Research Article

Schedulability Analysis for Rate Monotonic Algorithm-Shortest Job First Using UML-RT

S. Ewins Pon Pushpa¹ and Manamalli Devasikamani²

¹ Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai 600 044, India
² Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai 600 044, India

Correspondence should be addressed to S. Ewins Pon Pushpa; ewinspon2000@yahoo.co.in

Received 7 February 2014; Revised 17 June 2014; Accepted 17 June 2014; Published 23 July 2014

Academic Editor: Luis Carlos Rabelo

Copyright © 2014 S. E. Pon Pushpa and M. Devasikamani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

System modelling with a unified modelling language (UML) is an active research area for developing real-time system development. UML is widely used modelling language in software engineering community, to specify the requirement, and analyse the target system successfully. UML can be used to provide multiple views of the system under design with the help of a variety of structural and behavioural diagrams at an early stage. UML-RT (unified modelling language-real time) is a language used to build an unambiguous executable specification of a real-time system based on UML concepts. This paper presents a unified modeling approach for a newly proposed rate monotonic scheduling algorithm-shortest job first (RMA-SJF) for partitioned, semipartitioned and global scheduling strategies in multiprocessor architecture using UML-RT for different system loads. As a technical contribution, effective processor utilization of individual processors and success ratio are analyzed for various scheduling principles and compared with EDF and D_EDF to validate our proposal.

1. Introduction

The integration of object modelling and design methods and real-time scheduling theory is the key to successful use of object technology for real-time software. Surprisingly, many past approaches to integrate the two either restrict the object models or do not allow sophisticated schedulability analysis techniques [1]. Visual notations and model abstractions aid object-oriented designer to understand the problem space at an early stage of development cycle. Nowadays, embedded real-time systems are implemented as hardware and software configurations, where the software components have become key for a successful system [2]. The dominance of software in real-time embedded systems design caused the interest in methodologies with widely accepted notations in the software community, such as the unified modeling language (UML). UML-RT (unified modelling language-real time) is a language used to build an unambiguous executable specification of a real-time system based on UML concepts [3]. The integration of schedulability analysis with the industry standard unified modelling language-real time (UML-RT) allows real-time developers to detect and prevent costly design mistakes at an early stage of development.

Technological trends on high performance computational systems are moving towards execution platforms made up of multiple programmable and dedicated processing elements implemented on a single chip known as multiprocessor system-on-chip (MPSoC). In recent years, model based system level design has gained considerable attention in multiprocessor system-on-chip, since it simplifies the application behaviour and reveals the top-level structure of the behaviour, abstracting out the low-level details [4]. A critical issue for MPSoC design is to evaluate the expected performance, early in the design process before hardware implementation [5] and hence real-time scheduling and schedulability analysis for multiprocessor systems have become an important research area [6].

Algorithms for multiprocessor scheduling can be classified as partitioned scheduling and global scheduling. Tasks which are assigned statically to processors and task migration
between processors are not allowed in partitioned scheduling, whereas, in later approach, ready tasks are enqueued in a global queue and tasks are assigned dynamically to available processors. All fixed-priority algorithms based on partitioned scheduling [7–10] and global scheduling [11, 12] have lower utilization bounds. Based on fixed priority, there is a little advantage of global scheduling over partitioned scheduling and rate monotonic algorithm is extensively researched and implemented successfully in conjunction with UML profile for schedulability analysis [13].

When scheduling single-processor systems, nonpreemptive has been considered inferior because of its poor responsiveness. However, in multiprocessor systems, high-priority tasks will still have a chance to execute on available processors to meet deadlines. Moreover, nonpreemptive scheduling algorithms are easier to implement and have lower runtime overhead [14]. In [14], under many parameter settings, experimental simulation surprisingly shows that, in multiprocessor environment, global nonpreemptive fixed-priority scheduling (NP-FP) outperforms global preemptive fixed-priority scheduling (P-NP).

In this paper, a MPSoC system is modelled using UML-RT and schedulability of nonpreemptive rate monotonic algorithm—shortest job first (RMA-SJF) for periodic task sets on three homogeneous multiprocessors is analysed for various load conditions. As a technical contribution, we present our simulation experiments comparing the success ratio and effective processor utilization for global, semipartitioned, and partitioned techniques to validate our work.

