Writing the stroop-effect: Color naming with handwritten responses

Adi-Japha E.¹ ² and Tzeglov J.³
1College Of Judea and Samaria, 2Bar-Ilan University, Ramat Gan; 3Ben-Gurion University of the Negev, Beer Sheva

We investigated the coupling between response selection and execution in a Stroop task with handwritten responses. The studied coupling is between the input level of the motor system controlling handwritten response (Margo in, Quarterly Journal of Experimental Psychology, 34A. 459-489 [1984]), and the lingual levels that serve as the output of the response selection stage (Cohen et al, Psychological Review 97: 332-361 [1990]). Incorrect responses, indicating processing of both the word meaning and the color (e.g., ‘blue’ in response to the word “RED” written in blue), were typical in the incongruent condition. The Stroop effect was significant when comparing the congruent and incongruent conditions, the former written most fluently and its execution time varied less. The effect was even stronger in the first letter. In line with the literature, there was no difference in the mean execution time in the two conditions (Logan and Zbrodoff, Journal of Experimental Psychology: HPP 24(3): 978-992 [1998]).

Subthreshold correlates of comodulation masking release in cat primary auditory cortex

Abdut L.,¹ Stern E.A.² and Nellen E.¹
1Dept. of physiology, Hebrew University - Hadassah Medical School, and the Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel; 2Dept. of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA

Comodulation Masking Release (CMR) is a psycho-acoustical phenomenon, in which amplitude modulation of a masking noise causes a decrease in its ability to mask tones. We have previously described an analogue of CMR in neuronal activity in cat primary auditory cortex (AI). Whereas neuronal firing locked to the envelope of the noise when presented alone, the addition of a weak tone suppressed this locking. This is an example of an extremely non-linear spectro-temporal integration mechanism. In order to understand the mechanisms underlying this phenomenon, we performed intracellular recordings in vivo. The data were collected in 7 halothane-anesthetized cats, using sharp electrodes filled with either KCl or KAcetate. Neurons were held up to 2-3 hours. The subthreshold membrane potential was locked to the temporal envelope of the noise when presented alone, while the addition of a low-level tone suppressed the locking. Thus, the spike responses could be fully accounted for by the subthreshold responses. To further discover the underlying mechanisms of synaptic integration responsible for this effect, responses to the same stimuli were recorded while the cell was depolarized by steady current injections. Whereas some inhibitory components were uncovered by depolarization, most of the components of the subthreshold responses were not qualitatively changed. Thus, our results suggest that the strong effects of a weak tone on the responses to a strong noise stimulus are already present at the excitatory input to AI neurons. Extracellular recordings in the thalamic input station to AI, the medial geniculate nucleus, support this conclusion.

Keywords: Comodulation masking release, Intracellular, Auditory cortex.

Amygdala complex modulation of hippocampal long-term potentiation

Akiva L¹ and Richter-Levin G.²
1Dept. of Psychology, University of Haifa, Haifa 31905
2 Dept. of Physiology, Hebrew University of Jerusalem, Jerusalem, Israel

The amygdala is considered to be involved in the storage of emotionally arousing events. We have shown (Akiva and Richter-Levin, 1999) that activating the basolateral amygdala (BLA) prior to stimulation of the perforant path (PP) may have a bi-phasic effect on hippocampal plasticity: priming the BLA immediately prior to PP stimulation results in the enhancement of hippocampal long-term potentiation (LTP), whereas BLA spaced activation results in the suppression of hippocampal LTP. We suggested that the enhancing effect may serve as a marker for emotional experiences (an ‘emotional tag’), and the inhibiting effect may be beneficial in reducing masking effects of subsequent, less significant events during the initial stages of consolidation.

Here, we examined the involvement of noradrenaline (NA) and glucocorticoids (GLUC) as possible mediators of the fast and slow phases, respectively. Ipsilateral priming of the BLA significantly enhanced hippocampal LTP, confirming previous results. This enhancing effect was not found in NA-depleted rats, indicating that amygdala-enhancing modulation of hippocampal LTP is dependent on noradrenergic activation. As was shown previously, Ipsilateral BLA spaced activation significantly suppressed hippocampal LTP. We have started to examine whether corticosterone depletion has this effect. Activating the Contralateral BLA showed a different profile; priming the Contralateral BLA produced enhancement of LTP but this was not sensitive to NA depletion. In addition, spaced activation of the Contralateral BLA did not result in the suppression of LTP. The results suggest that the Ipsilateral and the Contralateral BLA may differentially influence hippocampal activity, adding to the complexity presumably required to establish an emotionally enriched memory.

Supported by The Israel Science Foundation, Charles H. Revson Foundation (no. 582/00-1 to G.R-L.).

Keywords: LTP, Amygdala, Noradrenenline, Glucocorticoids.

The Pore region links fast and slow gating in inwardly rectifying potassium channels

Alagem N., Yislevsky S., and Reuveny E.
Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot

Inwardly rectifying potassium channels (Kir) are involved in many physiological actions, such as setting the state of excitability of nerve and muscle, potassium secretion and insulin release. Despite the high homology between the various members in this channel family, they display a wide range of single channel gating behavior. The molecular elements which control single channel gating of ion channels, are poorly understood. In an attempt to understand the process of single channel gating, we used the Kir channel family, which possesses a prototypical K+ channel structure. We generated chimeras between two Kir channels that display radically different single channel kinetics: Kir2.1 and Kir3.1/3.4. Single Kir2.1 channels have a high probability of opening (~0.8) and are typically open for hundreds of milliseconds. On the other hand, Kir3.1/3.4, which comprises the atrial muscarinic channel of the heart, has a very low probability of opening (~0.05). Kir3.1/3.4 openings are only a few milliseconds in duration and are clustered into bursts. Using a chimeric approach, we found two amino acid residues in the pore which control both single channel open time and burst duration, in Kir3.1/3.4. These two mutants displayed wild-type levels of carbachol gating, suggesting that they affect a gate which is distinct from the Gβ3 gate. We have used our results to construct a model of the Kir3.1/3.4 pore, which describes the energy of interaction of permeating K+ ions with the channel.

Keywords: Ion channels, Gating, Patch clamp
Object-related activation in different modalities (visual, tactile and auditory) in the human occipital and temporal cortex

Amedi A., Hendler T., Malach R., and Zohary D.

Dept. of Neurobiology, Life Science Institute and Neural Computation Center, Hebrew University, Jerusalem 91904; "Wohl Institute for advanced imaging, Tel-Aviv Sourasky Medical Center, Iiel Aviv; Dept. of Neurobiology, Weizmann Institute of Science, Rehovot 76100

Object recognition in humans and primates has been shown to depend on processing in the ventral visual stream. We have recently demonstrated that part of the human ventral visual pathway, located within the lateral occipital complex (LOC), is activated by both visual and haptic stimulation (Amed et al. Nat. Neurosci. 4, 324-330 [2001]). The characteristic feature of this region is that it is both visual and tactile modalities, objects elicit stronger activation than textures. We show here that this object selectivity is robust and repeatable in both modalities across subjects as well as across scans. In contrast, auditory sounds characteristic of objects (animals, tools, vehicles, etc) do not evoke any responses in this region. Thus, we term this bi-modal area SOLO for Somatosensory Object-related Lateral Occipital.

We suggest that SOLO is involved in the analysis of physical shape, which can be acquired from both visual and haptic sources. The level of representation of physical shape in this region is not clear enough and can be from the level of basic feature to the level of the 3D model of the objects. In contrast, auditory information contributes little to the reconstruction of physical shape. This may explain the lack of auditory activation in SOLO. On the other hand, voxels in regions around the superior-temporal sulcus were significantly activated by auditory objects compared to control noise.

Keywords: Objects, Multimodal, fMRI, Ventral stream.

Novel bifunctional compounds eliciting cholinergic and anti-inflammatory activity for the treatment of CNS impairments

Amitai G., Adani R., Rabinovitz I., Sod-Morah G. and Meshulam H.

Division of Medicinal Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona, 74100

The development of new drugs for treatment of various CNS degenerative diseases such as dementia of Alzheimer's type (AD) is based mainly on the use of cholinergic compounds such as cholinesterase inhibitors (ChEI). Anti-inflammatory drugs were shown to ameliorate the inflammatory processes associated with these diseases. The only clinically used drugs, which presently demonstrate efficacy in mild to moderate AD, are ChEIs (e.g., Aricept, Exelon and Reminyl). It was also indicated that certain nonspecific anti-inflammatory drugs (NSAID) could be used for prevention of AD.

We have synthesized a series of novel bifunctional compounds that contain covalently coupled cholinergic up-regulators (CURE) such as quaternary ChEIs, muscarinic and nicotinic agonists with various NSAIDs. A hydrophobic linker connects between these moieties and facilitates permeability through the BBB. We report here on bifunctional NSAID-CURE conjugates that contain PYR as ChEI moiety coupled via an octyl (C8H17) linker (PO) to one of the following NSAIDs: ibuprofen (IBU), diclofenac (DICLO), indomethacine (INDO), aspirin (ASP) and naproxen (NAP). IBU-PO, DICLO-PO, INDO-PO, ASP-PO and NAP-PO inhibit both AChE and BChE with dissociation constants (Kd) and bimolecular inhibition rate constants (k) that range between 10^-6 - 10^-10 M and 10^-9 - 10^-10 M s^-1, respectively. Some of these bifunctional compounds also inhibit cyclooxygenase (COX I and COX II) at micromolar level. Thus, the NSAID-CHEx conjugates exert both anti-cholinergic and anti-COX activity at equi-molar concentrations even in their intact non-hydrized form. The acute toxicity of these compounds is 10-20 fold lower than that of PYR with LD50 values that range around 12 mg/kg ip in mice. Anti-inflammatory activity of IBU-PO was examined in carrageenan-induced peripheral and CNS inflammation in rats. Pretreatment with IBU-PO (5mg/kg, ip) decreases the rat paw edema and whole brain edema. IBU-PO (5mg/kg, ip) increased by 8-fold the survival time of mice that were exposed to hypobaric hypoxia as compared to control animals. IBU-PO (5mg/kg, ip) decreased significantly the brain edema and improved the neuropathy score in closed head injury model in mice. These findings suggest that the new NSAID-CHEx bifunctional chimers could be useful for treatment of CNS impairments such as cerebro-vascular dementia and for reducing the neuronal damage caused by either acute cerebral ischemia or closed head injury.

Keywords: Cholinesterase inhibitors, Non-steroidal anti-inflammatory drugs, Neurodegenerative diseases

Displaced readers do not have a specific magnocellular deficit

Amitay S., Ben-Yehudah G., Banai K., and Ahissar M.

Interdisciplinary Center for Neural Computation, Dept. of Neurobiology, and Dept. of Psychology, Hebrew University, Jerusalem

The magnocellular theory is a prominent, albeit controversial, view asserting that many reading disabled (RD) suffer from a specific impairment in the visual magnocellular pathway. This theory is a part of a more general theory suggesting that RDs have a paransory deficit in fast temporal processing. In order to assess the validity of the magnocellular theory we tested its two basic predictions. First, that a sub-population of RDs will show impaired performance across a broad range of psychophysical tasks relying on magnocellular functions. Second, that this sub-population will not be consistently impaired across tasks that do not rely on magnocellular functions. We defined a behavioral criterion for magnocellular function, which incorporates performance in flicker detection, detection of drifting gratings (at low spatial frequencies), speed discrimination of drifting gratings and detection of coherent dot motion. We found that some RDs (6/30) had impaired magnocellular function. Yet, RDs who were consistently impaired on magnocellular tasks were also consistently impaired on a broad range of other visual and auditory perceptual tasks. Moreover, their performance did not improve with longer stimulus durations. We conclude that although some RDs have poor perceptual abilities, the “magnocellular” level of description does not capture the essence of the perceptual difficulties of any RD individual we have assessed.

Keywords: Magnocellular, Reading disability, Temporal processing, Perception.

Nanoparticle-based EM-localization of acetylcholinesterase in vertebrate neuromuscular junctions

Anglister L., Blotnick E. and Sharon S.

Dept. of Anatomy & Cell Biology, Hebrew University Hadassah Medical School, Jerusalem 91120

Acetylcholinesterase (AChE) is concentrated in cholinergic synapses, where it is a major factor controlling the duration of transmitter action. The concentration of AChE is determined by its concentration and position in the synaptic cleft. The densities of synaptic AChE at various neuromuscular junctions (njms) were evaluated by quantitative EM-autoradiography with radio-labeled probes. However, the precise distribution and location of the enzyme in the cleft could not have been determined. Thus, it is not clear whether and to what extent synaptic AChE is associated with pre- or post synaptic membranes, or with synaptic basal lamina, and whether it is distributed only in the primary cleft or also in postjunctional folds. The present study describes nanoparticle-based EM-localization of AChE in the synaptic cleft of vertebrate njms. Various nanogold-conjugates of fasciculin, a polypeptide anticholinesterase toxin, were prepared and used to label AChE in njms of mouse and frog muscles. Nanogold labeling was very effective. Intense nanogold-labeling was obtained even at frog njms, where AChE-sites density is lower relative to other vertebrates. Gold-labeled AChE sites were distributed over the basal lamina in the primary cleft and the postjunctional folds. Quantitative data analysis demonstrates that AChE sites are almost exclusively located on the basal lamina rather than pre- or postsynaptic membranes and are distributed in the primary cleft and full depth of the postjunctional folds, with a defined pattern. This localization pattern of AChE assures the hydrolysis of ACh bouncing off receptors, and eliminates its unnecessary rebinding.

Supported by the Israel Sc. Fund. - Israel Acad. Sc. 180/98

Keywords: Nanogold, Acetylcholinesterase, Basal lamina, Synaptic cleft
DP-109, a lipopholic transition metal chelator, attenuates asymmetric rotations in the 6-OHDA partial lesion model of Parkinson's disease in the adult rat

Aran A., Sorant N., Kozak A., Shapiro I., Friedman N., Angel I. and Friedman J.E.
D-Pharm Ltd, Kiryat Weizmann Science Park, Rehovot 76123

Over accumulation of transition metals such as copper, iron and zinc can cause excitotoxic stress in neurons. These metals are considered to be involved in neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Antioxidants and metal chelators have been found to be beneficial in various models of these diseases, but are problematic due to poor penetration across the blood brain barrier. To address this problem, we have developed a family of lipopholic transition metal chelators. The lead compound, DP-109 has K(Cu)-10^10 M and is highly lipopholic, with logD>2.5 (octanol/water). DP-109 was tested in the unilateral 6-OHDA substantia nigra lesion model using adult male Wistar rats. Three days post-lesion animals were screened for apomorphine-induced rotations over a 5 min period. Responding animals subsequently received either DP-109 (10-500μg/kg) or vehicle daily, p.o., for a period of up to 60 days. Animals were tested weekly for apomorphine-induced rotations. Vehicle treated animals increased asymmetric rotations approximately 20-fold within 30d. DP-109 treated animals demonstrated significantly fewer rotations in a dose-dependent manner. DP-109 attenuated both the rate of increase and number of rotations by 75%. Morphologic analysis found unilateral damage along the striatum in all animals. DP-109-treated animals exhibited less neuronal loss than seen in vehicle controls. We suggest that DP-109 represents a new class of compounds that might be effective in treating neurodegenerative disorders.

Keywords: Neurodegenerative disorders, Parkinson's disease, Chelators, Drugs

Lithium, a neuroprotective drug in MPTP mice model of Parkinson's disease

Arral Z. and Youdim M.B.H.
E&I Faculty of Excellence For Neurodegenerative Diseases Research and Dept. of Pharmacology, Rappaprt Faculty of medicine, Technion, Haifa

Lithium is employed successfully for treatment of bipolar depression. However its mechanism of action has not been fully established. Recent studies by others have indicated that lithium may be a neuroprotective drug and this has been attributed to its ability to induce the anti apoptotic mitochondrial protein, Bel-2. Since Bel-2 over expression in transgenic mice and PC-12 cells prevents MPTP and N-methyl-(R)-salolino neurotoxicity respectively we examined lithium's neuroprotective activity in MPTP (N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine) mice model. Mice were fed with diets containing either 2.2 or 3.3 gr/kg of lithium chloride for 28 days. They were treated with MPTP (24mg/kg/day x 4 days) and killed 4 days later and striatal dopamine metabolism and turn over were estimated. The two doses of lithium gave serum lithium concentrations of 0.78 and 0.98mM. Both doses of lithium induced neuroprotection against MPTP as determined by prevention of the fall in striatal dopamine, DOPAC and HVA, with higher dose being more effective. The confirmation of lithium's neuroprotective activity has come from turn over of striatal dopamine metabolism (DOPAC + HVA / dopamine). The mechanism of lithium induced neuroprotective activity and its relationship to Bel-2 will be presented.

Keywords: Lithium, MPTP, Neuroprotection, Dopamine neuron, Bel-2

The role of Munc13-1 in neurotransmitter release and hormone secretion.

Ashery U.
Dept. of Neurobiochemistry, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv

Neuromodulatory systems involve vesicle docking, priming, fusion and recycling. These processes are coordinated by a large number of synaptic proteins and depend on proper protein-protein and protein-lipid interactions. Munc13-1 is a presynaptic protein that interacts with syntaxin, Doc2, Munc18 and RIM and is essential for a post-docking step in the synaptic vesicle cycle. To investigate whether Munc13-1 acts as a priming factor, we overexpressed Munc13-1 in adrenal chromaffin cells using the Semliki Forest Virus system. Using flash photolysis of caged-caesium, we studied the effect of Munc13-1 on the different kinetic components of exocytosis with capacitance measurements and electrochemical detection of catecholamine release. Overexpression of Munc13-1 causes a 3-fold increase in the exocytotic burst, which represent the fusion of release-competent vesicles. Furthermore, it accelerates the sustained component of secretion, which represents vesicle priming and fusion. Since there was no apparent change in the number of docked vesicles, we conclude that Munc13-1 acts as a priming factor for large dense core vesicles by accelerating the rate constant of vesicle priming. The enhancement of secretion by Munc13-1, which carries a point mutation in the Cys10His motif of the C domain and therefore no longer binds phorbol ester, was less pronounced. Interestingly, the C-terminal part of Munc13-1 enhances secretion in a similar way to the wild-type Munc13-1. These data suggest that the C domain facilitates the action of Munc13-1 and that the priming activity of Munc13-1 resides on the its C-terminal part. Possible models for vesicle docking, priming and fusion will be discussed.

