𝑠, 𝑙, 𝑔, 𝑡) +

𝜕

𝜕𝑔
[𝐹 (𝑠, 𝑙, 𝑔, 𝑡)

𝑑𝑔

𝑑𝑡
]

+
𝜕

𝜕𝑠
[𝐹 (𝑠, 𝑙, 𝑔, 𝑡)

𝑑𝑠

𝑑𝑡
] +

𝜕

𝜕𝑙
[𝐹 (𝑠, 𝑙, 𝑔, 𝑡)

𝑑𝑙

𝑑𝑡
]

= Raggregation +Rbreakage +Rnucleation ,

(3)

where 𝐹(𝑠, 𝑙, 𝑔, 𝑡) represents the population density function
such that 𝐹(𝑠, 𝑙, 𝑔, 𝑡)𝑑𝑠 𝑑𝑙 𝑑𝑔 is the moles of granules with
solid volume between 𝑠 and 𝑠 + 𝑑𝑠, liquid volume between
𝑙 and 𝑙 +𝑑𝑙, and gas volume between 𝑔 and 𝑔+𝑑𝑔. The partial
derivative term with respect to 𝑠 accounts for the layering
of fines onto the granule surfaces; the term with respect to
𝑙 accounts for the drying of the binder and the rewetting of
granules; the term with respect to 𝑔 accounts for consolida-
tion, which, due to compaction of the granules, results in a
continuous decrease in pore volume and an increase in pore
saturation. On the right-hand side, the Rbreakage term com-
prises a breakage kernel and a breakage function;Rnucleation
accounts for the rate of nucleation of newparticles.Rnucleation
andRbreakage are not utilized in this study and therefore not
described in more detail. The authors would like to direct
the readers to Poon et al. [8] and Ramachandran et al. [3]
for their descriptions.Raggregation (4)–(6) takes into account
the formation/depletion of granules due to aggregation, for
which the terms have been defined in the literature [32] as

Ragg (𝑠, 𝑙, 𝑔, 𝑡) = Ragg
formation

−Ragg
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, (4)

Ragg
formation

=
1

2
∫

𝑠−𝑠nuc

𝑠nuc

∫

𝑙max

0

∫

𝑔max

0

𝛽 (𝑠
󸀠

, 𝑠 − 𝑠
󸀠

, 𝑙
󸀠

, 𝑙 − 𝑙
󸀠

, 𝑔
󸀠

, 𝑔 − 𝑔
󸀠

)

× 𝐹 (𝑠
󸀠

, 𝑙
󸀠

, 𝑔
󸀠

, 𝑡)

× 𝐹 (𝑠
󸀠

, 𝑠 − 𝑠
󸀠

, 𝑙
󸀠

, 𝑙 − 𝑙
󸀠

, 𝑔
󸀠

, 𝑔 − 𝑔
󸀠

, 𝑡) 𝑑𝑠
󸀠

𝑑𝑙
󸀠

𝑑𝑔
󸀠

,

(5)
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where 𝑠nuc is the solid volume of nuclei and 𝛽(𝑠󸀠, 𝑠 − 𝑠󸀠, 𝑙󸀠, 𝑙 −
𝑙
󸀠

, 𝑔
󸀠

, 𝑔 − 𝑔
󸀠

) is the size-dependent aggregation kernel that
signifies the rate constant for aggregation of two granules of
internal coordinates (𝑠󸀠, 𝑙󸀠, 𝑔󸀠) and (𝑠 − 𝑠󸀠, 𝑙 − 𝑙󸀠, 𝑔 − 𝑔󸀠).

2.2. Parallel Computing for the CPU and GPU. To speed up
calculations, a single problem or “task” is split into multiple
subtasks, which are executed simultaneously onmultiple pro-
cessors.Thismethod of programexecution is termed “parallel
computing” or “parallel processing” as opposed to “serial” or
“sequential” execution, and developing scripts that leverage
this style of execution is called “parallel programming” [33].
In the current generation of multicore processors, there are
multiple independent processing units called “cores” which
carry out a set of instructions. A single processor can consist
of many such cores, with each core capable of executing
an instruction set. Although a “core” refers to the physical
component providing parallelism, in general it can alsomean
a thread (a piece of software) or a processor or even a
machine (on a network) executing a stream of instructions
[34]. For instance, the Intel Core i7-2600K processor has four
physical cores, each with two threads raising the number
of (logical) cores to eight [35]. The fundamental concept
behind parallel programming is that 𝑛 cores/processors
should provide a peak speedup of 𝑛 times over just one
core/processor. However, such gains in simulation time are
at best theoretical, simply because the time needed for data
transfer and synchronization to, from, and between cores
negate’s any benefit in speedup [36]. Depending on the
hardware architecture of the parallel computer and implicitly,
the level of communication required, several parallel pro-
gramming models have been established, an elucidation of
which can be found in the literature [37, 38].Themost widely
used approaches are task parallelism, data parallelism, and
distributed memory/message passing model. An elaborate
explanation of each model is beyond the scope of this paper,
so simple definitions and possible modes of implementation
are provided instead [39, 40].