This paper improves upon previous publications in the following aspects.

1. Our result shows better performance than conventional EDF algorithm and D_EDF [15].
2. In [15] periodic tasks are preemptive whereas our contribution considers nonpreemptive tasks, which were considered inferior to preemptiveness, and still achieves good schedulability for overloaded conditions.
3. Runtime overhead will be much more reduced in our proposal because EDF is dynamic whereas rate monotonic algorithm is a static algorithm.

The paper is constructed as follows. Overview of UML-RT is presented in Section 2. We present MPSoC model using UML-RT in Section 3. Rate monotonic algorithm (nonpreemptive) for global, partitioned and semi-partitioned scheduling are analyzed in Section 4. Simulation experiments and performance evaluation are done in Section 5. Section 6 concludes the paper.

2. Object-Oriented Models

Object-oriented programming upgrades procedural programming in the areas of adaptability, understandability, and code reusability. Real-time object-oriented model must be expressed unambiguously and explicitly to represent synchronization and concurrency among processes. Currently available object-oriented real-time models are weak in specifying temporal and behavioural requirements and also lack schedulability analysis [16]. RTSO-RAC model [17] does not explore timeliness and schedulability aspects of the model. OPM/T [18] does not describe the effects of priority assignments and concurrency of the model. In TMO [16] (time triggered and message triggered objects), the model success depends on designers’ knowledge of underlying hardware platform. CHAOS [19] does not specify timeliness aspects of real-time system and seems reasonable only for soft-real-time system. Some of the popular tools including Rhapsody, ObjectTime developer, and IBM Rational Rose Real Time provide a framework for analysing the problem space in real-time domain.

Object-oriented models like ADARTS (ADA based design approach for real time), CODARTS (concurrent design approach for real time), CODARTS are that they are designed mainly for ADA and use limited number of views. With the introduction of UML, ObjectTime has cooperated with Rational software to develop UML-RT, which uses UML's in-built extensibility mechanisms to integrate ROOM concepts within UML. UML-RT and the code generation technology of ObjectTime Developer have been integrated into Rational Rose in the new product Rational Rose Real Time [1]. UML-RT includes all the modelling capabilities of ROOM. The recently standardized UML profile for modelling and analysis of real-time and embedded systems (UML MARTE profile) has been provided by OMG group. But, still when it comes to scheduling, UML-RT profile introduces a set of common scheduling annotations which are fairly sufficient to perform schedulability analysis [24].

2.1. UML and UML-RT. Rational Rose Real time is a software development environment tailored to the demands of real-time software [9]. Developers use Rational Rose Real Time to create models of the software system based on the UML constructs, generate the implementation code, compile, and then run and debug the application. Rational Rose Real Time can be used through all phases of the software development lifecycle, from initial requirements analysis through design, implementation, test, and final deployment.

The tool, named UML-RT for real time, developed by the Rational Corporation, uses UML to express the original ROOM (real-time object-oriented modelling) concepts and their extensions. It includes constructs for modelling both the structure and behaviour of event-driven real-time systems.

Rational Rose Real Time includes features for

(i) creating UML-RT models using the elements and diagrams defined in the UML-RT;
(ii) generating complete code implementations (applications) for those models;
executing, testing, and debugging models at the modelling language level using visual observation tools.

In UML-RT the three principle constructs for modelling structure are capsules, ports, and connectors. UML-RT is a profile that extends UML with stereotyped active objects, called capsules, to represent system components. The internal behavior of a capsule is defined using statecharts; its interaction with other capsules takes place by means of protocols that define the sequence of signals exchanged through stereotyped objects called ports. The UML-RT profile defines a model with precise execution semantics; hence it is suitable to capture system behavior and support simulation or synthesis tools (e.g., Rose RT).

2.1.1. Capsules. The fundamental modelling constructs of UML-RT are capsules.

(i) They are possibly distributed architectural active objects that interact with other capsules exclusively through one or more ports.

(ii) The behaviour of a capsule is modelled in the state transition diagram that can process (send and receive) messages via their ports, while its (hierarchical) structure is modelled in the capsule structure diagram.