Keywords: Neurotransmission, Capacitance, Munc13-1, Chromaffin cells

Imaging of demyelination in multiple-sclerosis using q-space diffusion and spectroscopic magnetic resonance imaging

Assaf Y.1, Chapman J.2, Ben-Bashat D., Segel Y., Graif M,1, Henleit I.1, Korczyn A.D.1
Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel; 2Dept. of Neurology, Sourasky Medical Center, Tel Aviv, Israel; School of Chemistry, Tel Aviv University, Tel Aviv

Multiple sclerosis (MS) is an inflammatory disease of the central nervous systems leading to progressive decline of motor and sensory functions and causing permanent disability. Magnetic resonance imaging (MRI) is well established as a diagnostic imaging method in MS showing multiple hyper-intense lesions in T2 and FLAIR images (MS plaques) and hypo-intense lesion on T1 weighted images ("black holes"). N-acetyl-aspartate (NAA) level as measured from magnetic resonance spectroscopy (MRS) revealed much larger abnormal areas than those detected by the conventional MRI methods. These abnormal areas were termed as normal appearing white matter (NAWM). Recently, we have showed that high b value diffusion MRI, analyzed using the q-space approach, detect more extensive white matter (WM) abnormality in MS brains as compared to conventional MRI methods.

In this study we performed a correlation between high b value diffusion MRI and 1H 2D MR spectroscopic imaging on MS patients. We have used the 1H MRS spectra and conventional MRI to characterize areas of MS lesions, areas of NAWM and areas of normal white matter (normal MRI intensity and normal metabolite distribution in the MRS). According to this differentiation, the average NAA/Cr ratios were found to be 2.41±0.37 and 1.70±0.25 for normal WM and NAWM, respectively in MS patients. In these areas, we found that q-space probability images intensity was significantly different between the group of NAWM and normal white matter (7.43±0.64 and 6.70±0.57, respectively, p<0.001). This study showed that q-space diffusion MR imaging provides images that are in high correlation to the metabolic state of tissue and therefore show high sensitivity to early abnormal processes in WM.

Keywords: Magnetic resonance imaging, Magnetic resonance spectroscopy, Diffusion, Multiple sclerosis, N-Acetyl-Aspartate

Availability of somato-dendritic Na+ channels in layer 5 neocortical neurons is tuned by membrane potential oscillations

Ashyn N.1, Gutnick M.J.1 and Feldervish I.A.2
1Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beerseba & 2Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100

Back-propagating action potentials in Layer 5 pyramidal neurons may provide the postsynaptic dendritic depolarization necessary for the induction of long-term synaptic plasticity. In order to back-propagate to occur, Na+ channels must be available. We used cell-attached patch-clamp techniques to examine the availability and dynamic characteristics of Na+ channels.
channels in neocortical Layer 5 cells. At physiological temperature (35-37°C) Na channel steady-state inactivation (h) appeared to be voltage-dependent (±4 mV vs. ±9 mV at 22°C, p<0.05, n=7), with a midpoint at Vm=-3 ±2 mV. At voltages around Vm, the time constant of inactivation, as measured with double-pulse reaction protocol, was unexpectedly slow (6-12 ms, n=12). To determine how neuronal oscillatory behavior may affect the availability of Na channels, sinusoidal voltage commands of constant amplitude (+5 mV from Vm) at various frequencies (from 5 to 100 Hz) were applied to the patches; the amount of "ready-to-open" channels was measured by applying a brief depolarizing pulse from the positive edge of sine waves. It was discovered that Na channel availability is lowest at 5 Hz, and it increases sharply as a function of frequency reaching maximal value at frequencies of >30 Hz. Our evidence strongly indicates that, in individual Layer 5 neurons, the availability of Na channels and dendritic excitability could be tuned by frequency and phase of circuit-driven oscillations.

Supported by a grant from the German-Israeli Foundation for Scientific Research and Development.

Keywords: Na channel; Inactivation; Neocortical neuron; Oscillations

Revealing functional "hot spots" at sub-voxel fMRI resolution and their relevance to cortical modularity.

Avidan G.1, Hasson U.2, Henderer J.1, Zohary E.3, and Malach R.2
1Hebrew University of Jerusalem, Jerusalem 91904; 2Weizmann Institute of Science, Rehovot 76100; 3Sourasky Medical Center, Tel Aviv 64239; 4Tel Aviv University, Tel Aviv, 69798

High fMRI signals are commonly associated with strong and selective neuronal activity and consequently weak signals are underestimated. However, weak fMRI signals could also stem from intense neuronal activity if it is produced by small groups of neurons ("hot spots") within a voxel. Conventional fMRI resolution is insufficient to reveal such activity. We propose to circumvent this limitation by employing the fMRI-adaptation approach. We first show that fMRI adaptation is dependent on strong neuronal activation. 9 Subjects viewed line-drawings of face and cars in 3 contrast levels presented in blocks containing either different or identical stimuli. In high order, object-related areas (LO and pFs) adaptation was abolished when neuronal activation was reduced due to lowering of image contrast. We then used the adaptation method to study the neuronal selectivity in the fusiform face area. While the overall activity in this area was drastically reduced for non-face stimuli (houses and words), the adaptation level obtained for these stimuli remained high. This indicates the existence of small neuronal "hot spots", which are selective for non-face stimuli. We propose the fMRI-adaptation approach as a general tool for exposing neuronal selectivity below the spatial resolution of conventionally measured fMRI.

Funded by Israel Academy 8009/00/1 grant

Keywords: Object recognition, Visual cortex, Ventral stream.

Early exposure to stress modulates the ability to cope with stress in adulthood, in the rat

Avital A., Ebril E., Jacobson S. and Richter-Levin G.
Dept. of Psychology, University of Haifa, Haifa

Recent evidence supports the hypothesis that impoverished intellectual stimulation during early childhood may disturb the formation of functional brain pathways, in particular of the limbic circuits, which play a major role in emotion and learning. Thus, we examined the effects of early exposure to stress on the ability to cope with stress in adulthood. Rats were subjected to platform stress (for 30 minutes) pre-puberty (4 weeks). Post-puberty, at the age of 8 weeks, rats were exposed to adulthood stress experience (Host-intruder interaction), and were then tested in the open-field, the Morris water-maze and the startle-reflex test. We report that an early exposure to stress led to elevated levels of anxiety, as measured in an open-field test, but that rats that were exposed to early + late stress showed significantly higher level of anxiety compared to all groups. Basal startle response was also elevated. Nevertheless, the early + late stress group acquired faster the spatial learning task, though following acquisition, only the early group showed a bias towards the quadrant in which the platform was previously placed. These findings suggest that an early exposure to stress may have significant and differential effects on behavior and on the ability of rats to cope with stress in adulthood.

Supported by a grant 52/2000 from the Israel Foundation Trusts to G. R-L.

Keywords: Early stress, Learning, Anxiety.

Early exposure to platform stress modulates the ability to cope with acute swim stress in adulthood, in the rat

Avidal A., Ebril E., Jacobson S. and Richter-Levin G.
Dept. of Psychology, University of Haifa, Haifa

Recent evidence supports the hypothesis that exposure to stress during early childhood may disturb the formation of functional brain pathways, in particular of the limbic system circuits, which play a major role in emotion and learning. We therefore set out to examine the effects of early exposure to stress on the ability to cope with stress in adulthood. Rats were subjected to stress (elevated platform stress for 30 minutes) pre-puberty (4 weeks). Post-puberty, at the age of 12 weeks, rats were exposed to adulthood stress experience (acute swim stress), and were then tested in the open-field, the Morris water-maze and the startle-reflex test. We report that an early exposure to stress led to elevated levels of anxiety, as measured in an open-field test, but that rats that were exposed to early + late stress showed a significantly higher level of anxiety compared to control, and to rats that were exposed only to early or to late stress. Basal startle response was also elevated. Nevertheless, the early + late stress group acquired faster the spatial learning task, though following acquisition there was no difference in spatial memory performance between the different groups. These findings suggest that an early exposure to stress may have significant implications on the ability of rats to cope with stress in adulthood.

Supported by a grant 52/2000 from the Israel Foundation Trusts to G. R-L.

Keywords: Early stress, Learning, Anxiety.

Maternal behavior in a genetically selected animal model of depression

Avnon Y.1, Yadid G.2, Shayit M.3 and Welley A.4
1Dept. of Psychology, Faculty of Life Sciences, Bar Ilan University, Ramat-Gan

The association between depression and maternal behavior found in humans was examined in the Flinders Sensitive Line (FSL), established through selective breeding of Sprague-Dawley (SD) rats. This line meets several criteria for an animal model of depression and displays anhedonia (Overstreet et al., Neurosci Biobehav Rev 17, 51-68 (1993)). Since mammalian maternal behavior is maintained partially by the rewarding value of the infant to its mother, we hypothesized that FSL and SD mothers will show different patterns of maternal behavior. 10 rats from each line (FSL and SD), were observed with their litters in their home cages, four days/week during the first 3 postpartum weeks, twice during the light phase of the light/dark cycle (morning and afternoon). Frequency of behaviors was recorded from three "spot-checks" during each 30 min. observation. Only afternoon observations revealed between-group differences. Across all three weeks, while the groups did not differ in number of observations spent nursing, FSL mothers were found significantly less in contact with their pups than SD mothers. In the third postpartum week, FSL mothers, engaged in less nursing and in more resting and self-grooming. These results imply that as long as the pups are completely dependent on their mother for survival, FSL mothers provide for their basic needs, while supplying less non-nutritive contact than controls. However, as pups become slightly independent, FSL mothers prefer self-care over infant care. Maternal behavior has both stereotyped and reward-based components. Depression may selectively decrease the reward-based aspects.

Keywords: Animal models, Depression, Maternal behavior, Reward.

Combining human and mouse genetics helps unravel the function of proteins in the inner ear

Dept. of Human Genetics & Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv

The first and crucial step in the sensory processing of hearing, the transduction of sound into a cellular response, takes place in specialized cells that form an interface between our environments and our nervous systems. These cells in the cochlea, the mechanosensory hair cells, express a large repertoire of proteins...
that are involved in a remarkable feat of coordination. These mutations have led to hereditary hearing impairment on a functional level. Our work demonstrates the genomic and biological complexity of deafness, and how progress in the field has gone from gene identification to elucidation of protein function.

Keywords: Transcription factors, Myosins, Cochlea, Auditory system

Non-steroidal anti-inflammatory drugs enhance soluble amyloid precursor protein release

Avramovich Y., Amit T. and Youdim M.B.H.

The Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative diseases, Bruce Rappaport Family Research Institute and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa

Alzheimer’s brain shows a chronic inflammatory response, characterized by activated glial cells and increased expression of cytokines and complement factors surrounding amyloid deposits. Non-steroidal anti-inflammatory drugs (NSAIDs) have shown some success in the treatment of AD. We have found that the amyloid-β (Aβ(25-35) (100 µM) significantly enhanced the expression of the pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-α (TNF-α). mRNAs in human neuroblastoma SH-SY5Y cells. The involvement of NSAIDs in the regulation of the amyloid precursor protein (APP) processing was investigated, using cultured human SH-SY5Y neuroblastoma and rat PC12 cells. In this study, two groups of drugs were tested: (a) COX inhibitors (ibuprofen (Ibu), indomethacin (Indo) and nimesulide (Nim)) and (b) TNF-α suppressors (thalidomide (Thal)) and supidimide (Sup)). For the first time, we describe that these NSAIDs cause a dose-dependent (0.1-10 µM) increase in the release of the non-amyloidogenic α-secretase form of the soluble APP (sAPP) into the conditioned media of both cell lines. Enhanced sAPP secretion was recognized by both monoclonal antibodies 22C11, which recognizes the N terminus of APP and 6E10, which recognizes the C terminus of sAPP, cleaved at the α site. Thus, the identified bands are assumed to be α-secretase-cleaved forms. In this study, hydroxamic acid-based inhibitor, Ro31-9790, blocked the effect of NSAIDs drugs. For the first time, we have provided evidence that NSAIDs promote the non-amyloidogenic α-secretase APP processing, which may explain their therapeutic value in Alzheimer’s disease.

Keyword: Alzheimer’s disease, Non-steroidal anti-inflammatory drugs, COX1 and 2 inhibitors, APP processing

Processing of the amyloid precursor protein by non-steroidal anti-inflammatory drugs involves the mitogen-activated protein kinase signaling

Avramovich Y., Amit T. and Youdim M.B.H.

The Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative diseases, Bruce Rappaport Family Research Institute and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa

Brain inflammatory processes underlie the pathogenesis of Alzheimer disease (AD) and indeed, previous epidemiological studies have demonstrated a reduced risk of AD among individuals using non-steroidal anti-inflammatory drugs (NSAIDs). However, the mechanism by which these drugs might affect the pathophysiological processes of AD has been unclear. Recently, we have shown that the NSAIDs nimesulide (Nim), ibuprofen (Ibu) and indomethacin (Indo) stimulated the α-secretase processing of the amyloid precursor protein (APP) in a dose dependent manner (1-100 µM). To further clarify the mechanism by which these drugs stimulate the secretion of the soluble fragment of APP (sAPP), the signaling pathway involved in the regulation of sAPP release was investigated. Using several signal-transduction inhibitors, it was shown that protein kinase C (PKC), mitogen-activated protein kinase (MAPK)- and tyrosine kinase-dependent pathways mediate the effect of these drugs on sAPP secretion. Furthermore, the direct activation of MAPK was examined in rat PC12 and human neuroblastoma SH-SY5Y cells. Western blot analysis using a phosphospecific MAPK antibody, revealed a time (1-15 min) and concentration (1-100 µM) dependent increase in MAPK phosphorylation in cells preincubated with Nim, Ibu and Indo. The extra cellular signal-regulated kinase (ERK) inhibitors PD98059 or U0126 suppressed the drugs’ induced MAPK activation. In addition, the specific PKC- inhibitor GF 109203X decreased the effect of Nim on MAPK activation, which suggests its dependence on PKC activity. The results demonstrate that these NSAIDs regulate the processing of APP via PKC-, MAPK- and tyrosine kinase-dependent pathways and could be therapeutically important for AD treatment.

Keywords: Alzheimer’s disease, Non-steroidal anti-inflammatory drugs, APP, Signal transduction

Differential effect of protein synthesis inhibition in the cortex and in the amygdala on experimental extinction of conditioned taste aversions in the rat

Bahar A., Berman D.E., Dudai Y., Hazvi S., Samuel A. and Stehberg J.

Dept. of Neurobiology, Weizmann Institute of Science, Rehovot 76100

The insular cortex (IC), which contains the central taste area, and the amygdala subserve the acquisition, consolidation and retention of conditioned taste aversion (CTA) memory in the rat. The consolidation of long-term CTA memory is blocked by the local microinfusion into the IC or into the central nucleus of the amygdala (CeA) of the protein synthesis inhibitor anisomycin immediately before training. We have recently reported that microinfusion of anisomycin into the IC immediately before or after the first retrieval test in an experimental extinction protocol blocks the extinction of CTA (Berman & Dudai, Science 291: 2417 [2001]). This corroborates the notion that extinction of CTA is not forgetting, but relearning of a new association of the conditioned taste with the absence of malaise. We now report that a similar treatment in the CeA does not block extinction. However, extinction of CTA is affected when the protein synthesis inhibitor is microinfused into the basolateral nucleus of the amygdala (BLA). Our results indicate that the effect of protein synthesis inhibition on the fate of the trace after retrieval is region dependent, and that the IC, and different nuclei within the amygdala contribute differently to the experimental extinction of the CTA trace.

Supported by The Dominic Center for Higher Brain Function and The Reich Foundation, and the Volkswagen Foundation.

Keywords: Taste, Extinction, Protein synthesis, Learning, Rat

Perception and cognitive abilities

Banai K. and Ahissar M.

Interdisciplinary Center for Neural Computation, Hebrew University of Jerusalem, Israel; *Dept. of Psychology, Hebrew University of Jerusalem, Jerusalem 91905*

To what extent does perceptual processing constrain cognitive abilities? Moderate correlations between various perceptual measures and intelligence have been reported anecdotally. These correlations were attributed to a general perceptual/biological factor such as speed of information processing in the nervous system. We now asked whether different perceptual tasks indeed share the same cognitive factor. To test this we administered a battery of auditory and visual perceptual tasks and standard cognitive tasks (e.g. Raven Standard Progressive Matrices) to a group of 60 participants. We found significant correlations between scores in Raven’s Matrices and discrimination thresholds for auditory frequency, duration and intensity and for visual flicker detection tasks (rRaven = .41, .31, .36 and .36 respectively), consistent with previous reports. Surprisingly, however, there was almost no correlation between scores in the different perceptual tasks although each of them was correlated with cognitive abilities. Their contribution to the prediction of cognitive scores was almost additive. Together, auditory frequency and duration discrimination and visual flicker detection predict more than 40% of the variance in Raven’s Matrices scores. We conclude that performance in different perceptual tasks might limit different, independent, components of non-verbal intelligence. A non-linear analysis of individual perceptual profile may thus be a useful tool in exploring his/her different cognitive skills.

Keywords: Perception, Intelligence, Cognition, Auditory processing.
Neuroprotection by PRS-211,095: functional and morphological effects in transient MCA occlusion in rats

Pharmos Ltd, Kiryat Weizmann, Rehovot 76326

Dexanabinol is a non-psychootropic cannabinoid, which acts as a non-competitive NMDA receptor antagonist, and has anti-oxidant and anti-inflammatory activities. It was shown to be neuroprotective in brain ischemia and traumatic brain injury models. PRS-211,095 is a novel analog of Dexanabinol with binding affinity for the NMDA receptor and ability to inhibit cyclooxygenase-2 about 5 and 2 times greater, respectively, than Dexanabinol. The aim of the present study was to determine whether PRS-211,095 has long-term beneficial effects on functional outcome and on infarct volume following focal brain ischemia. The middle cerebral artery (MCA) of Sprague Dawley rats was occluded for 120 minutes by intraluminal suture. PRS-211,095 (0.5, 2.5, 5 or 10 mg/kg IV) and its vehicle were administered at the end of the ischemic insult. The neuroprotective efficacy of the compound was evaluated by the “staircase test” and infarct volume. Rats were trained for 1 week before the insult, twice a day for 15 minutes. Thereafter, rats were tested daily for 2-3 weeks. At the end of the test period brains were serially sectioned and stained with H&E. Infarct volumes were evaluated by computerized image analysis. A dose related improvement in performance in the staircase test on the contralateral side was seen with PRS-211,095 (40-80% compared with vehicle, p<0.05 at 0.5, 5 and 10 mg/kg). Infarct volume was also reduced with PRS-211,095 (35% at 5 mg/kg). Thus, PRS-211,095 induces functional as well as morphological neuroprotection following transient MCAO in rats.