(i) Task parallelism is achieved by assigning each task (or
subtask) to a unique core or thread (threads model)
and finally splitting or combining the data stream at
the end. Implementation: POSIX threads, Open MP.

(ii) Data parallelism involves dividing a large amount of
data into sections across cores, each of which is then
operated upon by the same task within each core.
Implementation: Fortran 90 and 95.

(iii) In message passing, each subtask has its own local
memory on the core and exchanges data between
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cores through messages. Programmer must explicitly
determine the level of parallelism. Implementation:
Message Passing Interface (MPI).

2.2.1. CPU Architecture and Parallel Programming. Comput-
ing architecture can be classified, based on Flynn’s scheme
[41], as single instruction, single data (SISD); multiple
instruction, single data (MISD); single instruction, multiple
data (SIMD); or multiple instruction, multiple data (MIMD)
systems. The current generation of Intel processors like the
Core i7 falls in the MIMD category but utilizes SISD (single
instruction, single data) processing units at the lowest level
[42]. There are three common approaches to implement par-
allel execution on these system: SIMD (SSE) instructions
operating on multiple data sets in parallel with a sin-
gle instruction stream; simultaneous multithreading (SMT),
popularly called “hyperthreading”; or as is now generally
preferred through custom libraries or “toolboxes” like MAT-
LAB’s Parallel Computing Toolbox (PCT). PCT enables the
developer to take advantage of multicore processors, GPUs,
and computer clusters by making available high-level con-
structs such as parallel for loops parfor, specialized arrays
(distributed and codistributed arrays), and preparallelized
numerical algorithms. This allows the programmer to focus
on building the algorithm andnot onmicromanaging parallel
communication between cores, which are taken care of by
MATLAB behind the scenes. These parallel programming
constructs will function in the same way, independent of the
underlying hardware component being used, whether it is a
multicore desktop via PCT, or on a network of computers
(computer cluster) via PCT with the MATLAB Distributed
Computing Server (MDCS) package [43].

In MATLAB, each task is handled by an independent
instance ofMATLAB called aworker or lab that runs as a sep-
arate system process. Communication to, from, and between
these workers is handled by the client instance of MATLAB.
These labs are executed on cores, but their number need
not correspond to the number of cores present on a device.
In addition to an implicit low-level multithreading that is
built into MATLAB, there are explicit methods of parallelism
available to the developer aswell [44].Theparfor keyword is
perhaps the easiest way to achieve parallelism in an existing
code with little modification. Just replacing the (preferably)
outermost for with a parfor in a for-loop results in
substantial speedup, sometimes proportional to the number
of cores depending on the problem. The job of distributing
iterations and collecting end results is handled by MATLAB
without any requirement for explicit commands from the
programmer. But this gain is soon lost when the number
of labs exceeds the number of cores, since communication
overhead is always higher between threads than cores [45].
Another explicit approach to parallelize a code is by using
the SPMD keyword. SPMD (Single ProgramMultiple Data) is a
high-level construct that can be built upon a combination of
the aforementioned task, data, and message passing types of
parallelism. EachMATLAB worker is assigned the same pro-
gram, which operates on different arrays or different sections
of a very large data array, hence the term “Single Program

Multiple Data.” Furthermore, if data exchange and synchro-
nization between the workers is desired, functions based
on the Message Passing Interface (MPI) library [46] like
LabSend() and LabReceive() are available in conjunction with
theSPMD keyword.Other forms of explicit parallelism include
distributed and codistributed arrays, which will not be
considered in this paper. For any of the constructs described
before are to be implemented, a matlabpool open command
must be issued beforehand in order for the client session to
establish a connection with available workers. For further
information on PCT constructs and their implementation we
refer to the appropriate section of the MATLABmanual [43].

2.2.2. GPU Architecture and Parallel Programming. TheGPU
is an excellent example of the SIMD design paradigm. A
GPU is organized as an array of many cores, or as NVIDIA
describes, “streamingmultiprocessors’’ (SMs). Each SM has a
certain number of ALU (Arithmetic and Logic) units called
streaming processors (SPs), which share a common control
logic and instruction cache. While the CPU design paradigm
boasts excellent performance in sequential operations, the
presence of a complex control logic and large cache memory
limits the maximum speed achievable in gigaflops [47]. The
GPU control logic systems, on the other hand, are not as
bulky, with the GPU themselves fabricated as relatively wide
SIMD vectors, increasing their parallel processing capacity.
Owing to their architecture, GPUs are specialized for data-
parallel calculations, unlike MIMD-based platforms like the
Core i7 which are suitable for task-parallel, data-parallel and,
message passing applications. The GPU card used in this
investigation was a GeForce GTX 280 with 240 SPs/ALUs,
each of nearly 1.3 GHz frequency. Each SM has 1024 threads,
bringing the total to 30,720 threads within a single GPU [48].