2.1.2. Ports. Messages are sent to and received from capsule instances through objects known as ports. Ports connected to a state machine of a capsule (end port) can handle messages sent to them.

2.1.3. Connectors. The key communication relationships between capsule roles are captured by connectors. They interconnect capsule roles that have similar public interfaces through ports.

2.1.4. Protocols

(i) They define a set of messages exchanged between a set of capsules.

(ii) Messages are defined from the perspective of both the receiver and the sender.

3. Multiprocessor Model Using UML-RT

The behaviour of a real-time model is composed of periodic independent tasks with three homogeneous processors. A real-time system must be analysed to ensure that all the tasks are schedulable. A multiprocessor system is modelled with active objects called capsules in UML-RT and shown in Figure 1. Two capsules are created, one for generating tasks named “gentask” and the other named “scheduler” to schedule the generated tasks. Using the property of inheritance, three capsule instances are created for the three homogeneous processors where the tasks are executed and named as “processor1,” “processor2,” “processor3.” The ports used in each capsule are shown in Table 1.

3.1. “gentask” Capsule. This is the task activation model where task sets are generated. The tasks to be scheduled are triggered in the “gentask” capsule. The output port “gout” of the “gentask” capsule is connected to the input port “sin” of the “scheduler” capsule. The input port “gin” of the “gentask” capsule is connected to the output port “sout” of the “scheduler” capsule.

3.2. “scheduler” Capsule. In “scheduler” capsule, priorities are assigned to each task and tasks are scheduled as per the algorithm.

3.3. “processor1” Capsule. The output port “p1out” of the “scheduler” capsule is connected to the input port “pin11” of the “processor1” capsule. Likewise, the output port “pout12” of the “processor1” capsule is connected to the input port “p1in” of the “scheduler” capsule.

3.4. “processor2” Capsule. The output port “p2out” of the “scheduler” capsule is connected to the input port “pin22” of the “processor2” capsule. Likewise, the output port “pout22” of the “processor2” capsule is connected to the input port “p2in” of the “scheduler” capsule.

3.5. “processor3” Capsule. The output port “p3out” of the “scheduler” capsule is connected to the input port “pin33” of the “processor3” capsule. Likewise, the output port “pout33” of the “processor3” capsule is connected to the input port “p3in” of the “scheduler” capsule.

4. System Description

For a periodic task system, let task set \(\tau \) consist of a set of \(m \) tasks \(\tau = \{ \tau_1, \tau_2, \tau_3, \ldots, \tau_m \} \). Each task is defined by two parameters: computation time \(C \) and interrelease time or period \(T \). So, a task set can be denoted by \(\tau = \{ C_1T_1, C_2T_2, \ldots, C_kT_k, \ldots, C_mT_m \} \), where “\(\tau_k \)” is the \(k \)th task considered. For a task \(\tau_k \), the task utilization is \(U_k = C_k/T_k \), and let the system load \(U(\tau) = \sum_{i=1}^{m} U_i \). A set of all higher
priority tasks of r_k are denoted by $hp(k)$; similarly, a set of all lower priority tasks of r_k are denoted by $lp(k)$.

The scheduling strategy of a task to be schedulable in an “M” identical nonpreemptive multiprocessor architecture is analyzed. Depending on the number of processors “M” in the system, the total tasks in the system are split into higher priority tasks r_1 to r_M, intermediate tasks r_{M+1} to r_{M-M}, and lower priority tasks r_{M-M+1} to r_{M}. Therefore, there must be $m \geq 2M + 1$ tasks in the system. The work area $M \phi_k = M(T_k - C_k)$ is shown in Figure 2. For a task r_k, $r_n(k)$ is the nth release time and it is an integer multiple of T_k. The condition for a task r_k to be schedulable is that the processor must start

to execute C_k at least at $l_n(k)$ or the total work load $W(k)$ contributed by other tasks in work area $M \phi_k$ must be less than or equal to $M \phi_k$, so that the processor is available to execute C_k on or before $l_n(k)$. Therefore, the contribution of total work load $W(k)$ of the other tasks in the work area $M \phi_k$ is analyzed under pessimistic conditions.