Keywords: Ischemia, Neuroprotection, Stroke, staircase test.

Recycling implicit visual information to new composite percepts

Barlassay A. and Hochstein S.
Dept. of Neurobiology, and Neural Computation Center, Hebrew University, Jerusalem 91904

As already suggested by Rock & Linnett (Perception 22: 61-76, 1993), under certain conditions there maybe a difference between the retinal image and the expected visual image. We now ask what are the implications of the presence of an implicit retinal image. For example, can the implicit retinal image alone be used by the visual system to produce a new conscious percept? Since the presence of the implicit retinal image may be tested by an afterimage, we study the use of this afterimage to produce new explicit percepts. Subjects looked at a moving fixation point on a computer monitor. Bright image-components were flashed in appropriate locations relative to the moving fixation point and/or the fixed screen. Generally, the conscious percept combines the components relative to their absolute position on the screen. The retinal image, however, is always relative to the fixed or moving fixation point. We found that when the subjects viewed the afterimages, they were able to form new composite percepts combining the components anew. The components were now explicitly “rearranged” according to their retinal positions, alone. Significantly, the new percepts also included illusory forms based on the new arrangements. These findings imply that the visual system separates between information implicitly and explicitly available. Furthermore, the system may “rewind” and “reload” the perceptual process with new conditions, returning to the implicit information at a later point and re-integrating it to new explicit perceptions. This process may have important implications for normal vision as well.

Keywords: Vision, Integration, Afterimage, Illusory contours

Effects of preemptive analgesia on immune response in the postoperative period

Biran B., Bessler H., Mordashov B., Smipov G. and Shavit Y.
Dept. of Anesthesiology, Research institute, Robin Medical Center, Golda-Hasharon Campus, Petah Tiva 49372; 2 Dept. of Psychology, Mount Scopus, Hebrew University, Jerusalem 91905

Pain may contribute to the immune suppression observed in the postoperative period. Several perioperative pain management techniques are in common use, including 1. Patient-controlled epidural analgesia (PCEA), based on a smaller dose of opiates (known to have immuno-suppressive effects), in combination with local anesthetics (known to have anti-inflammatory properties); and 2. Preemptive analgesia known to reduce postoperative pain and opiates consumption, and believed to prevent central sensitization caused by incisional and inflammatory injuries. We compared the effects of these pain management techniques on immune alterations in the postoperative period. Patients were females undergoing trans-abdominal hysterectomy under general anesthesia, and were randomly assigned to one of two groups: 1. Preemptive+PCEA - Epidural preoperative (20 min before surgery); mixture of 12 ml bupivacaine (0.5%) + fentanyl (50-100 µg). Postoperative mixture of bupivacaine (0.1%) + fentanyl (2 µg/ml). Background continuous infusion (6 ml/hr) + per demand (3 ml per press), lock-out time 10 min. 2. - PCEA - Preoperative: epidural catheter with test dose only.

Postoperative as described above.

Results: Patients of the "Preemptive+PCEA" group exhibited lower pain scores, while used the same amount of analgesic mixture. In the "Preemptive+PCEA" group, levels of proinflammatory cytokines were significantly less elevated, while levels of IL-2 were significantly less suppressed, in the postoperative period, compared with the "PCEA" group. It has been suggested that preemptive epidural block attenuates the surgery-associated acute neurogenic inflammation and central hyperexcitability, and presumably in this way decreases the release of proinflammatory cytokines and reduces the level of postoperative pain.

Keywords: Postoperative pain, Immunity, Cytokines, Opiates, Inflammation

Mouse forebrain serpin levels in acute experimental autoimmune encephalomyelitis (EAE)

Depts of Physiology & Pharmacology, Neurology, Genetics, Sacker Faculty of Medicine, Tel Aviv University, Tel Aviv; 2 Dept. of Neurology, Hadassah Medical Center, Jerusalem

Objectives: To measure forebrain serpin levels and thrombin inhibition during acute EAE.

Methods: Severe acute EAE was induced by immunizing 8 weeks old SJL mice with spinal cord homogenates (n=8). Control mice were injected with adjuvant alone (n=9). On day 12 post-immunization the brains were excised, homogenized and centrifuged to separate soluble components. Inhibition of exogenous thrombin activity was measured with a labeled peptide substrate. The serpins, protein nixin I (PNI) and antithrombin III (ATIII) were measured by western blot.

Results: Soluble factors in the brain homogenate inhibited exogenous thrombin activity in EAE mice forebrains. Our observations suggest that forebrain expression of both serine proteases and serpins might be elevated during acute EAE. The exact role of these changes in EAE remains to be established.

Keywords: EAE; Thrombin; Protein nixin I; Anti thrombin III.

Melatonin promotes sleep-like state in gerbil Psammomys Obessus

Ben-Aharon G., Haim A. and Zisapel N.
Dept. of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv; 2 Dept. of Biology, University of Haifa at Oranim, Kiryat Tivon

The sleep promoting effect of the pineal hormone melatonin in humans is known for decades. However, the mechanisms of this phenomenon remain obscure, mainly due to lack of a simple, genetically tractable, animal model that will, like human, be diurnal active.

We now report that melatonin promotes sleep-like state in a diurnal gerbil, Psammomys obessus, essentially similar to the effect induced by a conventional hypnotic, sodium pentobarbital (0.05ml/animal). Furthermore, while exogenous melatonin injected in daytime (2.5mg/kg b.w.i.p.) induced sleep-like effects on mature psammomys (120-170gr b.w.), there was no effect on young psammomys (60-80gr) - a group characterized by high levels of endogenous melatonin, also during daytime. This data is compatible with previous findings showing MRI response of the
brain to melatonin injection (50µg/kg b.w. i.v.) at specific brain regions of the adult psammomys brain and a different response in the young age group. This is the first set of finding of melatonin influence both on activity and brain response on a diurnal rodent and may provide an efficient animal model for further research of sleep and sleep regulation.

Keywords: Melatonin, Sleep, Activity, fMRI, Psammomys Obessus.

Studies of white matter maturation of the normal brain using high b value diffusion weighted imaging

Ben-Bashat D., Ben Sira L., Graft M. and Assaf Y.

The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, 64339

Brain development includes many aspects such as development of sulci, maturation of brain chemistry, changes in free water motion, myelination etc. Myelination can be studied by different MR techniques: T1, T2, magnetization transfer, diffusion weighted imaging (DWI) and spectroscopy. Although, the visual appearance of white matter, both on T1 and T2 weighted images seems to be unchanged after the age of about two years, measurements of relaxation times do show decrease of T1 and T2 that continues into adolescence. DWI studies showed a reduction of ADC with brain maturation associates with myelination. The ADC changes reach adult’s values within the first 6 months. Diffusion tensor imaging shows an increase in the diffusion anisotropy from newborn to about 6 years of age. Diffusion imaging with high b value enables more specific detection of intra-axial water. Therefore, this method is very sensitive to even minor changes of either the axon or the myelin around it. Previous studies showed that high b value q space analysis diffusion images are very sensitive to white matter degeneration (Assaf et al. MRM, 2001), in press. In addition, animal studies showed that this technique enable the following of myelination with high accuracy and sensitivity (Assaf et al. MRM 44:713-722 [2000]). High b value DWI was used to study normal maturation of myelin in 22 children and adults form 3 mo to 25 yo. Region of interest analysis show changes both in probability and displacement, which continue up to adolescence. Myelination delay is at different regions of the brain with the corpus callosum and the internal capsule to be the first. This method was found to be very sensitive to white matter maturation, both in the normal developed brain and in various pathologies.

Keywords: MRI, Diffusion, Brain maturation, Myelination, Development

Neural-population account for serial memory strategies

Ben Dayan D.D. and Amit D.J.

1Racah Institute of Physics, Hebrew University, Jerusalem, Israel; 2Dep. of Physics, University of Rome “La Sapienza”, Rome, Italy

We propose a neuron-population-model, at the level of neural population rates (mean-field theory) to account for a neural computer of monkeys performing delayed sequence recall task (Orlov et al. Nature 404:77-80 [2000]). Monkeys are presented a sample sequence of 3 images (triplet), separated by delays, then a test multi-image, containing all three + a distractor image from another triplet. Task: touch the 3 images in their previous order avoiding the distractor. The proposed model is predictive and serves as a guide for neurophysiology related to the task. The model is based on the interaction of 3 neural modules: Image resolution, Category, Working Memory. The first and third layers have similar structure, expressing selective visual responses to the images, and are mutually connected selectively. The category module is sensitive to the ordinal position of the learned stimuli (perception or expectation of an event in a sequence). During the multi-image test, the 4 images appear in the image module in low resolution, and the choice image is focused on by selective attention. Additional signals from: 1. Category module; 2. Working memory; 3. Intra-stimulus associations (Miyashita correlations) bring the correct image into high priority and, after foveation, elicit motor action in the correct direction. The simulation of the model, in different variations on the task, shows that the complex set of interactions, learned during training, is able to express the required signals. It also provides a natural account for “transfer” upon category rehashing.

Keywords: Categorization, Working memory, Multiple attractors, Learning transfer.

Prevention of 6-hydroxydopamine induced dopaminergic neurotoxicity by VK-28, a brain penetrable iron chelator

Ben Bashat D., Varshavsky A. and Youdim M.B.H.

Eye Topf and NPF Centers of Excellence for Neurodegenerative Diseases Research and Dept. of Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa. Weizman Institute of Science, Rehovot 76100

In Parkinson’s disease (PD) and its animal models there is an onset of oxidative stress, where iron isothemal (chelatable) has a pivotal role in this and dopaminergic neurodegeneration processes. Previously we reported that desferal, a non brain permeable iron chelator, when injected intraventricularly (IVC), protects against 6-hydroxydopamine (6-OHDA) neurotoxicity. We examined the neuroprotective activity of our newly developed brain permeable iron chelator, VK-28, in the rat 6-OHDA model of PD. IVC injection of VK-28 (1mg) prior to 6-OHDA (IVC, 250µg) completely prevented the degeneration of rat striatal dopamine neurons as measured by dopamine, DOPAC, HVA and turn over of dopamine. This suggests that there is no interaction of VK-28 with 6-OHDA. Chronic systemic treatment (1mg/kg or 5mg/kg/day for 7-10 days) of rats with VK-28 also induced neuroprotection against IVC injected 6-OHDA. A greater (75%) neuroprotection was obtained at the higher dose of VK-28 and striatal dopamine turnover (DOPAC+HVA/dopamine) was similar to control groups. Neither ICV or systemic VK-28 treatment altered striatal serotonin or noradrenaline, suggesting that VK-28 has no effect on these neurons. Furthermore the body weight loss normally observed with 6-OHDA is prevented by VK-28. We have previously suggested that similar to use of copper chelator, D-penicillamine, in Wilson’s disease, iron chelators such as VK-28 may be employed in treatment of PD and other neurodegenerative diseases where iron accumulates at the site of neurodegeneration.

Keywords: Iron, Iron chelator, Parkinson’s disease, Neuroprotection.

GABA promotes neuronal tissue regeneration in hippocampal organotypic culture

Ben-Yaakov G. and Golan H.

Dept. of Developmental Molecular Genetics, Faculty of Health Sciences, and Zlotowski Center for Neuroscience Ben-Gurion Univ. Beer-Sheva

GABA, the main inhibitory neurotransmitter in the brain, is a natural substance that significantly control neuronal circuit activity and development. Recently, a few studies demonstrated different roles for GABA during brain development. GABAergic potentials are depolarizing at the first postnatal days. These depolarizing potentials reverse around the postnatal day 4 due to the expression of K-Cl cotransporter; this may be reversed again following injury. In addition, GABA displays a morphogenic and chemoattractant function at the early postnatal stage. In the present study we have examined the ability of GABA to facilitate regeneration of neuronal tissues in mice hippocampal organotypic slice culture. A cut within the CA1 region of the hippocampus was made, and the rate of neuronal growth and regeneration in the injury sites were evaluated. Addition of GABA (5-50µM) to the cultured slices, immediately after the injury, was significantly facilitated the growth of neurons through the injured tissue. Addition of bicuculline (100 µM), specific GABA A inhibitor, together with GABA (50 µM) to injured slices specifically inhibited the regeneration of the injured tissue, without affecting the viability of cells in the culture. Lower concentrations of bicuculline (10 and 50 µM) did not effectively inhibit the GABA-induced regeneration effect. The effect of GABA as supporting regeneration of neuronal tissue was blocked by suppression of glia proliferation by FUDR. These data may suggest that GABA could play a role as a growth factor in the injured tissue; this function could be mediated by the GABA A receptor and require the presence of glia cells.

Supported by Israeli Health Department, grant contract number 4841.

Keywords: GABA, Regeneration, Hippocampus.
GSK-3 and schizophrenia – relevance to the neuro-developmental hypothesis of this disorder

Bersudsky Y., Nadri C., Kozlovsky N., Belmaker RH. and Again Q.

Stanly Center for Bipolar Research, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva

GSK-3, a ubiquitous enzyme highly conserved during evolution, is a regulatory enzyme of an important signal transduction involved in developmental processes, the Wnt cascade. Kozlovsky et al. found a reduction in GSK-3 levels in cerebral cortical homologous area 7 showing response to simple visual or tactile stimulus. This IPL shows response to changes in sensory space. The whole response was characterized by a pattern of bursts of asynchronous cortical discharge. Such a mechanism could play a critical role in circuit formation.

Keywords: Barrel cortex; Development; Serotonin; IPSCs

Serotonin suppresses inhibitory GABA-R mediated transmission in developing layer 4 of mouse barrel cortex

Binhinok AM, Fleidervish IA, and Gutnick MJ.

Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100

During the first two postnatal weeks, as thalamocortical (TC) axons grow into S1 cortex, arborize, form synapses in L4 and orchestrate segregation of neurons into discrete “barrels”, TC cells transiently express the serotonin transporter responsible for 5-HT uptake from the extracellular space and concentration in synaptic vesicles. Since these cells are not themselves serotonergic, it has been suggested that they use 5-HT as a “borrowed” neurotransmitter. Using patch clamp techniques in tangential slices that primarily include layer 4 barrels, we have examined the postnatal development of synapses in layer 4 and have studied how 5-HT affects these synapses during development. In slices from P5-P13 mice, puff application of 5-HT induced complete and reversible blockade of stimulus-elicited GABA-R mediated synaptic events. The effect was due to activation of presynaptic receptors, since responses elicited by direct GABA application were not affected. 5-HT did not have this effect on IPSCs in older animals (P>18), and it had no significant influence on glutamatergic transmission at any age. Since there is evidence that immature neocortical neurons may have depolarizing resting potential, and that GABA may act as an excitatory neurotransmitter in developing neuronal circuits, we measured Vrest and CI equilibrium potential in unpenetrated layer 4 cells from cell-attached recordings of single K+ and Cl- channels. From age P5, layer 4 cells were depolarized, and CI, measured under normal GABAergic transmission is “shunting” and inhibitory during the period of barrel development. It seems possible that during the time window when 5-HT becomes concentrated in pre-synaptic TC terminals, it is co-released from these terminals along with glutamate, and that this affinity thereby causes local disinhibition and consequent emergent bursts of synchronous cortical discharge. Such a mechanism could play a critical role in circuit formation.

Keywords: Barre cortex; Development; Serotonin; IPSCs

Posterior parietal IPL (IP) role in primate hand reaching to target behavior in the extrapersonal space (EPS) - a neuro-physiological study in monkeys

Blum B.

Dept. of Physiology and Pharmacology, Sackler School of Medicine Tel Aviv University, Tel Aviv 69978

Lesions in primate IPL cause hand-misreaching, definable as a dysfunction constrained to the perceptual, motor, and motor aspects excluded. Hence the question was raised of IPL normal function in encoding integrated sensory spatial information for action schema in the EPS. Single neuron microelectrode recording was taken from awake monkeys, homologous area 7. Hand reaching to target (HR)-related cell single responses and also neuronal responses to visual, tactile, auditory, proceptive stimuli were obtained. Noteworthy are special characteristics defined: 1) At IPL’s PG region same cell encoding monkey’s hand reaching by stimulus-bound firing increment or decrement also shows response to simple visual or tactile stimulus. 2) HR related kinesthetic neurons with no visual response. 3) Neurons responding to visual or to another of the sensory modalities with change in firing on HR. 4) Tactile cells at IPL’s PF region showing response to touch at “target” i.e at behaviorally reward highlighted EPS location but not at “no target”. 5) This IPL responsiveness could be ‘learnt’ by behavior experience (Blum, 1989). 6) Encoding interest/ reward-related events in the EPS including specificity for movement in that space of trainer’s reward/hand towards or away from monkey, or both directions- encoding EPS-inwards or EPS-outwards movement, thus demarcating monkey’s EPS. Area 7 multidynne neurone distinct category response- same cell encoding with or without direction specificity different phases in monkey’s and trainer’s hand reach movement in EPS with characteristics that may be regarded components of neuronal domain cooperativity relative to high order manipulative behavior in the EPS.

Keywords: Infraparietal cortex; Hand reach; Extrapersonal space; Neuronal learning response

A new approach to the temporal processing deficit in dyslexia

Ben-Yehudah G., and Ahissar M.

Dept. of Neurobiology and Psychology, Hebrew University, Jerusalem

From the perceptual perspective, adult dyslexics can be divided into those with comprehensive deficits and those with mild deficits or none. The first have broader learning difficulties whereas the latter have very specific reading deficits (Bannai & Ahissar. Neuroscience Letters Supplement [2000]). We now asked whether this latter group of dyslexics suffers from attentional deficits.

When we administered a standard attention test (Conners’ Continuous Performance Test II), we found that although none of our participants would be diagnosed as having an attention disorder deficit, their scores were significantly and consistently worse than those of their intelligence-matched controls. Since this test involves different inter-stimulus intervals (ISIs), we asked whether these intervals are the source of their difficulties in the attention test.

Perceptual discriminations were thus measured under different ISIs. We first replicated previous results finding no substantial deficits in auditory frequency and intensity discriminations measured with 1-2s ISIs. With a longer ISI (5s), their frequency and intensity discriminations were both impaired (in contrast to other test groups). With very brief ISIs (0.1-0.2s) their frequency discrimination was also substantially impaired. In the visual domain, their spatial frequency discrimination was similar to controls’ when stimuli were presented simultaneously, but was significantly impaired when stimuli were presented sequentially.