To program these massively parallel architectures,
NVIDIA developed the Compute Unified Device Architec-
ture (CUDA), which was released in 2006, permitting high-
level programmabilitywithin theC language [49]. CUDAwas
built upon the three key abstractions of hierarchy of threaded
groups, shared memories, and barrier synchronization.
CUDA, in conjunction with an Application Program Inter-
face (API), greatly simplifies the process of GPU program-
ming by transforming CPU code written using C, CUDA
FORTRAN, OpenCL, or DirectCompute into GPU prim-
itives. There are a number of custom libraries available to a
GPU programmer in addition to MATLAB’s own built-in
support via PCT like GPUmat by the GP-you group and
JACKET by the Accelereyes corporation. For this investiga-
tion, we decided to go with JACKET because of its extensive
collection of GPU-ready functions and better performance
when compared to the other products [50, 51]. JACKET is
a third-party MATLAB toolbox acting as a wrapper around
CUDA transforming MATLAB functions into GPU func-
tions at the basic level by converting CPU data structures into
GPU types. This retains MATLAB’s interpretive program-
ming style while providing real-time, transparent access to
the CUDA compiler [52]. Of all the available constructs, the
gfor construct (similar to the PCT’s parfor) was applied as
it offered the easiest and most efficient way for parallelizing
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for loops to run on the GPU. It executes for loops in parallel
by distributing the values of all loop iterations across GPU
cores and subsequently executing calculations on each core
in a single pass, resulting in considerable speedup. It must
be kept in mind that for both the CPU and GPU, ideal
parallelism is attained only if a task can be divided into a
number mutually exclusive subtasks, which could then be
executed independently of each other on separate cores.
This kind of problem is termed as “embarrassingly parallel”
[36]. In reality, most problems lie somewhere between this
extreme and the “annoyingly sequential” extreme.

3. Model Parallelization Strategy

Parallelization of the code with respect to both the CPU
and GPU involved the SPMD approach (outlined in the
previous section) combining both data- and task-parallel
styles of programming. Though the bulk of the PBM code is
“annoyingly sequential” in nature, it is less computationally
intensive than the aggregation kernel, which is where the
potential for parallelism exists. The aggregation kernel,
(assuming a three dimensional form that is required by
particulate processes such as granulation) typically comprises
6 nested for loops, with two sets of three loops each, to
account for interactions between the 𝑠, 𝑙, and 𝑔 fractions of
two colliding particles in a bin. Since each MATLAB worker
is designed to operate independently of each other with all
communications handled by the client instance, the best
approach is to decompose the index space adequately by
a process known as loop slicing [53]. The first step in the
process is to identify loop axes (a range of loop index values)
capable of functioning as indices for parallelism, followed
by assigning these loop axes to available MATLAB workers,
numlabs, (preferably equal to the number of cores on the
parallel device) by means of labindex. Numlabs returns
the number of workers open in a given matlabpool session,
while labindex returns the currently executing worker’s
index. Loop orders may be switched for efficient memory
access patterns and axes may be further sliced if the device
memory is found to be insufficient for a given loop size.

For the purpose of this study, a 3D population balance
model based on (3) was developed with the following simpli-
fications:

(i) aggregation as the only source term, eliminating
breakage and nucleation terms (𝑠nuc = 0);

(ii) “growth terms”: drying/rewetting, layering, and con-
solidation are neglected;

(iii) an empirical aggregation kernel proposed by Madec
et al. [54] is used,

yielding the following PBE (7). Please see Appendix A for
details of the aggregation kernel used andAppendix D for the
numerical solution of the PBM based on a hierarchical two-
tiered algorithm proposed by Immanuel and Doyle III [55]:

𝜕

𝜕𝑡
𝐹 (𝑠, 𝑙, 𝑔, 𝑡) = Raggregation . (7)

Thiswas done to highlight the improvement in simulation
speed achieved by parallelizing only the formation/depletion

code blocks of a PBM script, which tend to be the most
computationally intensive. It was observed that removing the
formation and depletion terms associated with aggregation
from a PBM code (that considered all mechanisms) resulted
in only a 20% faster simulation time, proving that aggregation
is indeed the primary computational bottleneck.This is due to
the presence ofmultiple “nested for loops,” prominently those
that account for the integral equations (5) and (6) running
sequentially on a singleCPUcore. In otherwords, broadening
the range of each loop index causes individual iterations
to run slower. Additionally, there are numerous such for-
loops and sequential sections of code performing calcula-
tions independently of each other that can be parallelized.
Increasing the number of bins/grids in each dimension with
respect to 𝑠, 𝑙, and 𝑔, while raising the dimensionality of the
system, also slows down the code execution considerably.
This is also termed the curse of dimensionality phenomenon.
Although it is preferred to use a higher grid size for an
accurate representation of the system, the aforementioned
shortcomings curb the degree of flexibility available to a
researcher and/or industrial practitioner. Therefore, there is
much potential for speedup in parallelizing these loops to run
simultaneously on all cores/processors present on the device.