The work load in $M \phi_k$ can be categorized into three parts as reported by Guan et al. [6], shown in Figure 3.

The total work contributed in the work area $M \phi_k$ can be classified into three works: initial, intermediate, and final work.

Initial Work. Any task will contribute the initial work, if its execution started before $r_n(k)$ and finishes in the work area.

Final Work. Any task will contribute the final work, if its execution started in work area and finishes later to $l_n(k)$.

Intermediate Work. The contribution of any task started on or later to $r_n(k)$ and finishes on or before $l_n(k)$.

Theorems and lemmas are analyzed considering that the entire task contributes maximum in the work area, and task r_k, released at $r_{m-1}(k)$, is always scheduled before $r_n(k)$. The given computation times are arranged in nondecreasing order $C_1 \leq C_2 \leq C_3 \cdots \leq C_m$. From the known computation time, let

$$C_{\max 1} = C_m$$

$$C_{\max 2} = C_{m-1}$$

$$C_{\max M} = C_{m-M+1}.$$

The maximum computation times are assigned as $C_{\max 1}, C_{\max 2}, \ldots, C_{\max M}$ shown from (1):

$$W(k) = \sum_{hp(k)/p(k)} (\text{initial work} + \text{intermediate work} + \text{final work}).$$

A task r_k will be schedulable if the following is satisfied:

$$M \phi_k \geq W(k).$$

Equation (2) gives the total work load contributed by the other tasks in the work area. Equation (3) is the schedulability condition for a task to be schedulable on an “M” identical nonpreemptive multiprocessor architecture. Equation (3) can be written as follows as stated by Guan et al. [6]:

$$\phi_k M \geq C_{\max} + \sum_{hp(k)} \frac{\phi_k}{T_i} C_i + C_{\text{final}},$$

where $C_{\max}, \sum_{hp(k)} (\phi_k/T_i) C_i$, and C_{final} are the initial, intermediate, and final work contribution by other tasks, respectively.

The final work contributions are bounded by the second term in the RHS of (4). Therefore, (4) can be written as follows:

$$\phi_k M \geq C_{\max} + \sum_{hp(k)} \frac{C_i}{T_i}.\quad (5)$$

Recall that

$$\sum_{hp(k)} \frac{C_i}{T_i} = U_{hp}(k).\quad (6)$$

Equation (6) is substituted in (5) to obtain (7) and (8):

$$\phi_k M \geq C_{\max} + \phi_k U_{hp}(k),$$

$$\phi_k \left[M - U_{hp}(k) \right] \geq C_{\max}.$$

$\phi_k \geq \frac{C_{\max}}{M - U_{hp}(k)}.$

FIGURE 2: Work area in multiprocessor architecture.

TABLE 1: Ports and capsules used in modelling multiprocessor architecture.

<table>
<thead>
<tr>
<th>Capsule</th>
<th>Input ports</th>
<th>Output ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>gentask</td>
<td>gin</td>
<td>gout</td>
</tr>
<tr>
<td>scheduler</td>
<td>p1in, p2in, p3in, and sin</td>
<td>p1out, p2out, p3out, and sout</td>
</tr>
<tr>
<td>processor1</td>
<td>pin1</td>
<td>pout1</td>
</tr>
<tr>
<td>processor2</td>
<td>pin22</td>
<td>pout22</td>
</tr>
<tr>
<td>processor3</td>
<td>pin33</td>
<td>pout33</td>
</tr>
</tbody>
</table>
Equation (9) must be satisfied for the task r_k to be schedulable.

Lemma 1. An optimum condition for the highest priority task τ_1 to be schedulable by a work conserving nonpreemptive algorithm is given by

$$\varphi_1 M \geq C_{\text{max} 1} \cdot t_01$$

(10)

Proof. To prove (10), consider the time duration given below:

(i) $t \in [t_{01}, r_n(1)].$

Tasks in execution before $r_n(1)$ in “M” processors will be $lp(1)$ because τ_1 is the highest priority task considered. For “M” processor system, “M” initial works contributed by “M” lower priority tasks (with maximum computation time) under pessimistic conditions are considered. Figure 4 shows that there are “M” tasks $\in lp(1)$, which are in execution during $t \in [t_{01}, r_n(1)].$