These findings show that dyslexics have difficulties in retaining-and-compare paradigms both in the visual and in the auditory modality (extending Ben-Yehudah et al., Brain 124:1381-1395 [2001]). The specificity of the deficits to atypical intervals (ISIs #1-2s) suggests an underlying deficit in temporal attention/anticipation rather than in perceptual memory.

Keywords: Dyslexia, Temporal processing, Attention, Auditory processing, Visual processing
A novel, long-N-terminus isoform of L-type Ca\(^{2+}\) channel found by screening the human genome sequence

Blumentstein V.\(^1\), Kanovsky N.\(^1\), Sahar G.\(^1\), Ivanita T.\(^1\) and Dascal N.
\(^1\)Dept. of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University,
\(^2\)Thoracic and Cardiovascular Surgery, Rabin Medical Center, Petach Tikva

The main subunit (\(\alpha_{1C}\)) of rat cardiac/neuronal L-type voltage dependent Ca\(^{2+}\) channel has two N-terminal (NT) isoforms, long and short, with unique initial segments of 46 and 16 amino-acids, respectively, followed by 108 fully conserved amino acids. Only a short-NT isoform is found in humans, and only a long-NT isoform in rabbit. The initial segment of the rabbit long-NT plays an important role in channel gating and regulation by protein kinase C (PKC). Since human Ca\(^{2+}\) channels are regulated by PKC, we suspected that a long-NT isoform of human \(\alpha_{1C}\) should exist. By screening of the human genome for homology to rabbit long-NT cDNA, we identified a highly homologous stretch (termed exon 1a) in human genomic DNA. It contains a 5'-UTR sequence and is separated from the next known exon of \(\alpha_{1C}\) (exon 1b) by an alternative, 575-nt long, non-coding 5'-exon (exon 1a'). Reverse transcriptase PCR showed the dominant presence of RNA composed of exons 2, 3 and 4 in human cardiac RNA, and only a weak signal for RNA containing exon 1a. Western blot with an antibody against the rabbit long-NT detected a 240 kDa protein (the size expected for \(\alpha_{1C}\) in human atrium and ventricle. Expression of cRNA of the full-length long-NT \(\alpha_{1C}\) in Xenopus oocytes directed a PKC-sensitive Ca\(^{2+}\) channel, whereas the short-NT was PKC-insensitive. The long-NT isoform may underlie the Ca\(^{2+}\) current enhancement by PKC-activating transmitters (endothelin, angiotensin, etc.) in human tissues.

Keywords: Ca\(^{2+}\) channel, Isoform, Protein kinase C; Human genome

Basal ganglia and movement: a more complex relationship than expected?

Boraud T.\(^1\), Paz R.\(^1,2\), Nathan C.\(^1\), Vaadia E.\(^1,2\) and Bergman H.\(^1,2\)
\(^1\)Physiology Dept., Hadassah medical school, Jerusalem; \(^2\)The Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem

Cortical information is processed through several cortico-basal ganglia loops (CBL). The degree of convergence and divergence of those pathways is still a matter of debate. This question is even more critical if we take into account inter-hemispheric communication. In this study, one monkey was trained with an unimanual/bimanual center-out task where instruction, movement and reward were clearly separated in time. We performed multi-electrode recordings of the globus pallidus (GP), the internal part of which is considered as the main output structure of the basal ganglia, and of the motor cortical area during the task. Our goals were: i) to determine the responses of GP neurons to all the events in a behavioral motor task (instructions, movement and reward), ii) to determine the related timing of cortical and GP neurons during the task, iii) to determine the role played by basal ganglia in bimanual coordination. We recorded 116 GP and GPe cells, 62.1% displayed a response. Out of these task-related neurons, 27.8% responded to the instructions, 63.9% responded to the movement onset and 22.2% responded to reward delivery. More interestingly, 27.8% of task related neurons responded to 2 or more events. Finally, 34.7% of these task-related cells display different responses for unimanual and bimanual movements. We analyzed also the polarity of neuronal responses as well as the time relationship between responding onset of GP and cortical neurons. Our data i) support CBL convergence hypothesis, ii) evidenced computation of bimanual information through the CBL.

Keywords: Electrophysiology, Multi-electrode recording. Behavioral task

Herpes simplex virus type-1 latency associated gene effect upon apoptosis ex vivo

Krep E.\(^1\), Mador N.\(^1\), Panel A.\(^2\) and Steiner I.\(^1\)
\(^1\)Laboratory of Neurovirology, Dept. of Neurology, Hadassah University Hospital, Jerusalem 91120; \(^2\)The Hebrew University, Hadassah Medical School, Jerusalem 91120

Following primary infection, herpes simplex virus type 1 (HSV-1) persists in the peripheral nervous system in a latent state and can undergo periodic reactivations.

The only gene that is expressed during that period is the latency associated transcripts (LAT) gene. Intensive effort has been directed to reveal the role of this gene during latency and reactivation. Induction of apoptosis is critical in controlling productive and latent viral infection. Inhibition of the process could be an important mechanism for viral survival. Indeed, several viruses encode genes that interfere with apoptosis. We have postulated that the LAT gene may function as an anti-apoptotic gene during latency. An earlier report (Perr G.C et al. Science 287:1500, [2000]) showed that LAT promotes neuronal survival in a neuronal cell line. We set forth to examine LAT function during apoptosis in a model that resembles the in vivo state. A transgenic mouse containing the coding sequence of the LATs under control of cytomegalovirus promoter was generated. Mouse embryonic fibroblasts (MEFs) were cultured and found to express the LAT gene. At present the ability of these cells to withstand apoptotic triggers is being examined and compared to non transgenic MEFs. Results will be presented.

Keywords: Herpes, Latency, Nervous system, Apoptosis.

Parental separation leads to altered metabolic activation in different cortical brain areas

Braun K. and Bock J.
Dept. Zoology/Developmental Neurobiology, Otto von Guericke University, 39008 Magdeburg, Germany

While the basic wiring of the mammalian central nervous system and its functional pathways is genetically determined, its fine tuning throughout different phases of postnatal development is highly experience dependent. Normal brain development requires the precise interactions of environmental signals with genes and molecular signaling cascades that drive cellular differentiation and circuit formation. Early deprivation and traumatic experiences can interfere with these events, resulting in under- or maldeveloped brain circuits, which cause enduring behavioral and cognitive impairment. In order to identify those brain regions, whose functional development may be affected by juvenile traumatic experience we applied the \(^{18}F\)-2-Fluoro-deoxyglucose (2FDG)-technique in two week old Octodon degus pups. Metabolic activation, densitometrically measured as 2FDG uptake, was compared between four experimental groups: i) pups, that were rear in isolated cages, ii) pups, that were rear undisturbed with their parents, iii) pups, that were separated from their parents for 1 hour together with their littermates, iii) pups, that were separated from their parents and kept individually for 1 hour, iv) pups, that were separated from their parents and kept individually for 1 hour and, in addition, were exposed to maternal calls. Compared to animals from group i) animals of the three separation groups (ii, iii, iv) revealed significantly reduced metabolic activity in the prefrontal cortex areas ACd (anterior cingulate cortex) and PrCm (precentral medial cortex) and also in the posterior cingulate cortex (Cg). Furthermore, individually isolated animals (group iii) showed lower metabolic activation in the ACd, PrCm and Cg than animals isolated together with their littermates (group ii). Pups stimulated with the maternal call (group iv) showed a slightly but significantly increased metabolic activity in the PrCm and Cg compared to individually isolated animals without additional acoustic stimulation (group iii). No differences in 2FDG uptake during separation were found in the amygdala. However, stimulation with the maternal call (group iv) significantly reduced 2FDG uptake in the basomedial and lateral amygdala compared to the other three groups.

Our results indicate that early stressful situations lead to alterations of metabolic activity in distinct cortical areas. Since neuronal activation regulates the development of synapses during postnatal brain maturation, the stress-induced alterations of metabolism may interfere with the refinement of limbic connectivity patterns, resulting in altered processing of emotional stimuli in adulthood.

Keywords: Stress, Limbic system, Prefrontal cortex, Affective disorders

Supported by the State of Saxony-Anhalt LA3006A/0088H and the Volkswagenstiftung

Keywords: Stress, Limbic system, Prefrontal cortex, Affective disorders
Complex form discrimination by area 18 cells of the cat.

Bregman T. and Yinon U.

Physiological Laboratory, Goldschleger Eye Research Institute, Tel-Aviv University Faculty of Medicine, Sheba Medical Center, Tel-Hashomer 52621

Given that cells in visual cortical area 18 in cats are able to encode information on complex shapes (Redies C. et al., Exp Brain Res. 82: 469 [1986]; Hegde and Van Essen, J. Neurosci. 20: 0; RC 61 [2000]), we have studied their capability to encode the complex forms - animate contours (AC). AC (cat's body contours), various degraded and scrambled AC, ellipses and lines were presented monocularly and repeatedly to the same eye within the cell's receptive field. Each contour was presented several times. 82 complex cells in area 18 of 11 paralyzed and anesthetized cats were characterized. The main findings are as follows: 1) AC and lines elicited similar responses (44% cells responded stronger to lines and 56% - to AC; p=0.31, W-paired test); 2) the cells were able to discriminate between the whole and degraded AC: the responses to the whole AC were considerably stronger than to all degraded contours (p<0.01); 3) the cells differentiated in their responses scrambled contours with different element orientation of complex shapes (Redies et al., Exp. Brain Res. 5: 429-436, 1969); 4) the cells were able to discriminate between the whole and degraded AC: the responses to the whole AC were considerably stronger than to all degraded contours (p<0.01); 5) the cells differentiated in their responses scrambled contours with different element orientation (p<0.001). Conclusions: The cells selective to any presented AC were not found in the area 18. Nevertheless, the results taken together point to the wide coding properties of these cells, and their involvement in the contour abstraction.

Supported by Miriam and Aaron Gutwirth Foundation scholarship.

Keywords: Extrastriate, Object recognition, Receptive field

Antisense oligonucleotides suppressing acetylcholinesterase synthesis relieve neuromuscular weakness in experimental autoimmune myasthenia gravis

Brenner T. 1, Hanra-Amitay Y. 1, Ervon T. 2, Boneva N. 1, Seidman S. 2 and Song H. 1

Depts. of Neurology and Biological Chemistry 2, Hadassah University Hospital and Hebrew University Medical School, Jerusalem

Myasthenia Gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. The typical neuromuscular weakness associated with MG is transiently relieved by pharmacological inhibitors of acetylcholinesterase (AChE). In our study we expanded the anticholinesterase repertoire to include 2-O-methyl-protected antisense oligonucleotides (ASON) targeted to AChE mRNA. In rats with experimental autoimmune myasthenia gravis (EAMG), Normal response to repetitive nerve stimulation and marked improvement in stamina and clinical profile was observed for at least 24 hours following a single oral administration of ASON. ASON selectively suppressed expression of the alternatively spliced readthrough or AChE-R enzyme isoform, attributing a previously unsuspected role to this splice variant in MG etiology. Elevated levels of ASON were detected in serum, cerebrospinal fluid and EAMG rats, emphasizing its involvement in these diseases. Our results show the beneficial effect of ASON treatment on muscle activity in EAMG and demonstrate a possibility of oral administration of this compound. The present findings represent the first preclinical application of antisense technology for treatment of chronic neuromuscular disorders and highlight potential advantages of gene-targeted drug therapy.

Keywords: Myasthenia Gravis, Acetyl cholinesterase, Anti-sense treatment

Mid-hindbrain organizer determines development of dopaminergic and serotonergic neurons and regulates motor activity

Brodski C. 1, Siglme M. 2, Vogt Weisenhorn D. 2, 3, Sillaber I. 1

Oesterheld M., Acampaora D. 1, Simeone A. 1 and Wurst W. 1

1Max-Planck-Institute of Psychiatry, Kriepelstr. 2-10, 80804 Munich and GSF-Research Center, Institute for Mammalian Genetics 85757, Tübingen, Germany; 2ABC Centre for Developmental Neurobiology, King's College London, Guy's Campus, New Hunts House, London SE1 9RT, UK; 3International Institute of Genetics and Biophysics, CNR, Via G. Marconi 12, 80125 Naples, Italy

Midbrain dopaminergic neurons are specified rostrally to the mid-hindbrain organizer (MHO) and hindbrain serotonergic neurons caudally. To it. Here we report that in mutants in which the MHO is shifted caudally, the midbrain dopaminergic neuronal population expand to the ectopic positioned MHO and is enlarged. Complementary the size of the hindbrain serotonergic cell group is decreased. Also in mutants were the MHO is shifted rostrally, the dopaminergic and serotonergic cell populations are relocated at the new positioned MHO. However here, the size ratio of these two cell populations is changed in favour of the serotonergic neurons. In addition behavioural tests reveal that mice with a caudally shifted MHO are hyperactive and show a paradoxical calming effect after amphetamine treatment. Taken together, these results provide evidence that the position of the MHO during embryogenesis determines the location and number of midbrain dopaminergic and hindbrain serotonergic neurons in vivo. Parallels with the attention-deficit hyperactivity disorder in human suggest that an aberrant position of the MHO might be involved in the pathogenesis of this disease.

Keywords: Mid-hindbrain organizer, Dopamine, Serotonin, Attention-deficit hyperactivity disorder

Differential effects of the neuropeptide proctolin on synaptic dynamics of pyloric synapses in Homarus americanus.

Brodtt M. and Manor Y.

Life Sciences Department and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva

Neuronal networks are often subject to neuromodulation. Little is known about the effect of neuromodulation on short-term dynamics of synapses, and how such effects contribute to shape network output.

We chose to study this question in the pyloric circuit of the stomatogastric nervous system in the lobster Homarus americanus. In a proper modulatory environment, this circuit produces a fast (0.5-2 Hz) tri-phasic rhythm. The core of this circuit is a reciprocal inhibition between a pacemaker ensemble and a follower neuron. These synapses show short-term depression. The synapse from the follower to the pacemaker may be involved in frequency regulation of the pyloric rhythm.

When neuromodulatory inputs to the stomatogastric ganglion are blocked, the pyloric rhythm is abolished or slowed down significantly. We found that bath application of proctolin, an endogenous neuropeptide, restores the pyloric activity, though to frequencies smaller than control. Previous work has shown that proctolin excites a sub-set of pyloric neurons by inducing an inward current. The effect of proctolin on pyloric synapses was not examined.

We studied the temporal dynamics of the reciprocal synapses between the pacemaker and follower neurons. We found that proctolin has no effect on the synapse from the pacemaker to the follower neuron. However, proctolin potentiated the synapse from the follower to the pacemaker and decreased its frequency dependence. These results suggest that proctolin increases the synaptic efficacy between the follower and the pacemaker neurons, thereby limiting the extent of excitation on the pyloric rhythm. Hence, though proctolin acts as an excitatory factor via its effects on the intrinsic properties of pyloric neurons, it may also limit the pyloric frequency to physiological bounds via its effects on the synapse from follower to pacemaker neurons.

Keywords: Neuromodulation, Synaptic depression, Frequency dependence.

Learning-induced modifications in predisposition for LTP and LTD induction are correlated with changes in NMDA-receptor subunit composition

Brosh L., Lebel D., Quinlan E., Bear M. and Baraki E.

Dept. of Morphology, Faculty of Health Sciences and Zlotowski center for Neuroscience, Ben-Gurion University, Beer Sheva.

Dept. of Neuroscience, Brown University, Providence, RI, USA.

We have previously shown that the susceptibility for enhancing synaptic connectivity by inducing long-term potentiation (LTP) in the perifornical cortex brain slices is markedly reduced after olfactory learning. Accordingly, predisposition for long-term depression (LTD) induction is increased. NMDA-mediated currents have been long thought to play a key role in inducing LTP and LTD. Moreover, experience-induced modifications in NMDA subunit composition were shown to affect LTP and LTD induction. We therefore examined whether olfactory learning is correlated with such a change in NMDA-receptor subunit composition.
Rats were trained in an olfactory discrimination task to distinguish between positive and negative odor cues until they demonstrated rule learning. One day after training completion, we performed immunoblot analysis to examine whether a change in the NMDA-subunit composition occurs after learning. Synaptoneurosomes prepared from the piriform cortex were probed with anti-NR2A and NR2B and NR3a polyclonal antibodies. The NR2A/NR2B ratio was significantly increased after training (1.17±0.21, n=6 in trained, 0.92±0.26, n=8 in naive and 0.86±0.12, n=7 in pseudo trained, p<0.05).

Application of the NMDA-receptor blocker MK-801, before each training session (10 mg/Kg), prolonged the period needed for rule learning from 6.1±1.4 days in saline injected rats (n=8) to 8.9±0.6 days in rats injected with MK-801 (n=8). However, it did not affect further acquisition of odor-memories, once rule learning was achieved. We suggest that rule learning results with a modification in the subunit composition of the NMDA-receptor in a manner that reduces predisposition for LTP and increases predisposition for LTD induction. Concurrently, the importance of NMDA-mediated activity for further olfactory learning in decreased.

Keywords: Olfactory-learning, Piriform cortex, NMDA receptors

Towards a model for language recognition in multilingual language processing
Burstein J
Dept. of Linguistics, Bar Ilan University, Ramat Gan

Multilinguals identify constantly to which language words they have or recognize, which language they use for speaking and writing. Two activation approaches have been proposed to describe how information for language identification is stored, retrieved and processed in multilingual brains. Either a language node is activated after a word has been accessed; or words are stored with language labels ("tags"). Both approaches are limited: they describe either perception, or production; and language identification is only possible at the word level. Experimental evidence however, supports the claim that language can be identified at earlier stages of the perceptual process: consonant clusters can already determine the language even prior to access of the word.

In our activation-processing model, both multilingual perception and production will be considered. Languages are assumed to be organized in networks of features, letters, letter combinations, phonological and morphological representations, words and word combinations. All entries unique to one language are stored in language-specific networks. Overlapping areas of two or more language networks contain entries, shared across languages. In our model, a language is identified by processed activation, when the activation of one of the networks has reached a certain threshold. All indications of language are used in order to identify language quickly, accurately and efficiently. Language-unique features or letters cause strong activation for only one system, sufficient to reach the threshold, and the language is clearly identified; the language of items from overlapping areas has to be ascended by additional information at another processing level.