Following the procedure just described, execution of
the aggregation kernel can be parallelized by “slicing” the
outermost loop:
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(8)

where

upper
𝑛
=

𝑠 − 𝑠nuc
numlabs

× labindex. (9)

JACKET’s gfor employs an algorithm similar to the one
above to distribute sections of a for-loop on aGPU, so the pro-
grammer does not have to explicitly manage communication
to, from, and between workers. The approach just described,
loop slicing, allows greater control of data distribution across
workers, reducing the demand for system resources over time
in a “smoothed-out” fashion [56]. Besides the data-parallel
approach, another, more straightforward divide-and-conquer
method involves task parallelism. Implementations of task
parallelism are generally done through the fork-join model,
described in Refianti et al. [57], which relies on multiple
threads executing blocks of sequential code to achieve paral-
lelism. Here, a multiprogramming style was adopted in order
to easily achieve coarse-grained (meaning fewer, but larger
tasks) parallelismwith consecutive, but independent sections
of the code being mapped onto different threads and task
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scheduling done at the time of compilation, that is, statically.
A major shortcoming of this approach is the static nature
of task distribution which leaves the granular complexity of
task unbounded. A task with unbounded or variable task
size means inefficient CPU usage, since every task runs for
different periods of time depending on the size of the problem
and consequently exit workers at different times [58].

Both the task- and data-parallel approaches follow the
same algorithm: at the start of the simulation, only the MAT-
LAB client instance is actively processing code sequentially.
On seeing an SPMD keyword, the code then forks off function
calls onto idle workers in a parallel manner. With every
worker active, execution of the allocated serial tasks now
begins asynchronously. After all the workers have completed
their respective tasks, they return their results to the client
instance as Composite types, which can then be cast back
to regular CPU single or double types and subsequently
rejoined. To sum up, the procedure followed herein for par-
allelizing PBMs involved three steps: locating portions of the
code that are most time consuming with tools like MATLAB
profiler; applying one of the aforementioned approaches for
parallelism as appropriate; and finally optimizing forminimal
variable transfer overhead.

4. Results and Discussion

4.1. Comparing CPU-for, GPU-for, and GPU-gfor Execu-
tion. The first set of simulations was conducted to compare
the speed gains obtained by running the case with only
aggregation PBM code, based on (7), first on a GPU and
then a single CPU core. For the GPU, two parallel versions
of this code were investigated: in one case, standard for-
loops were executed on the GPU (termed the “gpu-for”
version) and in the other, termed the gfor version, JACKET’s
gfor constructs were used instead. The CPU version was
left unparallelized, that is, with regular for-loops, to execute
sequentially on a single MATLAB worker. Simulation was
carried out on amachinewith a Core2QuadQ6600 processor
(2.4GHz clock, 4 cores, no threads), 4GB of RAM (2GB
× 2 sticks), and an NVIDIA GeForce GTX 280 GPU (240
CUDA cores, 1296MHz processor clock, 1 GB memory).
Results from the simulation of each of these three cases
were first validated by comparing bulk property plots of total
number of particles versus time, total volume versus time, and
average diameter versus time after the final time step to verify
uniformity. This was followed by plotting the time taken to
simulate each case versus grid size and then the speedup ratio
versus grid size. The ratios were calculated as

Ratio =
single CPU time

gfor time
(10)

or

Ratio = GPU fortime
gfor time

. (11)

From the curves depicting temporal evolution of granule
properties (Figure 1), it is clear that numerical accuracy of the
computations was not compromised during execution either

on the CPU or GPU, as the curves in each plot coincide
perfectly with one another. As expected, the total number
of particles (Figure 1(a)) decreases at a constant rate due to
aggregation, wherein the collision (and therefore, depletion)
of two particles leads to the formation of a new one by coa-
lescence [8]. An analysis of the total volume plot, Figure 1(b),
predictably reveals constant value lines considering the fact
that total mass/volume is conserved in the system; that is,
no particles are either added to or removed from the system
during the process. The volume of a new, larger granule is
equal to the sum of the volumes of the smaller coalescing
particles that formed it. By extension, this is the reason
why the average granule diameter plot, Figure 1(c), shows
a proportional increase in the size of granules over time.
Calculations for these bulk properties are the same for all
simulation cases and can be found in Appendix E.