Therefore, initial work contributed by $lp(1)$ is obtained from (1) and summation of “M” initial work is considered as total initial work, $C_{\text{initial} 1}$ for task τ_1, and it is shown as:

$$C_{\text{initial} 1} = \sum_{i=m-M+1}^{m} C_{\text{max} i}.$$

(11)

To prove by contradiction, if highest priority task τ_1 satisfies (10) but is not schedulable, then task τ_1 misses its deadline. For τ_1 to miss its deadline, “M” processors must be continuously busy in the work area $\varphi_1 M$, which means that $M \varphi_1 < C_{\text{initial} 1}$. This contradicts the assumption that τ_1 satisfies (10). Therefore, (10) is the optimum condition for task τ_1 to be schedulable.

Lemma 2. Maximum waiting time W_{τ_1} of highest priority task τ_1 for an “M” processor system is shown in

$$W_{\tau_1} = \min \left[C_{\text{max} 1}, C_{\text{max} 2}, \ldots, C_{\text{max} M} \right].$$

(12)

Proof. To prove consider, consider

(i) $t \in [t_{01}, r_n(1)].$

Tasks in execution before $r_n(1)$ in “M” processors will be $lp(1)$ because τ_1 is the highest priority task considered. In worst case condition, “M” tasks $\in lp(1)$ having maximum computation time will contribute initial work to τ_1 as proved in Lemma 1. Consider

(ii) $t \in [r_n(1), t_{02}].$

Task τ_1 is the highest priority task, released at $r_n(1)$, and is waiting to be executed in any of the “M” processors. The task that finishes first will be the task having minimum execution time during $t \in [r_n(1), t_{02}]$. Therefore, during $t \in [r_n(1), t_{02}]$ when any one processor is free, τ_1 starts to execute. It will be the minimum time of all initial works as given in (12).

Lemma 3. The maximum waiting time of periodic task τ_2 for an “M” processor system is given in

$$W_{\tau_2} = \min \left[(W_{\tau_1} + C_1), \min (C_{\text{max} 1}, C_{\text{max} 2}, \ldots, C_{\text{max} M}) \right].$$

(13)

where W_{τ_2} is considered as initial work contribution to τ_2.

Proof. By Lemma 2 it is proved that the maximum waiting time for the task τ_1 is $W_{\tau_1} = \min (C_{\text{max} 1}, C_{\text{max} 2}, \ldots, C_{\text{max} M})$; therefore, τ_2 has to wait for τ_1 to finish execution and also for the other $lp(1)$, executing on “M − 1” processors.

To prove consider:

(i) $t \in [t_{01}, r_n(2)].$

The same is considered as in Lemma 2:

(ii) $t \in [r_n(2), t_{02}].$

Consider Figure 5; assume that the task τ_1 executes on one of the processors, and the other “M − 1” task $\in lp(2)$ executes on “M − 1” processors. Task τ_2 will start to execute on a processor, which becomes free first. During $t \in [r_n(2), t_{02}]$, assume that one processor becomes free; therefore, it will be the minimum time as shown in (13). To generalize, for τ_1 to τ_M tasks,

\[
i = 1;
\]

\[
W_{\tau_1} = \min (C_{\text{max} 1}, C_{\text{max} 2}, \ldots, C_{\text{max} M})
\]

\[
W_{\tau_{i+1}} = \min \left[(W_{\tau_i} + C_i), C_{\text{max} i}, \ldots, C_{\text{max} M-1} \right]
\]

\[
W_{\tau_{i+2}} = \min \left[(W_{\tau_{i+1}} + C_{i+1}), \min (C_{\text{max} i+1}, C_{\text{max} M-2}, (W_{\tau_i} + C_i)) \right]
\]

\[
\vdots
\]

\[
W_{\tau_{M}} = \min (C_{\text{max} M-1}, C_{\text{max} M-2}, \ldots, (W_{\tau_1} + C_1))
\]
\[W_{\tau_M} = \min \left\{ (W_{\tau_{M-1}} + C_{M-1}), \min (C_{\text{max}}, (W_{\tau_{M-2}} + C_{M-2}), \ldots, (W_{\tau_1} + C_1)) \right\}. \]

(14)

Lemma 4. Consider a task \(\tau_k \); if \(k + M \leq m \), then \"M\" tasks \(\in \text{lp(k)} \) will contribute \"M\" initial work under pessimistic condition.