Keywords: Language processing, Language recognition, Node, Tag

Vaccination with myelin-associated peptides or passive transfer of autologous T cells specific to myelin basic protein after spinal cord injury in rats limits degeneration and cyst formation and induces sprouting
Butovsky O., Hauzen E. and Schwartz M.
Dept. of Neurobiology, Weizmann Institute of Science, Rehovot

Studies from our laboratory have shown that the spread of damage after central nervous system (CNS) injury, secondary degeneration can be reduced by T cells specific to myelin self-antigens such as myelin basic protein (MBP) (Moalem et al., Nat Med 5:49-55 [1999]; Hauzen et al., J Neurosci 20, 6421-6430 [2000]). In this study we examined whether this anti-inflammatory effect on microglia/macrophages was accompanied by neuronal tissue (Butovsky et al., FASEB J 15, 1065 [2001]). The injured spinal cords of untreated control rats, after reaching a steady state, showed large necrotic cavities (cysts) containing macrophages with phagocytic ramifications. In contrast, neither cysts nor phagocytic macrophages were observed in the corresponding areas in rats treated with anti-MBP T cells/or in vaccinated rats. No sprouting was detected after injury in control rats; however the site of the lesion in vaccinated rats showed a marked increase in the density of sprouting. Our in vitro findings suggest that T cells can control the behavior of macrophage/microglia by altering the expression of TNP-4 and TNF receptors.

Keywords: CNS, Spinal cord injury, Secondary degeneration, Autoimmune neuroprotection, Sprouting

Heterogeneity in the electrical behavior of olivary neurons revealed by dynamic clamp
Chorey E., Yaron Y. and Manor Y.
Dept. for Brain Research, Bar Ilan University, Jerusalem; Dept. of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva

Neurons in the inferior olivary nucleus exhibit subthreshold oscillations (STOs). These oscillations gradually appear during development, coinciding with the differential sprouting of axons from different subregions of the inferior olivary nucleus.

We are interested to study the mechanism underlying the STOs.

Previous observations suggest that two types of STOs can be generated: one is a single STO that is generated by a single neuron, and the other is a cluster of STOs that are generated by a group of neurons. The model predicted that STOs could emerge when two quiescent neurons, belonging to different dynamical groups, are electrically coupled. To examine this prediction, we attempted to manipulate the combination of ionic conductances in individual neurons. With the dynamic clamp technique, we injected model leak or calcium conductances into quiescent neurons. We use brain stem slices from immature rats, where gap junctions are not expressed. Depending on the amount of conductance added or subtracted from the original, "biological" level, this allows us to transform any olivary neuron into stable, spontaneous oscillator or conditional oscillator. For example, either decreasing the leak or increasing the calcium conductance evokes oscillatory activity in a stable olivary neuron.

Next, with the dynamic clamp we electrically couple a biological olivary neuron to a model cell. We found that electrical coupling of a quiescent biological neuron to a quiescent model cell can produce STO-like activity. Moreover, different biological neurons require different coupling strengths when coupled to the same model neuron. These results support our hypothesis on the role of cellular heterogeneity and electrical coupling for producing STOs in the olivary nucleus.

Keywords: Inferior-olive, Coupling, Oscillations, Dynamic-clamp

A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction
Chorn-Novim L., Joel-Almagor T., Cohen Ben-Ami H., Frechter S., Gillo B., Donald L.G., Selinger Z. and Minke B.
Dept. of Physiology and Biological Chemistry and the Kühne Minerva Center for Studies of Visual Transduction, Hebrew University, Jerusalem 91120, Israel; Dept. of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201 USA

Drosophila phototransduction is an important model for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, as null mutants of this enzyme do not respond to light. For this reason, we examined whether the apparent insensitivity to light of the elimination of the apparently single inositol trisphosphate receptor (InsP3R) of Drosophila, has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP3 branch of PLC-mediated signaling for phototransduction, unlike most other inositol lipid signaling systems. To examine this hypothesis we applied the membrane-permeant InsP3R antagonist 2-aminoethoxydiphenyl borate (2-APB) which has proved to be an important selective probe for assessing InsP3R involvement in various signaling systems. We demonstrated that 2-APB is...
effective at reversibly blocking the response to light to Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB has no effect on the opening of the light sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which may involve the InsP³ branch of the inositol lipid signaling pathway.

Keywords: Inositol lipid signaling, InsP³ receptor, 2-APB, TRP, Drosophila phototransduction.

Activation of the nuclear protein PARP-1 is involved in long-term memory formation in Aplysia

Cohen-Armon M.¹, Visochek L.², Gui Z.² and Schwartz J.H.²
Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel;
²Center for Neurobiology & Behavior, Columbia University, NYC, USA

PolyADP-riboseylation is a fast and transient modification of nuclear proteins catalyzed mainly by PARP-1. We have recently discovered that this most abundant and highly conserved nuclear protein is rapidly activated in electrically stimulated rat brain cortical neurons via a fast inositol 1,4,5-trisphosphate (InsP³)-Ca²⁺ mobilization, releasing Ca²⁺ into the nucleus (Homburg et al., J. Cell Biol. 150:293-307 [2000]). In accordance, PARP-1 was also activated by nerve growth factors and G-protein coupled receptors stimulating PLC activation and inositol phosphates turnover. In the pleural ganglia of Aplysia, PARP-1 was exclusively activated by a serotoninergic long-term potentiation (LTP). PARP-1 activation was accompanied by a concomitant intranuclear Ca²⁺ release. PARP-1 was not activated by serotonergic stimulation inducing a short-term response nor by stimulation inducing long-term depression (LTD). These findings indicate a novel nuclear mechanism involved in LTP, presenting the first evidence for a physiological role of polyADP-riboseylation in a neuronal larity.

Keywords: PolyADP-riboseylation; PLC activation; Nuclear Ca²⁺; LTP.

Does the novel peptide NAPVISPO have a proliferating effect on different cell types?

Cohen L., Divinski I. and Gozes I.
Dept. of Clinical Biochemistry, Sackler School of medicine, Tel Aviv University, Tel Aviv 69978

The recently discovered, Activity-Dependant Neurontrophic Protein (ADNP) contains a sequence of 8-amino-acid peptide NAPVISPO (NAP), exhibiting potent neuroprotection. NAP has protected neurons in cell death induced by the amyloid peptide toxin (J. Neurochem. 72:1283-1293 [1999]). NAP was shown to have qualities of a beta-sheet breaker (Segal-Ruder et al., this meeting). These properties have made NAP a possible candidate for treatment in neurodegenerative disorders such as Alzheimer’s disease.

The current study examined the possible effect of NAP on cell proliferation. Four cell types were examined: MCF-7, HEK293 and neuroblastoma SSK5. Cells were seeded in 96 well dishes at a concentration of 2×10⁴ per well in the presence of NAP at concentrations ranging from 10⁻³ to 10⁻⁵ M and grown for 72 hr. Cell growth was then estimated by mitochondrial activity (MTS). In the examined cells, NAP did not show any effect on cell proliferation. These results together with the previous findings that NAP has neuroprotective effects suggest that NAP may be a possible therapeutic agent in neurodegenerative disorders without side effects related to cellular proliferation.

Supported: ISF, BSF, Neufeld, ISRA, Gilder Chair.

Keywords: NAP, Peptide, Proliferation, ADNP.

Polyglutamine stretches as determinants of androgen receptor localization, aggregation and activity in neurons possible modulation by melatonin

Cohen M.¹, Cato A.C.B.², Lupowitz Z.¹ and Zisapel N.¹
¹Dept. of Neurobiochemistry, Faculty of Life Sciences, Tel Aviv University; Tel-Aviv; 2Dept. of Neurobiochemistry, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978

The pineal hormone melatonin acts as an androgen protagonist in the cell cytoplasm. The androgen caused some nuclear localization of the AR whereas androgen treatment was associated with nuclear localization. Melatonin caused massive aggregation of the AR in the cell cytoplasm. The androgen caused some nuclear retention of the AR and did not cause aggregation. Both androgen and melatonin caused extensive cell death that was more pronounced in the presence of their combination. This is the first demonstration of modulation by melatonin of the localization and aggregation of the poly-CAG repeat AR. It deserves further assessment of the role of these phenomena in neuronal cell death.

Keywords: Melatonin, Androgen receptor, CAG repeats, Localization, Aggregation

Functional interactions between synaptotagmin and voltage-gated calcium channels

Cohen R. and Atlas D.
Dept. of Biological Chemistry, Hebrew University, Jerusalem

Neurosecretion and regulated exocytosis depend on the rapid rise of calcium concentration, due to the opening of voltage-gated calcium channels. Synaptotagmin, a calcium and phospholipid binding protein, located primarily on synaptic vesicles, has been proposed to be the Ca²⁺ sensor of exocytosis. In order to establish the significance of Ca²⁺ channel-synaptotagmin interactions to the release machinery, we used Xenopus laevis oocytes as a heterologous expression system to characterize synaptotagmin influence on calcium channel current kinetics. Two distinct and highly conserved motifs throughout synaptotagmin isoforms, were shown to affect depolarization induced-secretion. Our results demonstrate that these motifs play an essential role in the interactions of synaptotagmin with, Ca_{1,2} and Ca_{2,3}, neuronal voltage-gated channels.

Keywords: Regulated exocytosis, Synaptotagmin, Voltage-gated calcium channels

Inwardly rectifying potassium channel block by external Mg²⁺

Cohen S. and Reuveny E.
Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100

Inwardly rectifying potassium channels (Kir) are involved in many physiological actions, such as setting the state of excitability of nerve and muscle, potassium secretion and insulin release. Kir channels are also known to be blocked by divalent cations such as Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺. The former two are known to block the channel deep within the pore and latter two are known to interact with the channel at the extracellular side. Mg²⁺ in particular is interesting because changes in its plasma levels have been linked to various disturbances in excitability tissues. We used single channel recordings of Kir2.1 channels expressed in Xenopus oocytes to test the effect of Mg²⁺ ions on channel conductance. Inclusion of Mg²⁺ ions in the pipette solution reduced single channel conductance with IC₅₀ of 1.8 mM and Hill coefficient of 1.2. In addition, we tested the ability of Mg²⁺ ions to affect open channel noise characteristics. Given the blood plasma concentrations of free Mg²⁺ ions and the potency of these ions to block Kir2.1, we suggest that small changes in blood Mg²⁺ concentration may have a large effect on channel function. This therefore may contribute to the variability of Kir channel expression.

Keywords: Patch-clamp, Potassium channels, Open-channel noise
L-DOPA increases release of noradrenaline in rat frontal cortex; a microdialysis study
Davyan L., Ohry A., Blumen N. and Urca G.
Dept. of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978

Degeneration of the dopaminergic nigrostriatal pathway is responsible for the motor deficit in Parkinson’s disease (PD), however noradrenergic and serotonergic nuclei are also affected. A double role for noradrenergic pathway degeneration in PD has been suggested since the effect of an alphasergic agent, L-DOPA, the main drug used in the treatment of PD, is a precursor in the synthesis of noradrenaline (NA) as well as that of dopamine (DA). In order to assess the effect of treatment with L-DOPA on NA release, rats were treated acutely with L-DOPA and carbidopa (50 mg/kg and 25 mg/kg p.o., respectively), and the frontal cortex was then perfused by microdialysis in the awake animal. Treatment with L-DOPA and carbidopa had no effect on the extracellular fluid concentration of NA, but significantly raised levels of dihydroxyphenylglycol (DHPG), as well as those of the DA metabolites DOPAC and HVA. A pretreatment with the selective noradrenergic neurotoxin, DSP-4 (50 mg/kg i.p.), abolished the effect on DHPG, but did not reduce the increased concentrations of the DA metabolites. When the animals were treated with desipramine (1 µM via the probe), an increment in NA concentrations was observed following L-DOPA/carbidopa treatment. The results indicate that acute treatment with L-DOPA releases NA in the CNS. The mechanism for this release may be that elevated extracellular levels of DA induce release by an amphetamine-like effect, since NA storage sites are saturated under physiological conditions, and addition of excess precursor would not be expected to substantially increase the storage pool available for excitatory release.

Keywords: L-DOPA, Noradrenaline, Microdialysis, DSP 4

The perception of the quality of thermal pain
Defrin R., Ohry A., Blumen N. and Urca G.
Dept. of Physical Therapy and Dept. of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69976

Several hypotheses have been developed in the attempt to explain the neural processes underlying the determination of different pain qualities (e.g., burning, pricking, etc.), two of which are still valid today. The theory of a “labeled-line code” (specificity) maintains that pain is processed by dedicated pain pathways, predicts that excitation of a particular nociceptor by a stimulus maintains that pain is processed by dedicated pain pathways, predicts that excitation of a particular nociceptor by a stimulus always elicits the same quality of pain, regardless of the stimulus qualities (e.g., burning, pricking, etc.), two of which are still valid today. The alternative view is that the perception of pain is not monopolized by properties of nociceptors, rather central processes integrate sensory information including those derived from the response of nociceptors to produce the intensity and quality of sensations of which pain is one. To test these hypotheses we conducted quantitative and qualitative sensory testing in spinal cord injury (SCI) subjects with complete or partial loss of noxious-thermal sensations (either warmth, cold or both) but who still perceive pain. We found that, in skin areas lacking any thermal sensibility, high intensity warm and cold stimuli always produced a sensation of pricking pain with no thermal quality. In skin areas in which only a single thermal modality remained intact, the quality of the perceived sensation was not determined by the thermal stimulus but by the intact modality (paradoxical sensation); cold stimuli were perceived as warm in areas in which only warm sensation was preserved and vice versa.

Our results show that the quality and intensity of nociception in these patients is highly dependent on conduction in non-noxious channels. Thus, our results lend strong support to the notion that the quality of pain is determined by central integrative processes utilizing sensory information conveyed, simultaneously, by both dedicated pain pathways and non-nociceptive pathways.

Keywords: Thermal pain, Pain quality, Paradoxical sensations, Specificity

Differential protective effects of the fentomolar acting peptide, NAP against oxidative stress in multiple cell lines
Divinski I., Cohen I., Steingart R.A. and Gozes I.
Dept. of Pharmacology, Rappaport Family Faculty of Medicine, Technion, Haifa

Oxidative stress plays a role in many neurodegenerative disorders, e.g. Alzheimer’s disease and Parkinson’s disease. The recently discovered, Activity-Dependant Neuroprotective Protein (ADNP, J.B.C. 276:706-714 [2001]) contains a sequence of 8-amino-acid neuroprotective peptide NAPVPSIQ (NAP). NAP exhibits potent neuroprotection against oxidative stress in PC12 cells (Brain Res. 854: 257-262 [2000]; J. Molnc. Neurosci. 15:137-145 [2000]). The present study was designed to examine the breadth of NAP ability to protect different cell types from oxidative stress. The following cell lines were examined: COS-7, MCF-7, HEK293, BJ, PC12, NIH 3T3 and neuroblastoma S55S. Cells were exposed to 300 µM H2O2 for 16 hr. in the presence or absence of NAP concentrations ranging from 10-7 to 10-3 M. In the COS-7, MCF-7, BJ and NIH 3T3 cell lines, NAP did not produce any protective effect in all the examined concentrations. In contrast, in PC12, HEK293 and Neuroblastoma S55S cell lines, NAP exhibited a protective effect. In the PC12 cell line, treatment with 300 µM H2O2 reduced cell survival to 30% as compared to control, while addition of NAP at concentrations ranging from 10-10 to 10-7 M increased cell survival to 60-70%. In HEK293 and Neuroblastoma S55S cells, NAP exhibited lesser potency and efficacy as compared to PC12 cell protection. This results suggest that in contrast to PC12, HEK293 and neuroblastoma S55S that respond to NAP, COS-7, MCF-7, BJ, NIH 3T3 are not affected by NAP. This implicates that COS-7, MCF-7, BJ and NIH 3T3 may not have receptors/binding proteins that recognize NAP, suggesting specificity for NAP activity.

Supported: ESF, BSF, Neufeld, ISOA, Gildor Chair.

Keywords: NAP, ADNP, Oxidative stress, Cell lines

The influence of training and experience on neuronal graft development
Drobny M. and Dunnett S.B.
The Brain Repair Group, School of Biosciences, Cardiff University, UK

The environment, training, and experience bear upon indices of brain function and plasticity. However, it is not known to what degree these changes are mirrored in neural grafts placed within the brain. It is thought that for animals to draw functional benefits from the graft, specific training is necessary to allow them to "learn to use the transplant". To further explore this concept, rats were pre-trained on the paw-reaching task, lesioned unilaterally in the lateral dorsal striatum with quinolinic acid, and given intrastriatal suspension grafts prepared from E15 whole ganglionic eminence. The grafts were allowed to mature for 20 weeks. During the entire post-graft period half the animals participated in a daily non-specific manual dexterity task. Training induced graft plasticity was evaluated using behaviour, electrophysiology and immunohistochemistry. The results shed light on the question of functional reconnectivity of the grafts, and more importantly, whether the graft integration with the host is responsive to behavioural manipulation.

Keywords: Environment, Training, Transplantation, Rat.

Chaos in the dopaminergic system of normal and depressive brain
Drmencov E.1, Nacsbony E.2, Levi D.3, and Yadid G.4
1Life Sciences Faculty, Bpr-Ilan University, Ramat-Gan, 2Geha Hospital, Petach Tikva, 3Dept. of Psychology, Tel-Aviv University, Tel Aviv

Flinders sensitive line (FSL) is a rat model of depression. Our previous studies found that FSL rats show functional abnormalities of the ventral tegmental area (VTA) – nucleus accumbens circuit and its serotonergic regulation. The aim of this work was to assess nonlinear dynamics of the DA cells in the VTA. Male Sprague-Dawley (normal) and FSL rats (250 g) were used in the experiment. The animals were anesthetized with chloral hydrate and a tungsten 0.015 5 MQ electrode was inserted into the VTA. Single unit recording was carried out by amplitude discrimination. DA cells were recognized by their firing patterns and data series of 2000 events were recorded. Short-time correlation was analyzed by calculation of point correlation dimension (PD2) of interspike intervals (ISI). Long-time correlation was analyzed by the calculation of point correlation dimension (PD2) of interspike intervals. We found that ISI of the DA cells in the VTA of FSL rats showed Gaussian PDF, while ISI of the DA cells in the VTA of normal rats showed Poisson PDF which corresponds with deterministic chaos. Additionally, FSL rats showed higher (3.92±0.11, n=8) mean PD2 value than normal animals (3.19±0.23, n=7, p<0.02). Thus, DA cells in the VTA of FSL rats show a higher degree of chaos in VTA of normal animals. This suggests that nonlinear analysis may be a more accurate predictor for abnormality in the dynamics of depressive behavior.