The simulation time versus grid size curves, Figure 2(a),
show the single-worker CPU version of the code to be much
faster than its GPU counterparts, with the slowest of the set
being the code with GPU-for-loops, followed by the gfor
loop version. It must be noted that the GPU is a stand-alone
device and does not share its memory with the host (CPU)
or provide a means for virtual memory addressing. In other
words, data will not be communicated automatically between
the host and the device memories, but rather explicitly
invoked. This causes severe memory transfer overheads each
time a variable is copied to and from the GPU across the PCI-
E bus [59], which is why the GPU versions are drastically
slower than their CPU counterparts. Furthermore, while the
INTEL Core2Quad Q6600 CPU can achieve processor clock
speeds of 2.4GHz, the GPU core clocks in significantly lower
at 1.3 GHz forcing the same computations to take longer to
run on theGPU. As anticipated, the codewith gfor ran faster
than just for on the GPU owing to gfor’s inherent ability
to schedule and control loop distribution. This speedup is
readily discerned in Figure 2(c), with the ratio calculated
by (11). Although preliminary results indicate that CPUs
are better than GPUs for this program, the trend quickly
reverses as we increase the size of the grid (and implicitly,
the resolution of the system) beyond “11”, as suggested in
Figure 2(b).The steady increase in the ratio (10) curve implies
that the simulation time curves for gfor and CPU-for are
converging and will eventually meet at some particular grid
size, after which the GPU will perform significantly better
than the CPU in a progressive manner. Beyond a grid size of
20 it became impractical to run the code for extensive periods
of time, and therefore further investigations were not carried
out.The initial drop seen in the CPU for curve in Figure 2(a)
and in Figure 2(b) is an anomaly shown to be reproducible
even after initiating the simulation at various grid size values
and is probably due to an initial memory overhead during the
“warm-up” of the CPU before commencing code execution.
In addition to the aforementioned hardware limitations of the
GPU, JACKET’s execution of a script is not transparent to
the programmer, and capabilities in terms of benchmarking,
assigning tasks to specific thread blocks, and controlling
memory access patterns are nonexistent. Future work will
involve building a GPU-efficient code from the ground up,
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Figure 1: Comparison of temporal evolution of granule physical properties simulated using gfor, GPU-for, and CPU-for.

which will lend itself better to parallelization in conjunction
with constructs like gfor.

4.2. Comparing Single CPU and SPMD Execution. Next, a
comparison of the simulation times for the PBM code to
run on a single worker sequentially and then on multiple
workers was done, followed by plotting the speedup gained.
Prior to execution, the code was “streamlined” to efficiently
search for and perform computations on relevant particle-
containing bins in a grid, unlike the version employed in
the previous section which looped over all bins irrespective
of whether particles were present. This optimization was
carried out to eliminate the time spent on unnecessary

calculations, specifically with respect to empty bins. The
GPU version could not be streamlined since our version
of JACKET did not allow for conditional branching within
gfor-loops [52]. Parallelism was attained with the loop
slicing technique described in Section 3. The formation and
depletion loops were sliced in accordance with the pool of
MATLAB workers available (one, two, four, six, and eight) to
analyze the gain in speedup and effects of transfer overhead.
The new streamlined code was run on an Intel Core i7-
870 CPU (4 cores, 8 threads, 2.93GHz clock speed) with
8GB of RAM. To determine the most appropriate index
range for loop discretization, different combinations of sliced
formation and depletion loopswere tested for the efficiency of
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Figure 2: Comparison of simulation times and speedup ratios of PBM code incorporating gfor, GPU-for, and CPU-for.

simulation (refer Table 1). Although formation is the primary
computational bottleneck requiring loop slicing, the initial test
runs in conjunction with MATLAB’s Profiler tool affirmed
that it was also necessary for depletion to execute at least
one worker for the gain in speedup to outweigh memory
transfer overhead. Consequently, certain combinations based
on grid size and number of workers were discarded with only
pertinent ones being retained.

Within these combinations, the ones yielding the lowest
simulation times for a grid size of 36 were chosen from each
worker pool class for comparative analysis: 0 formation, 0
depletion (1 worker); 1 formation, 1 depletion (2 workers);
3 formations, 1 depletion (4 workers); and 6 formations, 2
depletions (8 workers). As done previously, the plots for

Table 1: Loop slicing combinations.

Number of workers (worker pool) Number of times sliced
Formation Depletion

1 0 0
2 1 1
4 2 2

3 1
4 0

6 3 3
4 2
5 1

8 6 2
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Figure 3: Comparison of temporal evolution of granule physical properties simulated for different worker pool classes, grid size = 36.

granule physical properties, Figures 3(a)–3(c), were exam-
ined to ensure validity and numerical precision of the results.
Having confirmed that, the simulation times, the parallel
speedup, and efficiency curves were plotted for the five
worker pool classes selected (Figures 4(a)–4(c)).

The speedup factor and parallel efficiency were calculated
as given in Wilkinson and Allen [36]:

Speedup 𝑆 (𝑛) =
Execution time on a single worker

Execution time on 𝑛 workers
,

Parallel Efficiency 𝐸 = 𝑆 (𝑛)

𝑛
× 100.