Proof. To prove consider the time duration as below:

(i) \(t \in [t_{01}, r_n(k)] \).

The tasks in execution before \(r_n(k) \) in \"M\" processors will be either \(\text{lp}(k) \) or \(\text{hp}(k) \) because task \(\tau_k \) is not yet released.

Under pessimistic condition, it is considered that \"M\" tasks \(\in \text{lp}(k) \) are in execution during \(t \in [t_{01}, r_n(k)] \) because all \(\text{lp}(k) \) have greater computation time compared to \(\text{hp}(k) \). Since, \(k + M \leq m \), there are \"M\" tasks \(\in \text{lp}(k) \) contributing initial work to \(\tau_k \), as shown in Figure 6. Therefore, the initial work contribution to task \(\tau_k \), if \(k + M \leq m \), is given in

\[C_{\text{initial}}^{\text{max}} = \sum_{i=M+1}^{m} C_{\text{max}i}. \]

(15)

Lemma 5. For \(k + M > m, \text{"m} - k \text{" tasks} \in \text{lp}(k) \) will contribute a worst case of \"m\" - \(k \) initial work, and \"M\" - \(m - k \) tasks \(\in \text{hp}(k) \) will contribute the remaining initial work.

Proof. To prove consider the time duration as below:

(i) \(t \in [t_{01}, r_n(k)] \).

Tasks in execution before \(r_n(k) \) in \"M\" processors will be either \(\text{lp}(k) \) or \(\text{hp}(k) \). Since a pessimistic condition is analyzed, there is only \"m\" - \(k \) task \(\in \text{lp}(k) \) for the above condition, contributing the initial work and \"M\" - \(m - k \) task \(\in \text{hp}(k) \) having greater computation time will contribute the remaining initial work. Therefore,

\[C_{\text{initial}}^{\text{max}} = \sum_{i=m-(m-k)+1}^{m-(m-k)} C_{\text{max}i} + \sum_{i=M-M}^{m-M} C_i. \]

(16)

Therefore, (16) shows the initial work for the task \(\tau_k \) if \(k + M \leq m \).

5. RMA-SJF Algorithm

With known computation times, the aim is to design a work conserving task system to utilize the available processing capacity using RMA-SJF priority scheme. A task set is derived, which satisfies RMA-SJF from the known computation time; that is, the higher priority task possesses lesser computation time and lesser interrelease time. It is named as work area analysis (WAA), which is as follows.

The known computation timings are arranged in nondecreasing order: \(C_1 \leq C_2 \leq C_3 \leq \cdots \leq C_k \leq \cdots \leq C_m \). It is considered that, if there are \"M\" processors in the system, then there must be minimum of \"2M + 1\" tasks for the proposed algorithm to work. Therefore, the task set can be divided into three categories according to priority, as given below:

(i) higher priority tasks \(\tau_1 \) to \(\tau_M \);
(ii) intermediate tasks \(\tau_{M+1} \) to \(\tau_{m-M} \);
(iii) lower priority tasks \(\tau_{m-M+1} \) to \(\tau_m \).

Case 1 (higher priority tasks \(\tau_1 \) to \(\tau_M \)). Consider

\[(k = 1; k \leq M, k + +), \]

\[C_{\text{initial}}^{\text{max}} = W_{\tau_{k}}, \]

(17)

\[T_k = C_{\text{initial}}^{\text{max}} + C_k. \]

From (17), the interrelease times for each higher priority tasks are found using Lemmas 1, 2, and 3.

Case 2 (intermediate tasks \(\tau_{M+1} \) to \(\tau_{m-M} \)). Considering (9), \(C_{\text{initial}}^{\text{max}} \) is obtained from (15) and (16) depending on the kth value of the task for intermediate tasks:

\[C_{\text{initial}}^{\text{max}} = \sum_{i=m-(m-k)+1}^{m-(m-k)} C_{\text{max}i} + \sum_{i=M-M}^{m-M} C_i. \]

(16)

\[C_{\text{initial}}^{\text{max}} \geq \frac{C_{\text{initial}}^{\text{max}}}{[M - U_{hp}(k)]} \]

(20)

\[T_k = \varphi_k + C_k. \]

(21)

From (19) to (21), interrelease times of intermediate tasks are found.