Keywords: Depression-Dopaminergic, System-Nonlinear Analysis
The use of cDNA microarray in neuropharmacological experiments

Doroghazi N., Sagi Y. and Youdim M.B.H.
The Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative diseases, Bruce Rappaport Family Research Institute and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa

cDNA microarray is a relatively fast and throughput method for simultaneously analyzing the expression of thousands of genes and it is being widely employed, especially in the field of cancer. In spite of its advantages, most of its users confront considerable difficulties in interpreting the results. In our laboratory considerable experience has been obtained with this technique, especially in the field of neuropharmacology. In order to minimize both false positive and false negative results some aspects of the pharmacogenetic analysis and verification of the results. Our experience with microarray has shown that it can be a powerful technique to apply to already established models and to delineate the mechanism of the action of drugs. We strongly encourage the use of several classes of drugs when a mechanism of action of an unknown is being established. The inclusion of a negative control, a drug with similar structure but devoid of the desired pharmacological action, should be included. For example, the anti-Alzheimer antidepressant and MAO-A and -B inhibitor drug, TV3326, induces gene expression changes in the forced swimming test model of depression, similar to other known antidepressants. However, it is not a MAO inhibitor, does not. In addition, the contribution of several intra- and inter-experimental repetitions is vital for establishing the significance of gene expression. Several relevant analysis and statistic tools will be presented.

Keywords: cDNA microarray, Neuropharmacology, Drug development

Reference frames in reaching to visual targets

Drachkin A.Y.*, Flash T.*, Bentin S.*, Soroker N. and Behrmann M.*
The Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel; *Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; **Lowenstein Rehabilitation Center, Ra’anana, Israel; *Dept. of Psychology, Carnegie Mellon University, Pittsburgh, USA

Reaching toward a visual target involves the transformation of visual information into appropriate motor commands. Neuropsychological and neurophysiological studies have provided evidence that the brain uses multiple spatial reference frames and have indicated that the parietal cortex is central to the construction of such representations. Studies of neglect patients with discrete lesions in the parietal cortex, (usually in the right hemisphere), have been concerned with the question with respect to what coordinate frame the ‘lett side’ is defined. Previous studies have shown that spatial position might be encoded with respect to the midline of the head, trunk or even the limb. In an attempt to identify the reference frames used to represent target position during reaching, we measured and characterized constant and variable end-point errors in a double-step target displacement paradigm, while subjects reached toward visual targets, located within the horizontal plane.

Our results showed that in pointing, the orientation of the axes of maximum variability was along the average movement direction, (this may suggest a hand-centered reference frame), while in double-step movements various orientations were found, which could suggest the effect of motion planning rather than mere execution. The initial direction of motion in healthy young volunteers was found to depend on the time difference between the second target presentation and movement onset, and included averaged/non-averaged and direct trajectories. In contrast, the results from one stroke patient showed that averaged modified trajectories were hardly found. In addition, long pauses were observed in double-step movements in particular when the first target appeared ipsilaterally, with respect to the trunk-midline.

Keywords: Reference frame, Reaching, Variable error

Faces do pop out: a new high-level pop out effect

Eylon-Hershler O. and Hochstein S.
Dept. of Neurobiology, The Neuronal Computation Center, Hebrew University, Jerusalem, 91904

In the past, only basic features were thought to pop out from an array of distractors. More recent research has shown that high-level concepts may pop out as well. We presented subjects with line drawings of faces, cars and houses, as targets or distractors. Reaction time was independent of set size from 16 to 64 items when the target was a face and the distractors cars or houses, but increased with size when the target was a car or a house on a background of houses or cars, respectively.

The data indicate that certain important categories of objects are not detected by a relatively slow, focused conjunction search, but by a faster system that is comparable to feature search.

Although previous research has maintained that faces do not pop out from an array of distractors, our research indicates differently. The discrepancy might be traced to the use of highly schematic faces in previous research, whereas our stimuli were more realistic. The results are in accord with recent RSVP experiments that indicate that perception and categorization of high-level objects can be much faster than previously thought. Additionally, the results indicate that the visual system may be using a fast system with spread attention to find the gist of the scene, and possibly a slower system with focused attention to fill in the details. This distinction was described in the recently proposed reverse hierarchy theory as, respectively, the “vision at a glance” and “vision with scrutiny” systems.

Keywords: Popout, Faces, Reverse hierarchy theory

6-hydroxydopamine increases ubiquitin-conjugates and protein degradation: Implications for the pathogenesis of Parkinson’s disease.

Elkon H., Melamed E. and Offen D.
Dept. of Neurology, Felsenstein Medical Research Center, Bellinson Campus and Tel Aviv University Sackler School of Medicine, and Rabin Medical Center, Petah Tiqa 49100

One of the hallmarks of Parkinson’s disease (PD) is the finding of pathological structures containing inclusions of ubiquitinated proteins in the dopaminergic neurons in the substantia nigra termed Lewy bodies. The mechanism leading to the formation of these aggregates is unclear, although it was shown that mutations in alpha-synuclein, or in the ubiquitin-related enzyme UCH-L1 might induce such protein aggregation. We therefore examined the possible role of 6-hydroxydopamine, a dopaminergic neurotoxin used in PD experimental models, in causing protein degradation and its association with the ubiquitin system. Using anti-ubiquitin antibodies we found that exposure of SH-SY5Y neuroblastoma and PC12 cell lines to 6-OHDA increased, dose dependently, the levels of free ubiquitin and ubiquitin-conjugated proteins. Furthermore, metabolic labeling with [3-S]-methionine, demonstrated that 6-OHDA markedly increased protein degradation as indicated by the secretion of protein metabolites to the medium. Inhibition of the proteasome assembly by the specific inhibitor MG132, attenuated the protein degradation induced by 6-OHDA and potentiated its toxicity. Administration of the antioxidant N-acetylcyesteine to the 6-OHDA-treated cells, increased cell survival and reduced protein degradation. In conclusion, our findings suggest that 6-OHDA toxicity is associated with protein degradation, which is coupled to the ubiquitin system integrity.

Keywords: Parkinson’s disease, 6-hydroxydopamine (6-OHDA), Ubiquitin proteasome pathway

Interhemispheric Negative Correlation of fMRI Signal During Motor Task

Einstein O.*, Pianka P., Ben-Bashat D., Rotshtein P.*5, Yeshurun Y., Kahn L.1, Malach R.1 and Hendler T.2
* Hebrew University, Jerusalem, Israel; 1 Functional Imaging Laboratory, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; 5 Hillel Yaffe Medical Center, Tel Aviv University, Tel Aviv, Israel; 2 Massachusetts Institute of Technology, USA; 3 Weizmann Institute of Science, Rehovot, Israel; 4 Epilepsy and Neurosurgery Units, Tel Aviv, Sourasky Medical Center, Tel Aviv, Israel

Interhemispheric primary motor cortex neural negative correlation has been demonstrated by Transcortical Magnetic Stimulation (TMS) (Ferbert et al J Physiol 1992;453:525-546) and EEG in healthy subjects as well as in patients(Hanajima et al Clin Neurophysiol. 2001 Apr;112(4):665-6)
methods: Seven healthy subjects performed a unimanual visually guided finger tapping task versus rest with fixation task. Images were acquired on a 1.5 T GE scanner. fMRI data was analyzed using BrainVoyager 4.4 software.

results: Contralateral activation of M1 and bilateral activation of the pre-motor cortex was observed as expected. An additional analysis showed that: 1. There was a decrease of BOLD signal in the ipsilateral primary motor cortex (ROI) during the finger-tapping task compared to the rest state. 2. In the very same anatomical location (ROI) there was an increase of the BOLD signal during movement of the contralateral hand.

discussion: Based on the connection between LTP and fMRI signal on one hand (Logothetis et al. Nature. 2001 Jul 12;412(6843):128-30), and the relative separation of the two hemispheres' vascular supply on the other, we tend to interpret the findings as supporting interhemispheric inhibition during unimanual simple movements. We speculate that this may reflect bilateral neuronal competition.

keywords: Interhemispheric inhibition, fMRI, Finger tapping, Motor

transgenic AChE exerts non-catalytic effects on hippocampal LTP. via p.M114V, Farahi N,1, Hochner B,3 and Sorog H2 Dept. of Neurobiology and Biological Chemistry. The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem

The involvement of the cholinergic system in LTP has been extensively investigated. Transgenic mice overexpressing the synaptic isoform of acetylcholinesterase (AChE-S) exhibit learning and memory impairments. Furthermore, their hippocampal LTP pattern is altered, displaying unstable immediate and late phases, which cannot be rescued by application of either physostigmine or carbobal. We therefore challenged LTP in mice transgenic for catalytically inactive AChE-R, which displayed failure pattern similar to that of AChE-S mice. These findings suggest a non-cataylotic involvement of AChE in the maintenance phase of LTP. Interestingly, excess of soluble AChE, produced in transgenic mice for the "readthrough" AChE isoform, AChE-R, does not alter the late phase of LTP but rather induces higher level of potentiation. Since PKC is a major component in LTP stabilization we tested the option that these alterations in LTP involve the PKC pathway. Immunoblot analysis of AChE-S and inactive AChE-S transgenic hippocampi demonstrated lower levels of PKCβII than in control, in contrast to a significantly higher level of PKCβII in AChE-R transgenic hippocampus. Moreover, chemical induction of LTP by the PKC activator, phorbol di-butyrate (5 μM) lead to limited potentiation of 117 ± 13 % in AChE-S hippocampal slices compared with 160 ± 69 % in control slices. This suggests a direct correlation between LTP and PKC levels in the tested mouse lines. However, with preceding PKC activation, AChE-S slices were readily activated with tetanic stimulation to 185 ± 11% of baseline level that long lasted with a stable potentiation. Altogether, a non-catalytic involvement of AChE predicts an active role in neuronal plasticity via the modulation of PKC.

keywords: Acetylcholinesterase, LTP, PKC.

tuning curves of auditory cortex neurons under halothane anesthesia. Farahk D, Bar-Yosef O, Ulanovsky N, Abdut L, and Nelken I. Dept. of Physiology, Hebrew University - Hadassah Medical School and the Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem

Most studies of auditory cortex neurons are done under barbiturate anesthesia. Under these conditions, most neurons have purely onset responses, and have unimodal tuning curves. In our lab we work with halothane anesthesia for several years now. Anesthesia is known to strongly affect responses in auditory cortex, and this study summarizes our findings regarding responses to pure tones under halothane anesthesia.

We recorded tone responses of over 1200 neurons from the primary auditory area (A1) of 20 neonatal rats, anesthetized by breathing a mixture of O2:N2O (30%70%) with halothane (0.2-2.0%) as required. 115 ms - long tones were presented usually at 8-11 equally spaced levels and 45 frequencies linearly spaced along a logarithmic frequency axis over a range covering the full frequency response of the neuron.

We observed a much richer array of response types and tuning curve shapes than are found under barbiturate anesthesia. In particular, a substantial number of neurons had responses extending beyond onset, some of them showing responses lasting long after the offset of the stimulus. Neurons with all tuning curve shapes reported under barbiturate anesthesia were found, but other shapes were also found, including wide-band neurons that respond over a large frequency range. Thus, auditory cortex under halothane anesthesia shows richer physiological response types than under barbiturate anesthesia. Some of these responses resemble responses recorded from awake animals.

keywords: Auditory cortex, Tuning curve, Frequency response area, Halothane anesthesia.

immunocytochemical localization of GABA_A receptor subunit in crayfish neuromuscular junction. Feinstein N,1, Rashkov SN, Fritschy JM,2 and Parnas I. The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, Dept. of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. 1Institute of Pharmacology, University of Zurich, Zurich CH8057, Switzerland

The neuromuscular system of crustaceans has a remarkable similarity to mammalian CNS synapses, and as such, it is a good model to study the role of neurotransmitter release by presynaptic receptors. The crayfish muscle is innervated by a single excitatory axon releasing glutamate and a single inhibitory axon releasing GABA. The presynaptic excitatory terminal possesses GABA_A and GABA_B receptors, and also receptors to glutamate, GHT and dopamine. The presynaptic inhibitory terminal possesses glutamate and GABA_B receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).

In the present work we provide electron microscopy immunocytochemical results supporting the existence of GABA_A receptor on the inhibitory terminal. The GABA_A receptor was identified by a prefixation immunostaining method using a polyclonal subunit-specific antisemir raised against an extracellular epitope on the N-terminal domain of GABA_A receptor subtypes (in mammalian brain). In order to check whether the GABA_A receptor staining is localized on an excitatory or inhibitory terminal it was required to eliminate one of the two axons. This was done by an intra-scoxal injection of protease that caused lysis of one axon. Following such a treatment, the tissue was exposed first to a prefixation gold immunostaining of GABA_A receptor and then to a postembedding gold immunostaining of GABA_A receptors (Miwa and Kawai, J.Neurophysiol. 63(1):173-180 1990).
Intra-mitochondrial [Ca++] fluctuations were independent of calcium fluctuations in the cytosolic vicinity or of calcium fluctuations occurring mitochondria. Intra-mitochondrial [Ca++] waves were observed. Occasionally, the juxta-mitochondrial [Ca++] was correlated with the mitochondrial [Ca++]. These results suggest that mitochondria may serve as local regulators of intracellular calcium concentration.

Keywords: Calcium dynamics, Hippocampal neurons, Mitochondria, Confocal microscopy.

The influence of selective attention on pattern adaptation

Estiman Y., and Ahissar M.

Dept. of Psychology, Hebrew University, Jerusalem 91905, Israel

Prolonged viewing of high contrast gratings causes two types of adaptation: a) an increase in the contrast threshold for detection of gratings with the same or similar spatial frequency and orientation (contrast adaptation), and b) a 3-4fold bias in orientation judgment away from the adapted orientation (tilt aftereffect). We now asked whether these two types of adaptation are affected by the attentional mode of the viewer.

Contrast threshold and vertical judgments were measured before and after adaptation under three behavioral conditions. In all 3 conditions the observer was asked to compare between successively presented patches of gratings. In two conditions observers were asked to compare gratings' orientation and contrast, respectively, thus attending the area of the adapting stimulus, though not necessarily the relevant dimension. In a third condition they were asked to compare the size of fixation, thus focusing their attention on the central area.

We found that the magnitude of contrast adaptation did not depend on the behavioral task. Contrast thresholds were elevated by ~1% in all three conditions. On the other hand, the magnitude of the tilt aftereffect was significantly smaller in the fixation condition (2° compared with ~3.5° in the other 2 conditions). Thus, lack of spatial attention decreases the tilt aftereffect but does not affect contrast adaptation.

The different dependencies of contrast and orientation adaptation on the behavioral task suggest that these two types of adaptation stem from different mechanisms operating at different levels of visual processing.

Keywords: Selective attention; Spatial attention; Plasticity; Contrast adaptation; Tilt aftereffect.

Physical Interaction of brain Voltage-Gated K+ channels with the exocytotic proteins in brain synaptosomes

Fili O., Biedi Y., Linial M., Lotan I.

Dept. of Physiology, Sackler School of Medicine, Tel-Aviv University; Dept. of Biological Chemistry, Life Science Institute, The Hebrew University, Jerusalem.

The role of voltage-gated potassium channels in neurotransmitter release has been studied by the ability to evoke the action potential in nerve terminals has already been established. However, the possibility of a direct interaction between these channels and the synaptic release complex has never been examined.

The minimal complex essential for synaptic release contain of the three SNARE proteins -synaptobrevin, VAMP and SNAP-25. Synaptobrevin is also involved in this complex, probably as a Ca2+ sensor. Recent studies have shown that presynaptic N and P/Q-type calcium channels interact directly with the complex. In previous studies we showed that the Kvβ subunit interacts with synaptobrevin 1A. We showed that this interaction occurs in rat brain synaptosomes. In this study, we show that this interaction is not limited only to the Kvβ subunit, but also to the Kvα1.1 and to the Kv2.1 potassium channels α subunits. Regarding the Kvα1.1 channel, we could co-precipitate in rat brain synaptosomes, synaptobrevin 1A and synaptobrevin using antibodies against Kvα1.1, and GST-fusion proteins corresponding to the cytoplasmic N-terminus of Kvα1.1. In vitro binding experiments revealed that the interaction between synaptobrevin and the N-terminus of Kvα1.1 is direct. Regarding the Kv2.1 channel, we could co-precipitate synaptobrevin in synaptobrevin from rat brain synaptosomes using antibodies against Kvβ1.3. The interactions in brain synaptosomes were found to be sensitive to the physiological conditions of the synaptic release. Expression of Kv2.1 in PC12 cells caused a large increase in neurotransmitter release, triggered by depolarization with elevated concentrations of KCl. These results support the hypothesis that the interaction of Kv2.1 with synaptobrevin can affect neurotransmitter release.

Keywords: Synaptobrevin; PC-12; Kvα1.1; Kvβ2.1; SNARES

Novel apoptosis-related protein ARTS increases in discrete brain areas following neurotoxins and injury

Enguri J. C. L., Moer G. G., Reiter I., Dayan L., Lobova E. and Larish S.

Depts. of Pharmacology and of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion, Haifa; Pathology Dept., Rambam Medical Center, Haifa.

The novel mitochondrial-sep/in-like protein ARTS, mediates TGFβ-induced apoptosis in certain peripheral cell lines such as COS and NRP-154 (Larish et al, Nature, Cell Biol 2:915-921 [2000]). In the nervous system, however, ARTS may well play a neuroprotective, rather than a neurotoxic role, as is the case for TGFβ. Levels of ARTS in discrete areas of CNS have been studied by immunohistochemistry. In mouse, rat and man, only rare cells of substantia nigra pars compacta showed positive staining for ARTS. In rats and mouse, frequent ARTS-positive cells were seen in the granular layer of the hippocampus, and a much lower level in striatum. Additional scattered cell groups expressing ARTS were seen in cortex and thalamus, particularly piriform cortex. Following neurotoxic doses of methamphetamine and MPTP in C57-B16 mice, a profound increase in ARTS immunoreactivity was seen in a granular cell layer of hippocampus, and increased numbers of ARTS-positive cells were also seen in striatum, but no increase in ARTS content was seen in substantia nigra. ARTS-positive cell bodies were seen around the site of penetration injury in cortex and sub-cortical areas of rat brain. Since the increased ARTS content was seen at short times after neurotoxin administration in mouse (4 h), or penetration injury in rat (1 h), it may be that ARTS plays a neuroprotective role in the acute response to injury. The absence of ARTS from the substantia nigra pars compacta may be a factor in the sensitivity of this area to oxidative stress and other types of challenges.