(12)

Simply put, the speedup factor directly quantifies the
gain in performance of multiprocessor system over a single-
processor one. As observed in Figure 4(b), the maximum
speedup achieved with 8 workers was 2.2 times, leading to an
average per worker efficiency of 27.35. Parallel efficiency is a
measure of computational resource usage, with lower values
implying lower utilization and higher values implying higher
utilization on average. Although the speedup achieved for a
grid size of 36 was marginal, it was theorized that an increase
in the problem size would improve not only speedup, but also
parallel efficiency. As expected, an increase in grid size to 60
positively affected both the speedup and efficiency of parallel
execution as seen in Figure 4(c). Furthermore, it was also
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Figure 4: Plots of simulation times and obtained speedup of the PB code incorporating the SPMD construct.

observed that the most efficient way of parallelization for 6
cores was by splitting formation 5 times and depletion 1 time,
as opposed to the previous strategy of splitting formation
4 times and depletion twice. Since depletion is much less
computationally intensive than formation and only becomes
challenging at higher grid sizes, this finding is in line with our
expectation that each worker has to have sufficient work for
parallelism to pay off. That is, for a fixed pool of workers, an
increase in problem (grid) size will mean improved speedup.
This will also explain the drop in efficiency as well as speedup
from 4 to 6 workers (i.e., with formation sliced 4 and
depletion 3 times, Figures 4(a) and 4(b)). Currently, we have
restricted ourselves to a grid size of 60 due to MATLAB’s

limit on the maximum possible array size (proportional to
available system RAM), but future work will involve working
around thesememory limitations using distributed data types
and employing constructs like labSend and labReceive
for better memory read/write patterns. Of the three main
factors that might have impacted the efficiency of our parallel
algorithm, load balancing and data dependency were ruled
out as the for loops were split evenly across workers with
each loop capable of independent execution on a worker.
Thus, the only possible reason could be overheads resulting
from communication between workers. These overheads
are generally the result of computational costs of cache
coherence; memory conflicts inherent to a shared-memory
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Figure 5: Comparison of temporal evolution of granule physical properties for a sequential and parallel PBM code, grid size = 15.

multiprocessing architecture like the INTELCore i7 [60]; and
memory conflicts between operating system services [61].
Moreover, since MATLAB looks to the operating system to
open a pool of workers, it does not guarantee proper assign-
ment of each worker to a single physical core/thread, which
would result in exaggerated overheads fromworker instances
trying to communicate with (or waiting for) another instance
on the same thread.

4.3. Speeding Up a PBM Code Integrating More Mechanisms.
Finally, a more complex, integrated form of the PBM code
incorporating terms for consolidation, aggregation, and
liquid drying/rewetting is parallelized and executed (see

Appendices A, B, and C, resp., for kernels used).Thesemech-
anisms, in addition to breakage/attrition, are fundamental
in describing the granulation process accurately to a greater
extent. Although breakage is a crucial element, the focus is
still on aggregation as it remains the most computationally
intensive and therefore the primary target for parallelization
in a full-fledged PBM code. Parallelization was achieved with
the fork-join technique, a type of task parallelism. The SPMD
keyword is used to force consecutive but independently
executing sections of code to be split among the available
pool of workers, followed by collection of calculated data at
the end.The functions parallelized were those computing for
drying/rewetting, consolidation, and finally the aggregation
terms (formation and depletion), each of which was assigned
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to run on individual workers, thereby improving parallelism.
The simulation was carried out on the INTEL Core 2 Quad
Q6600, utilizing all four cores. The temporal evolution of
physical properties was plotted for both the SPMD and the
single CPU versions of the code (Figure 5), after which the
time required for simulation of the parallel and sequential
execution was plotted to display speedup (Figure 6).

As can be seen from Figure 5(a), the total number of
particles predictably decreases over time due to aggregation
by coalescence.The total volume of the particles, Figure 5(b),
on the other hand rises at a steady state as a result of
continuous liquid binder addition over time and is also the
reason why the average granule diameter increases gradually
in Figure 5(c). The tendency for these curves to level off
after a certain period of time is due to the limited number of
bins in the grid, 15, which restricts the the extent of granule
aggregation and growth. This further serves to stress the
need for faster simulations through parallelization in order
to circumvent these restrictions and run the code for longer
and for higher number of bins. Data for both the SPMD
and single CPU versions are in good agreement with each
other, affirming numerical precision and validity of the
SPMD version results. The grid size is increased and the
corresponding simulation times are plotted. Even for a grid
size of just 15, a speedup of 15.5 times was achieved, which is
significant considering that only four workers were used.This
is an example of superlinear speedup where for 𝑛 processors,
a speedup of greater than 𝑛 is produced [62]. Superlinear
speedup may happen if problem size per processor is small
enough to fit into registers, data caches, or other smaller,
yet faster memory banks instead of the RAM [63]. Since
some of the parallelized functions like drying/rewetting
and consolidation utilize just a few variables per processor,

causes of parallel inefficiency (load imbalance, interprocessor
communication) are offset resulting in faster multiplication-
addition (MAD) operations than on a uniprocessor machine,
where bandwidth consumption would be higher than the
rate at which RAM could deliver.