Case 3 (lower priority tasks \(\tau_{m-M+1} \) to \(\tau_m \)). Consider

\[(k = m - M + 1, k \leq m - 1, k + +), \]

\[C_{\text{initial}}^{\text{max}} = C_{\text{initial}}^{\text{max}} - C_k. \]

(23)
Step 1. begin
Step 2. for \(\tau_i = \tau_1 \) to \(\tau_m \) (\(m \) periodic task)
Step 3. while there is a free processor \(M_f \) and an unassigned tasks do
Step 4. pick higher priority task
Step 5. assign \((\tau_i, M_f) \)
Step 6. if task executed within deadline
Step 7. return “success”
Step 8. else
Step 9. return “failure”
Step 10. endif
Step 11. endwhile
Step 12. endfor

Pseudocode 1

\[
\varphi_k \geq \frac{C_{\text{initial}}}{M - U_{hp}(k)} \quad (24)
\]

\[
T_k = \varphi_k + C_k \quad (25)
\]

\[
\text{for } k = m \quad (26)
\]

\[
U_{hp}(k) + \frac{C_m}{T_m} \leq M. \quad (27)
\]

Initially, the interrelease times are derived for tasks \(\tau_{m-M+1} \) to \(\tau_{m-1} \) as shown from (22) to (25). In (23), \(C_k \) is subtracted because it does not form the initial work. It is the computation time to be analyzed for schedulability. For the least priority task, \(k = m \) in (26); the interrelease time \(T_m \) is to be found. It is the only unknown in (27); it is found using condition for schedulability. The condition for a set of tasks to be feasibly scheduled on a multiprocessor system is that its system load should be less than or equal to \(M \).

6. Global Scheduling

For randomly generated computation times, interrelease times for tasks are derived using WAA analysis. The derived task set possesses the RMA-SJF priority scheme; that is, higher priority tasks will have lesser computation time and lesser interrelease time. The task set is analyzed for global, partitioned, and semipartitioned scheduling strategies and success ratio and effective processor utilization of tasks are analyzed.

Initially, task set is analyzed for global scheduling where tasks are assigned dynamically to the available processors. The pseudocode for global scheduling is as shown in Pseudocode 1.

7. Partitioned Scheduling

In partitioned scheduling, tasks are first assigned to specific processors and executed without migrations. The pseudocode for partitioned scheduling is as shown in Pseudocode 2.

8. Semipartitioned Scheduling

In semipartitioned scheduling, some tasks are global and others are partitioned. The pseudocode for partitioned scheduling is as shown in Pseudocode 3.

9. Simulation and Performance Evaluation

Simulation work is carried out for various load values. Figures 7, 8, and 9 show the total number of released tasks and total number of scheduled tasks for the load of 2.94 for partitioned, semipartitioned, and global scheduling,
Step 1. begin
Step 2. for \(\tau_i = \tau_1 \) to \(\tau_m \) (\(m \) periodic task)
Step 3. while there is a free processor \(M_f \) and an unassigned tasks do
Step 4. pick higher priority task
Step 5. assign \((\tau_i, M_f)\) (pre-assigned or free processor)
Step 6. if task executed within deadline
Step 7. return "success"
Step 8. else
Step 9. return "failure"
Step 10. endif
Step 11. endwhile
Step 12. endfor

Pseudocode 3

![Figure 7: Success ratio of partitioned scheduling for the system load of 2.94.](image)

![Figure 8: Success ratio of semipartitioned scheduling for the system load of 2.94.](image)

![Figure 9: Success ratio of global scheduling for the system load of 2.94.](image)

![Figure 10: Comparison of success ratio for different scheduling techniques.](image)

respectively. From the results, it is observed that the global scheduling utilizes processors a little more efficiently when compared with partitioned and semipartitioned scheduling, thus increasing the schedulability. The success ratios of the three proposed scheduling methods are compared in Figure 10; it is inferred that the success ratio is comparatively more in global scheduling than in partitioned and semipartitioned scheduling. Effective processor utilization for partitioned, semipartitioned, and global scheduling is calculated for various loads and shown in Figure 11.