Keywords: Neuroprotection, Substantia nigra, TGFβ, Neurotoxins

Somato-dendritic Na+ channels cannot account for persistent Na+ current in layer 5 neocortical neurons

Estivalov I.A., Astman N. & Gurion M.J.

Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva.

Neocortical neurons exhibit a low-voltage-activated, slowly inactivating "persistent" Na+ current (Ihp), that plays a role in neuronal excitability and synaptic integration. A prevalent view is that Ihp is mediated by late openings of the same channel that underlie fast-inactivating Na+ current and we used patch-clamp techniques in neocortical slices to determine whether late Na+ channel openings in somatic patches from Layer 5 pyramidal cells can account for Ihp in whole cell recordings. In simultaneous cell-attached and whole cell current clamp recordings at the soma, brief Na+ channel openings, corresponding to the fast-inactivating Na+ current, were always seen during the action potential upstroke. However, there was no persistent Na+ channel activity at potentials at which Ihp is prominent in whole cell recordings. Kinetic analysis of recordings from multi-channel cell-attached patches at 37°C revealed that somatic Na+ channels do not demonstrate "modal gating" behavior, and that the probability of single late openings and mini-bursts is extremely low (p<10-5 per channel). Local application of TTX (10-5) only blocked whole-cell recorded Ihp when puffed near the axon, but was not effective when applied in the region of the apical dendrite or soma. Our data suggest that the channels responsible for Ihp, as seen in whole cell recordings from the soma, are located in the axon.

Supported by a grant from the German-Israeli Foundation for Scientific Research and Development.

Keywords: Na channel; Persistent sodium current; Neocortical neuron

A neural model for motion processing in the visual cortex: analysis of induced motion phenomenon

Furman M. and Gur M.

Dept. of Biomedical Engineering, Technion, Haifa.

The visual images on the retina are constantly moving, due to object, eye and body movements. The ability to estimate objects' real motion is crucial for normal visual perception. In a previous work we presented a physiologically based neural-network model for motion processing in areas V1, middle-temporal (MT) and middle-superior-temporal (MST) of the visual cortex. Here, we present an expanded model that include both...
velocity and direction of movement analysis, according to motion selectivity properties of visual cortex neurons. The model was used to simulate the perceptual phenomenon of induced motion—the illusory movement of a static object seen against a moving background. The input to the model depicted a stationary object against a moving textured background, and the responses were interpreted in terms of perceived direction and velocity of movement. The model illustrated how the motion analysis mechanisms used by the visual cortex can account for the perceptual phenomenon of induced motion.

Keywords: Visual cortex, Induced motion, Neural network, Model

Pain behavior and nerve electrophysiology in the CCI model of neuropathic pain.

Gabay E. and Tal M.

Dept. of Anatomy and Cell Biology, Hebrew University-Hadassah, Jerusalem

Rats with an experimental painful peripheral neuropathy created by placing loosely constrictive ligatures around the sciatic nerve (the CCI model) display heat and mechanical allodynia in the affected limb. However, electrophysiological properties of the afferent axons that survive the injury, and hence that are responsible for behavioral responsiveness postoperatively, have not been investigated. Histological studies indicate that the major pathology in CCI is a loss of large diameter myelinated fibers distal to the ligature. The question arises therefore, which axons are responsible for the behavioral changes following the injury? Electrophysiological recordings of axons central to the lesion that respond to electrical stimulation distal to the lesion revealed a decrease in NMDA agonist (2-AG and OA) nocifensive 5-9 days post operative (dpo). The value recovered to 1.5±0.28 in the CCI group by 12-15 dpo. The ratio between A and C axons in the control group was 4:1 and remained the same in all experimental animals tested, 5-15 dpo. Mechanical stimulation of a distinct area in the paw served by the injured nerve, using von Frey monofilaments, was performed to study how axons in each microfilament were responsive. In the control group 91±0.6 of the microfilaments had at least one axon with a receptive field. This decreased to 17±2.9 in the CCI group 5-9 dpo, but recovered to 44±4.2 by 12-15-dpo. The threshold for response to mechanical stimulation was not changed by CCI.

Conclusion: In the CCI model there is an equal decrease in the number of A and C axons, preserving a constant ratio between the two populations unlike the histological findings.

Keywords: Nerve injury, Neuropathic pain.

The rhythmogenic capacity of the caudal-lumbar and sacroccocygeal segments of the neonatal rat spinal cord

Gabbay H. and Lev-Tov A.

Dept. of Anatomy & Cell Biology, The Hebrew University School of Medicine, Jerusalem

The rhythmogenic capacity of the tail innervating segments of the spinal cord (L4-Ca3) was studied in isolated spinal cord and tail-spinal cord preparations of neonatal rats. Bath application of noradrenaline (NA) or NMDA and NA produced rhythmic sacrococcygeal activity before, and following mid-lumbar transection of the cord. The rhythm could be accelerated by increasing the NMDA concentration, and blocked by bath application of α1 and α2 adrenergic antagonists. The rhythm induced by NMDA/NA in the isolated sacrococcygeal or coccygeal segments of the cord elicited rhythmic tail movements. These movements were produced by an alternating activation of the left and right muscles, and by coactivation of flexors extensors and abductors on a given side of the tail. NMDA/NA also produced a regular rhythmic activity in reduced sacral and coccygeal preparations, and a slower non-alternating rhythm in L4-L6 segments. This L4-L6 rhythm was not coupled to the sacroccocygeal rhythm. Thus, the tail innervating lumbar segments of the cord contributed very little to rhythmogenesis of tail movements. The NMDA/NA induced rhythm persisted in each half of the midsagittally split sacrococcygeal cord. Therefore, it is suggested that crossed and reciprocal inhibitory pathways are not required for rhythmogenesis of tail movements. In summary, the rhythmogenic circuitry associated with tail movements included mainly the sacroccocygeal segments of the spinal cord, and bath application of NA/NMDA was found to be an effective mean to obtain functional activation of this network.

Keywords: Pattern generation, Spinal cord, Noradrenaline.

Rasmussen’s encephalitis: a human epilepsy associated with multiple autotoxid antigens on both sides of the blood-brain barrier.

Ganor Y.1, Amron D.1, Freilingger M.1, Goldberg H.1, Ben Zeev B.2, Verhalfen D.1, and Levine M.1,2

Sackler School of Medicine, Tel Aviv University, Tel Aviv; 1Dept. of Neurobiology, Weizmann Institute of Science, Rehovot

Epilepsy has always been considered as a CNS problem. Rasmussen’s encephalitis (RE), a severe form of child epilepsy, is the first well-defined CNS disorder in which an autoimmune-mediated pathology has been demonstrated: RE patients harbor autotoxid antibodies against the glutamate receptor subtype 3 of AMPA receptors (GluR3). Such anti-GluR3 antibodies, from human, rabbit or mice origin, bind neurons, affect GluR3 function, and cause neuronal death by either an excitotoxic or complement-mediated manner. Based on these observations, anti-GluR3 autotoxid are currently considered as an RE characteristic feature, and used as specific markers for this disease which is often difficult to diagnose.

In a study performed with sera and CSF of 6 patients with established or highly suspected RE, we found elevated levels of autotoxid antibodies against GluR3. Most interestingly, the patients CSF and sera harbor a kaleidoscope of other disease-associated autotoxid: anti-double-stranded DNA Abs, which unlike non-specific anti-sDNA Abs, recognize the DNA phosphate-deoxyribose backbone, and are in elevated levels almost exclusively in systemic lupus erythematosus. Furthermore, some RE patients harbor antibodies directed against glutamate-decarboxylase (GAD) and thyroid-stimulating hormone receptors (TSHR). In conclusion, the patients sera harbor not only anti-GluR3 antibodies but multiple disease-associated autotoxid, suggesting to treat them as autoimmune patients bearing autotoxid on both sides of the BBB (i.e. in serum and CSF), and shed new light on the connection between autoimmunity and epilepsy.

Keywords: Epilepsy, Autoimmunity, Glutamate receptors; Rasmussen’s encephalitis

Math1 - a Molecular Controller of Neural Development

Gazit R. and Ben-Arie N.

Dept. of Cell and Animal Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Abstract: Transcription factors control the genesis of neurons and glia cells that make the brain. Math1 (mouse atonal homolog 1) is a BHLH transcription activator essential for neurogenesis of cerebellar granule cells (CGC). In order to characterize functions of Math1 at the cellular level, we study CGC progenitors from knockout (KO) mice in vitro, avoiding complex in vivo secondary effects. Primary cultures of Rhombic Hoxa-2 (RO) mice and GluR3 deficient animals indicated high viability of CGC cells and that the promoter of Math1 remained active in culture, as indicated by a reporter gene. However, while Math1 expression was normally downregulated with time in control cells, KO cells maintained an abnormal high activity for 6 days. KO cells did not proceed with normal differentiation, in contrast to control that extend neurite in culture. Hence, Math1 has an important intrinsic role in the maturation of CGC and in its negative autoregulation. Finer examination of other cellular and differentiation properties, and the ability of putative downstream genes to rescue the phenotype are in progress. Our studies will enable better understanding of in mammalian neurogenesis and the role of transcription factors in this process.

Keywords: Cerebellar granule cells, Differentiation, Neurite outgrowth, Math1

Structural determinants of external barium block in homomorphic and heteromeric KCNQ1 channels: implications for permeation and gating.

Gibor G., Schottelnbreier H., Peretz A. and Attali B.

1Dept. of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978

We used the permeant ion Ba2+ to probe the permeation pathway of KCNQ1 channel engaged in homomorphic or heteromeric complexes and to examine the impact of the β subunits on the channel pore properties. Homomeric KCNQ1 and heteromeric KCNQ1/KCNQ1 and GluR3/KCNQ1 channels were recorded in Xenopus oocytes, using the two-electrode voltage-clamp.
The present study is based on the premise that lysyl oxidase (LO), at CNS injury sites, and therefore, its inhibition may be conducive to successful axon regeneration, thus restricting functional recovery. Modulations of the extracellular matrix (ECM) and some of which are supportive while others disruptive of axonal hematogenous cells, microglia, astrocytes and fibroblasts, interact in a time-dependent manner to perform wound-healing activities, suggesting a progressive unblock of Ba$^2+$ ions at positive potentials. Consequently, Ba$^2+$ block switches constitutively open KCNQ1/KCNB3 channels into time- and voltage-dependent channels. Ba$^2+$ ions also affect channel gating by producing a marked rightward shift in the voltage dependence of activation of KCNQ1 and KCNQ1/KCNB3 channels and by accelerating channel deactivation. The structural determinants of Ba$^2+$ block will be presented and discussed in light of the crystal structure of the homologous bacterial KcsA K channel.

Keywords: Potassium channels, Permeation, KCNQ, Barium

Combined administration of dimethyl sulfoxide (DMSO) and haloperidol prevents catalepsy in rats and neuronal toxicity in neuronal cultures.

Gil-Ad, J., Shaltiel, B., Weizman A. Felsenthal Medical Research Center. Campus Rabin, Petah Tiqva 49100, Tel-Aviv University.

Haloperidol is used in the treatment of schizophrenia and psychotic disorders. Haloperidol therapy is frequently accompanied by extrapyramidal symptoms (EPS). Recent reports suggest the involvement of oxidative insult in the etiology of EPS. DMSO is an organic solvent and a potent free radical scavenger. Haloperidol 1-3mg/kg was administered I.P to adult male rats. The drug was dissolved in three different vehicles: lactic acid (1%), sesame oil (0.5-10%) and DMSO (0.01-0.1%). In the first two vehicles haloperidol induced a marked catalepsy in rats, registered half hourly during three hours. In contrast, in animals treated with haloperidol-DMSO no catalepsy was found and no spontaneous undesired effects were registered. Addition of vitamin E did not modify significantly the cataleptic pattern observed with each drug-vehicle solution.

Plasma prostatic levels measured two hours after haloperidol administration were significantly higher compared to basal levels in all the three treatment regimens, suggesting that prevention of cataleptic behavior is not associated with unblockade of dopaminergic receptors.

In vitro: Haloperidol (in lactic acid), induced a dose dependent decrease in neuronal cell viability both in primary mouse embryo brain origin, and in human neuroblastoma (SK-N-SH). The drug in DMSO (0.01-0.1%) induced a significantly lower neurotoxic effect. Vehicles alone did not modify neuronal cell viability. We conclude that combined administration of haloperidol and DMSO prevents catalepsy in rats without modifying the inhibitory effect of haloperidol on central DA receptors.

We hypothesize that central antioxidative activity of DMSO could account for the protective effect of DMSO against haloperidol-induced catalepsy in rats and neurotoxicity in culture.

Keywords: Haloperidol, Catalepsy, DMSO, Neurotoxicity.

Lysyl oxidase in CNS injury; accelerated functional recovery by inhibitor treatment after spinal cord injury in rodents

Gild G.M., Kagan H.M. and Gilad V.H. Research and Development, Laboratory of Neuroscience, Assaf Harofeh Medical Center, Zrifin 70300, Israel and Dept. of Biochemistry, Boston University School of Medicine, Boston, MA, USA

Sites of CNS injuries present a dynamic scene where hematogenous cells, microglia, astrocytes and fibroblasts, interact in a time-dependent manner to perform wound-healing activities, some of which are supportive while others disruptive of axonal regeneration. Modulations of the extracellular matrix (ECM) and scar formation at CNS injury sites are considered probitive for successful axon regeneration, thus restricting functional recovery. The present study is based on the premise that lysyl oxidase (LO), an extracellular enzyme that catalyzes cross-linkages of ECM proteins, is involved in modulating the ECM and in scar formation at CNS injury sites, and therefore, its inhibition may be conducive for regeneration and recovery of function. We provide evidence, which indicates that after brain injuries in adult rats, active extracellular LO molecules appear in a spatiotemporal manner in the site of injury and, as indicated by mRNA Northern blot analysis, cells in the region of injury synthesize this enzyme. LO immunoreactivity was not associated with glial fibrillary acidic protein (GFAP)-positive astrocytes. After unilateral spinal cord transection in adult mice, daily treatment (for 20 d) with the LO inhibitor, β-aminopropionitrile (100 mg/kg), resulted in accelerated and more complete functional recovery. The mode of functional recovery, however, indicated that axonal regeneration of long descending tracts did not occur. The findings indicate that active LO molecules are synthesized and secreted by cells attracted to CNS injury sites and imply that LO may participate in ECM modulation thus hindering recovery after CNS injuries.

Keywords: β-aminopropionitrile, Enzyme inhibitor, Extracellular matrix, Regeneration

Riluzole ameliorates motor function in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE)

Glickshank Y., Ofen D., Panet H., Mosberg-Galili R. and Melamed E. Depts. of Neurology. Felsenstein Medical Research Center, Bellinson Campus and Sackler School of Medicine, Tel Aviv University, and Rabin Medical Center, Petah Tiqva 49100

Glutamate neurotoxicity was shown to play a role in the pathogenesis of multiple sclerosis (MS). Here we study whether treatment with riluzole, an inhibitor of glutamate release, might demonstrate beneficial effect in experimental autoimmune encephalomyelitis (EAE) model induced by myelin oligodendrocyte glycoprotein (MOG). Mice were treated with riluzole (10 mg/kg) two days before and up to 21 days after the induction of EAE by the pMOG 35-55. We found that while the control mice developed significant clinical manifestations with complete hind limb paralysis, the riluzole-treated were completely resistant or showed only mild clinical signs. The beneficial effect of riluzole treatment was effective when administrated (i.p.) during or even after the EAE-induction. Histological examination of CNS tissue sections showed multifocal areas of perivascular lymphohistiocytic inflammation with loss of myelin and axons in the control mice while only focal inflammation and minimal axonal damage was demonstrated in the riluzole treated mice. No difference could be detected in the immune potency as indicated by T cell proliferative responses to MOG. In conclusion, we have demonstrated that riluzole attenuate the severity of MOG-induced EAE and reduced axonal damage. Our results suggest that riluzole and probably other glutamate antagonists may be beneficial in the treatment of MS.

Keywords: Multiple sclerosis, Experimental autoimmune encephalomyelitis (EAE), Myelin oligodendrocyte glycoprotein (MOG), Riluzole

Synaptophysin: purification and characterization of its channel activity

Ginoel D. and Shoshan-Barmatz V. Dept. of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva

Synaptophysin was solubilized from rat brain synaptosomes with relatively low concentration of Triton X-100 (0.2%) and was purified (95%) using a single step chromatography on hydroxyapatite/celite column. Purified synaptophysin was reconstituted into planar lipid bilayer and its channel activity was characterized. In asymmetric KCl solutions (cis 300 mM, trans 100 mM), synaptophysin forms a fast fluctuating channel with conductance of 414±23 pS in +600 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation selective. Synaptophysin channels showed high selectivity for K$^+$ over Ca$^{2+}$ (P$^{K^+}$/P$^{Ca^{2+}}$=8) and are highly selective for K$^+$ over Li$^+$, Na$^+$, Rb$^+$, Cs$^+$, or choline$^+$. This is the second demonstration of synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amount of purified synaptophysin and its characteristic channel properties might help to define the function of synaptophysin in exocytosis and/or endocytosis.

Keywords: Synaptophysin, Synaptic vesicles, Ion channels
The relationship between spontaneous activity and functional architecture in primary visual cortex (V1)
Goldberg J.A. and Sompolinsky H.
Racah Institute of Physics and the Center for Neural Computation, Hebrew University, Jerusalem 91904

A recent optical imaging study of the cat V1 demonstrated that spatial maps of cortical activity occurring during spontaneous discharge are highly correlated with the maps evoked by oriented stimuli (Tsodyks et al., Science, 286:1943-6). One interpretation is that in the absence of external stimuli V1 spontaneously switches between a finite set of quasi-stationary cortical states. Alternatively, the intrinsic cortical dynamics yield irregular spatio-temporal patterns whose spatial profiles resemble the responses evoked by oriented stimuli due to the underlying functional architecture of V1.