5. Conclusions and Future Work

Parallel computing has been studied for several years, but
its application to particulate processes described by popu-
lation balance models has been limited to a few studies in
crystallization [24, 25]. The procedure followed herein for
parallelizing PBMs involved three steps: locating portions
of the code that are most time consuming with tools like
MATLAB profiler; applying one of the two approaches for
parallelism as appropriate; and finally optimizing forminimal
variable transfer overhead. We have proposed here two
methods of efficiently parallelizing the integrodifferential
equations comprising the aggregation term for the CPU,
either using loop slicing or, alternately, a brute force, fork-join
method in conjunction with MATLAB’s parallel Computing
toolbox.This approach to parallelism provides the modelling
and research community with the necessary tools to reduce
simulation times with minimal effort. The results show a
speedup of 2.6 times with 8 workers over a sequential
code, with potential for improving speedup by increasing
problem size, using distributed data types and employing
constructs like labSend and labReceive for bettermemory
read/write patterns.The corresponding increased demand for
RAM can be handled algorithmically by using distributed
data types and MPI-based constructs like labSend and
labReceive. For the first time, a method describing the
utility of GPU computing for PBMs is demonstrated. For
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the GPU, we utilized the JACKET toolbox for MATLAB to
efficiently parallelize for loops across the 240 cores on a
single NVIDIA GTX 280 card. Although the performance
advantage of the GPU over CPU initially did not seem
encouraging due to lower clock frequency and on-board
memory and JACKET’s own restrictions, a closer analysis
of speedup ratios revealed that the GPU has potential to
outclass the CPU at very large grid sizes given the significant
advances made in its architecture with each new gener-
ation. Finally, a relatively more complex code integrating
several mechanisms was parallelized with the aid of the
SPMD keyword, yielding a superlinear speedup of 15.5 times.
Future work will include building better parallel algorithms
with efficient task scheduling for better speedup; paral-
lelization across processors on multiple networked machines
using the MATLAB distributed computing server package
for CPUs; utilizing next-generation Tesla architecture-based
NVIDIA GPUs with advanced architecture to attain signif-
icant speedup considering the fact that once parallelized,
PBMs are well suited for execution on massively parallel
architectures. Furthermore, with increased computational
power in terms of RAM and processing speed, CPU and
GPU parallel computing will show increased efficiency as a
result of enhancedmemory requirements to store and process
large amounts of data from increased number of grids and/or
dimensionality of the problem. Methods developed (for CPU
and GPU parallel computing) can also be easily extended to
other particulate processes that are described by PBMs such
as crystallization, milling, and polymerization with potential
to aid in computer-aided modeling and simulation and offer
economic benefit to industries that deal with such processes
[64].

Appendices

A. Aggregation Kernel

For our simulation purposes, we have considered the empir-
ical aggregation kernel proposed by Madec et al. [54]. It
takes into account the various parameters such as the particle
size and binder volume and can be considered to be a more
appropriate empirical kernel for our multidimensional PBE:
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, (A.1)

where

𝑐
𝑖
=

volume of liquid
volume of agglomerate

× 100. (A.2)

B. Consolidation

Consolidation, a negative growth process representing the
compacting of granules due to the escape of air from the

pores, has been modeled using an empirical expression
proposed by Verkoeijen et al. [31]. It can be given as

𝑑𝜖

𝑑𝑡
= −𝑐 (𝜖 − 𝜖min) ,

𝑑𝑔

𝑑𝑡
=
𝑐 (𝑠 + 𝑙 + 𝑔) (1 − 𝜖min)

𝑠
× [𝑙 −

𝜖min𝑠

1 − 𝜖min
+ 𝑔] ,

(B.1)

where the porosity 𝜖 is

𝜖 =
𝑙 + 𝑔

𝑠 + 𝑙 + 𝑔
. (B.2)

Here 𝜖min is the minimum porosity of the granules and 𝑐 is
the compaction rate constant.

C. Drying/Rewetting

Liquid binder is added to the granulating system in order to
catalyze the process of forming aggregates. Drying/rewetting
is associated with the change in the amount of liquid in the
granulation system due to the addition of more liquid or
removal due to evaporation. The liquid rate can be obtained
from mass balance as

𝑑𝐿

𝑑𝑡
=
𝑚̇spray (1 − 𝑐binder) − 𝑚̇evap

𝑚solid
, (C.1)

where

𝑚solid = 𝑚solid fraction + 𝑚̇spray 𝑐binderΔ𝑡. (C.2)

In the above equations, 𝑚̇spray is the binder spray rate, 𝑐binder
is the concentration of solid binder in the slurry added,𝑚evap
is the rate of liquid being evaporated (in this work 𝑚̇evap = 0,
for the sake of simplicity),𝑚solid fraction is the volume of solid
for the particles in each bin, and 𝐿 is the liquid content. Due
to liquid addition, the liquid content of each particle changes
from 𝑥liquid to 𝑥liquid + 𝛿𝑥liquid, which cannot be represented
by the values of liquid volume on the grid. Thus, a fraction
is incorporated, which distributes the new volume of liquid
contained in the particle into the two adjacent grids, such
that the liquid volume can be conserved. The fraction can be
written as

fraction (𝑗) =
𝑋 − 𝑥 (𝑗)

𝑥 (𝑗 + 1) − 𝑥 (𝑗)
, (C.3)

where 𝑋 = 𝑥liquid + 𝛿𝑥liquid, 𝑥(𝑗) is the representative liquid
volume in the 𝑗th grid and 𝑥(𝑗+1) is the representative liquid
volume in the (𝑗 + 1)th grid.