Global scheduling utilizes processor more efficiently when compared with partitioned and semipartitioned scheduling as analysed from Figure 11. Guan et al. [6] conducted simulation experiments empirically comparing
the real-time performance of preemptive and nonpreemptive
global fixed-priority scheduling, by which they obtained
interesting results suggesting that, for a considerably part
of applications on multiprocessor platforms, nonpreemptive
scheduling is actually a better choice than preemptive
scheduling regarding the real-time performance.

Therefore, obtained results are also compared with the
success ratio for the same load by Thakor and Shah [15],
and they show that the global RMA-SJF outperforms the
global preemptive EDF (earliest deadline first) and D_EDF
(deadline monotonic earliest deadline first) in schedulability
for the same load. Figure 12 shows success ratio analyzed
with EDF, D_EDF, and RMA-SJF and Figure 13 shows the
effective processor utilization is analyzed with EDF, D_EDF,
and RMA-SJF. From the analysis, it is inferred that the
RMA-SJF outperforms EDF and D_EDF in success ratio by
effectively utilizing the processor.

10. Conclusion

In single processor scheduling, nonpreemptiveness leads
to poor task responsiveness because higher priority tasks
are blocked by lower priority tasks, but, in the case of
multiprocessor environment, higher priority tasks still have
chance to execute in available processors. Moreover, non-
preemptiveness enjoys benefits like lower implementation
complexity and lower runtime overhead [6]. Our contribu-
tion considers nonpreemptive periodic tasks, scheduled using
rate monotonic algorithm-shortest job first (RMA-SJF) on
multiprocessor environment and modelled using modelling
language UML-RT. In this newly proposed algorithm, the
interrelease time for each task is derived from the known
computation times and schedulability conditions. RMA-SJF
is analysed for various scheduling principles such as global,
semipartitioned, and partitioned scheduling for various sys-
tem loads. Our result shows that the global scheduling
utilizes processors little more efficiently when compared to
partitioned and semipartitioned scheduling, thus improving
schedulability. When compared with the success ratio and
effective processor utilization for the same load in [15], RMA-
SJF is analysed for global, semi-partitioned and partitioned
scheduling strategies for various system loads.

Notations

\[M_{\theta_k} = M(T_k - C_k) \]: Problem area \(M_{\theta_k} \) of the task \(\tau_k \),
analyzed for schedulability; a
necessary condition for the deadline
miss to occur for \(\tau_k \) is that the worst
case work load \(W(k) \) in the problem
area \(\phi_k \) by all other tasks in the task
set \(\tau \) except \(\tau_k \) is no less than \(M_{\theta_k} \)
Set of all higher priority tasks of \(\tau_k \)
\(hp(k) \):
Initial work for \(\tau_1 \)
\(C_{\text{initial}} \):
Initial work for \(\tau_k \)
\(C_{\text{initial}, k} \):
Summation of all the task utilization
of \(hp(k) \)
\(\sum_{hp(k)}(\phi_k/T_k)C_i \):
Intermediate work
\(r_n(k) \):
\(n \)th release time of \(\tau_k \)
\(r_{n+1}(k) \):
\((n + 1) \)th release time of \(\tau_k \) and
deadline for the task released at \(r_n(k) \)
\(l_p(k) \): Latest feasible start time for \(r_k \) released at \(r_p(k) \) to start execution in order to meet its deadline

\(N_{\tau_k}(k) \): Number of intermediate tasks in \(\varphi_k \)

\(\omega \): Work done by initial job, intermediate job, or final job in \(\varphi_k \)

\(W(\tau)(k) \): Worst case latency of \(\tau_k \); it is the maximum time lapse for a task to start executing.

\(W(k) \): Total work done by other tasks in the problem area of \(\varphi_k \)

\(C_{\text{final}} \): Final work

\(Ip(k) \): Set of all lower priority tasks of \(r_k \).

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Submit your manuscripts at http://www.hindawi.com