D. Numerical Solution

Using a multidimensional population balance with an appro-
priate kernel ensures an improved analysis/prediction of the
granulation process. But besides developing themodel, incor-
porating an efficient numerical technique for solution to such
integropartial differential equation is yet another difficult
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task.Themultiple time scales andmultiple dimensions intro-
duce various complexities to the solution technique. Hence,
it is very crucial to develop robust models with efficient
solution techniques for such a framework. Our approach
for obtaining a solution to such equations is based on a
hierarchical two-tiered algorithm as proposed by Immanuel
and Doyle III [55]. This involves using the finite volume
approach for discretization with respect to each individual
solid, liquid, and gas volume, followed by integration of the
population balance over the domain of these subpopulations.
Neglecting layering, (3), can be expressed in the discrete form
as shown in
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑙
𝑗+1

)

+ (
𝐹
󸀠

𝑖,𝑗,𝑘

Δ𝑔
𝑘

𝑑𝑔

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔
𝑘

−
𝐹
󸀠

𝑖,𝑗,𝑘+1

Δ𝑔
𝑘+1

𝑑𝑔

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔
𝑘+1

)

= Rnuc (𝑠𝑖, 𝑙𝑗, 𝑔𝑘)+Ragg (𝑠𝑖, 𝑙𝑗, 𝑔𝑘)+Rbreak (𝑠𝑖, 𝑙𝑗, 𝑔𝑘) .

(D.1)

Here 𝐹󸀠
𝑖,𝑗,𝑘

= ∫
𝑠
𝑖+1

𝑠
𝑖

∫
𝑙
𝑗+1

𝑙
𝑗

∫
𝑔
𝑘+1

𝑔
𝑘

𝐹(𝑠, 𝑙, 𝑔)𝑑𝑠 𝑑𝑙 𝑑𝑔, 𝑠
𝑖
is the value

of the solid volume at the upper end of the 𝑖th bin along
the solid volume axis, 𝑙

𝑗
is the value of the liquid volume

at the upper end of the 𝑗th bin along the liquid volume
axis, and 𝑔

𝑘
is the value of the gas volume at the upper

end of the 𝑘th bin along the gas volume axis. Δ𝑠
𝑖
, Δ𝑙
𝑗
,

and Δ𝑔
𝑘
are the sizes of the 𝑖th, 𝑗th, and 𝑘th bin with

respect to the solid, liquid, and gas volume axes. Using this
technique, the population balance equation is reduced to a
system of ordinary differential equations in terms of the rates
of nucleation (Rnuc(𝑠𝑖, 𝑙𝑗, 𝑔𝑘)), aggregation (Ragg(𝑠𝑖, 𝑙𝑗, 𝑔𝑘)),
and breakage (Rbreak(𝑠𝑖, 𝑙𝑗, 𝑔𝑘)). The triple integral for the
aggregation term can thereby be evaluated by casting it
into simpler addition and multiplication terms. Using this
approach, the numerical steps are hard coded in MATLAB
to obtain the final efficient solution of the population balance
equation.Nucleation and breakage are included for clarity but
are not considered in this study.

E. Calculation of Output Properties

Bulk properties such as average diameter, total number
distribution of particles, and total volume are obtained
from the simulation results in order to qualitatively and
quantitatively analyse the macroscopic properties. The total
number distribution of particles in the system is calculated as

Total number distribution = ∑
𝑠,𝑙,𝑔

𝐹 (𝑠, 𝑙, 𝑔) . (E.1)

The total number of particles in the system is obtained
by multiplying the total number distribution by Avogadro’s
number. Next, the total volume of particles in the system
and average granule volume are used to calculate the average

granule diameter, with the assumption of the particle being
spherical, as

Total volume = ∑
𝑠,𝑙,𝑔

[𝐹 (𝑠, 𝑙, 𝑔) ∗ (𝑠 + 𝑙 + 𝑔)] ,

Average volume =
∑
𝑠,𝑙,𝑔

[𝐹 (𝑠, 𝑙, 𝑔) ∗ (𝑠 + 𝑙 + 𝑔)]

∑
𝑠,𝑙,𝑔

𝐹 (𝑠, 𝑙, 𝑔)
,

Average diameter = 6

𝜋
∗ (Average volume)1/3.

(E.2)
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