To resolve this issue, we studied a network model of a patch of V1, consisting of excitatory and inhibitory neurons. Each neuron is labeled by its preferred orientation (PO) and its location on the 2D cortical sheet. The layout of POs on the cortical patch resembles the experimentally observed pinwheel structure. We considered several profiles of intra-cortical interactions. We find that the experimentally observed patterns of spontaneous maps suggest that in contrast to recent suggestions, intra-cortical excitatory connections depend not only on distance between neurons but also on the difference between their POs. This architecture combined with strong neuronal adaptation yields irregularly evolving patterns of activity that resemble the observed characteristics of the spontaneous maps. Thus, spontaneous activity yields important information on the architecture and dynamics of the cortical circuits.

Keywords: Dynamics, Attractors, Cortical feedback, Orientation

The spatial organization of electrically coupled networks of interneurons in neocortex.
Goldomb D. and Amitai Y.
Dept. of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva.

Inhibitory interneurons of the neocortex are electrically coupled to cells of the same type through gap junctions. We studied the spatial organization of two types of interneurons in the rat somatosensory cortex: fast-spiking (FS) parvalbumin-immunoreactive (PV+) cells, and low threshold-spiking (LTS) somatostatin-immunoreactive (SS+) cells. Paired recordings in layer 4 demonstrated that both the probability of coupling and the coupling coefficient drop steeply with intersomatic distance. The dendritic arbors of FS and LTS cells were reconstructed from electrophysiologically characterized, biocytin-filled cells; the two cell types had only minor differences in the number and span of their dendrites. However there were marked differences in the density and spatial distributions of the two interneuron types: in general, there was a higher density of PV+ cells than SS+ cells (92±9 and 67±12 cells/mm² respectively). PV+ cells were especially dense in layer 4, while SS+ cell density peaked in the subgranular layers. From these data we calculate that each interneuron is electrically coupled, directly or indirectly, to between 20 and 50 other interneurons. The large number of electrical synapses implies that each interneuron type participates in a continuous syncytium over wide areas. To evaluate the functional significance of these findings, we examined several simple architectures of coupled networks analytically. We present a mathematical method to estimate the average electrical coupling each cell receives from its neighbors, and we estimate that these have the same order of magnitude: around 10 nS. These quantitative results have important implications for the effects of electrical coupling on the dynamic behavior of interneuron networks.

Keywords: FS cells, LTS cells, Gap junctions, Dendritic fields, Coupling coefficient, Coupling conductance, Network architecture

The role of interleukin-1 in hippocampal-dependent memory processes and neural plasticity.
Dept. of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel; Dept. of Psychology, Haifa University, Haifa, Israel; Dept. of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Dept. of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden.

Interleukin-1 (IL-1) is a pleiotropic cytokine, produced by immune cells in the periphery as well as glia and neurons within the brain. To examine the role of IL-1 signaling pathways in the physiological mechanisms underlying learning, memory and neural plasticity we used models of disrupted IL-1 signaling: mice with targeted deletion of the IL-1 receptor type I (IL-1r KO) and mice with transgenic over-expression of brain IL-1 receptor antagonist (IL-1ra TG). Because TNFα and IL-1 were previously shown to have many common functions, we also examined mice with a targeted deletion of the TNF type I receptor (TNFR KO). Compared to their respective wild type controls, IL-1r KO and IL-1ra TG mice, but not TNFR KO mice, displayed significantly disrupted memory, when tested with a spatial memory paradigm of the Morris water maze (MMW), known to require normal hippocampal functioning. When tested with a non-spatial memory paradigm (visible platform), which does not require hippocampal mechanisms, IL-1r KO and IL-1ra TG mice showed no memory impairment. Short-term plasticity in dentate gyrus (DG) and CA1 synapses of IL-1r KO mice was disrupted, as evidenced by enhanced paired-pulse inhibition and suppressed paired-pulse facilitation, both in vivo and in vitro. Long-term plasticity was completely absent in these mice, which displayed no LTP following high frequency stimulation, either in the DG of anesthetized animals, or in CA1 of hippocampal slices. These results suggest that signaling via the IL-1 type I receptor within the hippocampus plays a critical role in learning and memory processes as well as in short- and long-term plasticity.

Partly supported by the Smith Laboratory for Collaborative Research in Psychobiology.

Keywords: Interleukin-1 (IL-1), Memory, LTP, Hippocampus

Rapid efflux into blood contributes to the elimination of excess glutamate in brain.
Gottlieb M. and Teichberg V.L.
Dept. of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.

The brain extensive vasculization has traditionally been seen as the main supply route to the brain of obligatory metabolites and as a barrier barring the entry into the brain of potentially harmful molecules. We wish here to provide evidence for an additional prominent role of the brain, which is known as a non-barrier transport process, as in short- and long-term plasticity.

Keywords: Interleukin-1 (IL-1), Memory, LTP, Hippocampus

NAP: mechanism of femtomolar neuroprotection through immunomodulation.
Dept. of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sourasky Medical Center, Tel Aviv University; Pharmacology, The Hebrew University School of Pharmacy, Jerusalem 91120; Life Science, Tel Aviv University, Tel Aviv 69978, Israel; Molecular Pharmacology, LDN, NICHD, NIH, Bethesda, MD 20892, USA.

The eight-amino-acid peptide (NAP), derived from Activity-Dependent Neuroprotective Protein ADNP (J. Neurochem. 72: 1283-1293 [1999]), provides femtomolar neuroprotection. Recent studies suggest that part of NAP activity may be indirect through...
imunomodulation. Thus, NAP attenuates tumor necrosis (TNFα) secretion immediately after head trauma and protects against TNFα-associated cell death (J. Pharmacol. Exp. Therap. 296:57-63 [2001]). Utilizing gene atlas arrays, we discovered that closed head injury (CHI) is associated with the up-regulation of Mac-1, an adhesion molecule of the integrin β2 family (CD11b/CD18), and a major factor in the complement system. 15 min. after injury, mice were divided into two groups, control and NAP-treated and a single subcutaneous injection of NAP or saline was administered. A third group served as sham-treated. Each mouse was assessed for its clinical function, using neurological severity score. 30-45 days after CHI, total cerebral cortex RNA was prepared from the site of injury and from parallel regions in peptide-treated and sham brains. Reverse transcription yielded radioactive cDNA preparations, that were further hybridized to Atlas array membranes containing 1200 cDNAs spots (Clontech). Results indicated that Mac-1 mRNA specifically increased after CHI and decreased after NAP treatment. In a different set of experiments, NAP was chronically injected for the first 3 weeks of life to apolipoprotein E-deficient mice exposed to head trauma at 4 months. RT-PCR analysis indicated that Mac-1 expression increased after head trauma and was inhibited by NAP treatment. Thus, Mac-1 is suggested as a marker for the long-term outcome of head injury and as a potential target for NAP protective action.

Support: ISF, BSF, Neufeld, ISOA, Gildor Chair.

Keywords: Trauma, Neuroprotection, Mac-1, ADNP.

Rectification of biochemical and behavioral abnormalities manifested in an animal model for depression

Green T. , Deri I., Zangen A., Yaddi G.
Faculty of Life Sciences, Bar Ilan University, Israel

The brain mechanisms underlying depressive symptoms, such as anhedonia, are evasive and need to be elucidated. FSL rats are a genetic animal model of depression that exhibit increased anhedonia in response to chronic mild stress, and there are substantial alterations in their serotonergic and catecholaminergic functions. We examined whether antidepressant treatment could alter the reward circuits, the functions of which are based on abnormalities in neurotransmitter and neuropeptide activity in FSL rats. We found that extracellular dopamine levels in FSL rats did not increase in response to serotonin stimulation, as opposed to control rats. However, chronic antidepressant treatment normalized the serotonin-dopamine interaction. Moreover, FSL rats exhibited a lower increase in extracellular β-endorphin levels in response to serotonin stimulation, as opposed to control rats. However, the serotonin-β-endorphin interaction of FSL rats was restored following chronic antidepressant treatment. In addition, behavioral deficiencies in FSL rats, manifested as increased immobility during a swim test, were significantly improved following desipramine treatment. Finally, we examined the reinforcement effect of cocaine on FSL rats, using the self-administration paradigm. Our results show that the great majority of FSL rats did not proceed to acquire cocaine via self-administration. Following chronic treatment with desipramine, FSL rats were allowed to self-administer cocaine. We found that 70% of FSL rats responded to cocaine. We suggest that treatment with desipramine may have restored the serotonin-dopamine-β-endorphin cross-talk in FSL rats, and thus normalized the response of FSL rats to cocaine. Thus, this model may prove useful for examining reward systems in states of anhedonia.

Keywords: Depressive behavior, Serotonin, Dopamine, β-endorphin, Cocaine self-administration

Incidence of different cell death mechanisms in the newborn rat retina

Guimarães C.A. and Linden R.
Programa de Neurobiologia - Instituto de Biofísica da UFRJ, CCS/bloco G, Ilha do Fundão, 21949-900, Rio de Janeiro, RJ, Brazil

Introduction: There are different types of programmed cell death occurring either in physiological and pathological processes. Two of them, apoptosis and autophagy, share some hallmarks as cell shrinkage, plasma membrane integrity, membrane integrity maintenance. Anisomycin (ANI), a protein synthesis inhibitor, induces cell death in recent post-mitotic cells of the newborn retina. Degenerating cells are condensed, heavily stained with neutral red and are found among healthy looking cells, suggesting plastic membrane integrity.

Objectives: Our aim in this study is to identify different types of cell death induced by anisomycin in the retinal tissue and their mechanisms of execution.

Methods: Newborn retinal explants were kept for 24h in vitro in control conditions or in the presence of cell death inhibitors. Explants were fixed, tissue crosssections were made and processed for histology or immunocytochemistry and analysed under light microscopy.

Results: Bongkrekic acid, a permeability transition pore inhibitor, completely inhibited cell death induced by anisomycin. Ac-LEHD-CHO, a caspase-9 inhibitor peptide, Z-DEVD-FMK, a caspase-3 inhibitor peptide, and Ac-VEID-CHO, a caspase-6 inhibitor, inhibited approximately 50% of cell death induced by ANI. Furthermore, anti-VEGF antibody, for activated caspase-3 and TUNEL stained approximately 50% of dead cells in tissue sections. Co-incubation of retinal explants with caspase-3 and caspase-6 inhibitors did not have a synergic effect, but the co-incubation with caspase-9 and caspase-6 inhibitors completely blocked cell death induced by anisomycin. 3-methyl-adenine (3MA), an autophagy inhibitor, also reduced cell death induced by anisomycin to the same levels reached with apoptosis inhibitors described above. Co-incubation of retinal explants with autophagy and apoptosis inhibitors did not have a synergic protective effect and TUNEL staining decreases in explants treated with 3MA.

Conclusions: ANI induces at least 2 types of cell death, both dependent on mitochondrial commitment and caspase activation. The first one is caspase-9 and caspase-3-dependent and involves an autaphagic process. The second type of cell death involves caspase-6 activation and possibly corresponds to the TUNEL-negative cells. According to our results, apoptosis and autophagy seem to be different stages of the same cell death process, suggesting an overlap of these two features.

Principles of neocortical interneuron recruitment

Gupta A., Wang Y. and Markram H.
Dept. of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel; Section of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8001, USA

GABAergic interneurons constitute only a minor fraction (20-30%) of neocortical cells, but are essential for normal brain function. Recent studies have expanded our knowledge of how this small and highly diverse population of cells, inhibit neighboring neurons, but the properties of their recruitment are still largely unknown. We therefore obtained simultaneous whole-cell patch clamp recordings (n=120) from several anatomical and electrophysiological distinct types of interneurons receiving convergent inputs from up to three presynaptic pyramidal cells (PCs) in layers 2-4 of rat neocortical slices. Glutamatergic synapses formed by PCs onto interneurons were diverse in their dynamic properties, being either facilitating or depressing. Morphologically distinct interneuron subtypes were found to receive both types of synapses. However, distinct electrophysiological subclasses of a given morphological interneuron type invariably received either only facilitating or depressing synapses (synapse mapping principle). Indeed, inputs from several PCs converging onto a single interneuron target all form synapses of the same type (n=25), and single pyramidal neurons innervating different electrophysiological interneuron subclasses (divergence) differed in their temporal dynamics (differential synaptic transmission). Facilitating synapses varied widely in their underlying kinetic properties and synaptic strengths: some target interneurons could be discharged by a single presynaptic PC, whereas others could not be discharged by even three convergent PC inputs. Interneurons, therefore, differ in their thresholds for recruitment, alluding to functionally unique positions within the neocortical microcircuitry during network activity. Finally, in many cases PCs were found to be reciprocally connected to their target interneurons indicating that many interneurons may directly affect the population of PCs responsible for their initial recruitment. Our findings show that innervation of interneurons by PCs follows distinct organizational principles suggesting that each type of interneuron is uniquely recruited during activity of the neocortical microcircuitry.

Keywords: Neocortex, Interneurons, Pyramidal cells, Recruitment
A dissociation between brain activity and perception: fMRI responses to chromatic flicker that is not perceived

Gur M., and Grienfeld A.
Dept. of Biomedical Engineering, Technion, Israel

When two isoluminant colors alternate at frequencies > 10 Hz, we perceive only one fused color with a minimal sensation of brightness flicker. In an earlier work (Gur and Snodderly, 1997) we have shown that color opponent cells in V1 of the alert monkey follow isoluminant flicker at 15 and 30 Hz. Thus there was cortical activity that represented visual stimulation, yet was not perceived. Here we present an fMRI study performed on human observers at the Functional Brain Imaging Laboratory, Tel-Aviv Sourasky Medical Center. Subjects viewed red/green flickering lights that were fused to a steady yellow percept at 15 Hz, while flicker was very clear at the lower frequencies of 2.5 and 7.5 Hz. There was activity in area 17 in response to color flicker at the 2 low frequencies as well as at 15 Hz where no color or flicker was perceived. Thus in humans, as in monkeys, primary visual cortex is active but, seemingly, this activity fails to affect conscious perception. The implication of our findings to theories about the relation of brain activity and consciousness will be discussed.

Keywords: Visual cortex, Perception, Color flicker, fMRI, Consciousness

The in vivo targeting of a magnetite-bound lentiviral vector by an extra-corporeal magnetic field

Haim H., Panet A. and Steiner I.
Laboratory of Neurovirology, Department of Neurology, Hadassah University Hospital, Jerusalem; Dept. of Neurovirology, The Hebrew University-Hadassah School of Medicine, Jerusalem.

Current in vivo gene transfer technology is generally limited to the local application of the gene-carrying vector to the target site. The targeted delivery of a systemically administered vector to selected tissues continues to pose a major challenge. Obstacles include the immune response, hemodynamic parameters affecting vector biodistribution and inefficient impartion of host-cell range selectivity. In order to surmount the above and achieve sufficient cellular transduction at the target site following systemic administration, we attempted a novel method of gene transfer. Magnetite nanoparticles (50 nm in diameter), coated by a hydrophilic polymer matrix with endstanding cationic DEAE groups, electrostatically bind to the anionic envelope of most viral vectors. Using a lentiviral vector carrying the β-galactosidase reporter gene, we exposed cell cultures to the virus-magnetite complex and demonstrated localization of infection to the cells overlying a magnet positioned under the culture dish. Transduction efficiency was significantly increased. Examining the ability of the complex to mediate organ specific transduction, we are currently conducting the first in vivo experiments. Balb/c mice are intravenously injected mice with 10^7 infectious units, simultaneously exposing the lateral cranium to a magnetic field overlying a magnet positioned under the culture dish. After the amino acids were incorporated into the venom, we allowed the wasps to freely sting several cockroaches. First, the amount of radioactivity in the ganglia of stung cockroaches was assessed using liquid scintillation of the different ganglia and tissue. Significantly higher levels of radioactivity were detected in the head ganglia and the first thoracic ganglion. In contrast, radioactivity levels in the third thoracic ganglion and non-neuronal tissue were much lower and comparable to control values. Second, microscopic emulsion autoradiography was carried out to determine the precise location of injection. Radioactivity was detected in the central area of the brain ganglion, the subesophageal ganglion and the first thoracic ganglion. No radioactivity could be detected in the second thoracic ganglion or in ganglia stung by non-radiolabeled wasps.

To our knowledge, this is the first direct evidence of a venomous animal stinging into the central nervous system of its prey.

Keywords: Venom, Wasp, Cockroach, Central-body

Acuity demand as a driving force in the organization of high-level object areas

Hasson U., Levy I., Avidan G., Behrmann M., Hendler T., Malach R.
Weizmann Institute of Science, Rehovot, Israel; 2 Hebrew University, Jerusalem, Israel; 3 Carnegie Mellon, Pittsburgh, PA, USA; 4 Sourasky Medical Center, Tel Aviv, Israel; Tel Aviv University, Tel Aviv, Israel

We have recently proposed center-periphery organizing principle in which object representations are laid-out in the cortex according to resolution needs. Thus, objects whose recognition depends on detailed scrutiny (e.g. faces) will be associated with fovea-biased representation, while objects whose recognition depend on low-resolution, large-scale integration (e.g. buildings) will be associated with periphery-biased representation. A direct prediction stemming from this hypothesis is that each object category must be associated with a unique profile of eccentricity preferences, based on the acuity which is needed for their recognition. In this study we tested this hypothesis by examining the relationship of center/periphery organization to the representation of letters and words, whose recognition depends crucially on foveal vision. As controls, we tested additional object categories whose recognition is not obviously dependent on foveal vision (computers, cars). Our result revealed a strong association between letters, words and central visual field representations, while the activation to computers and cars was distributed towards peripheral-based locations. These results indicate that the resolution-based organizing principle can predict the activation pattern of different object categories within high-level object areas.

Funded by Israel Academy 644/99-1 grant.

Keywords: fMRI, Object recognition, Ventral stream

T cell-based therapeutic vaccination for traumatic spinal cord injury

Hauen E., Mizrahi T., Agranov E. and Schwartz M.
Dept. of Neurobiology, The Weizmann Institute of Science, Rehovot

The outcome of incomplete spinal cord injury (ISCI) is often more severe than expected, in addition to the degeneration induced directly by the insult, the injury triggers a self-destructive process leading to secondary degeneration of initially spared neurons. Neuronal degeneration after injury to the rat optic nerve or spinal cord can be reduced by passive or active T cell-based immunization with myelin-associated self-antigens such as myelin basic protein (MBP) (Haben et al, J Neuroscience, 20:6421-30 [2000]). This "protective autoimmune" plays a physiological role in the spontaneous recovery from CNS trauma (Yoles et al, J Neuroscience, 21:3740-8 [2001]). Here we show that (a) mice devoid of mature T cells (nude mice) recover significantly worse from ISCI than the wild type, and (b) female rats and mice, which are inherently capable of sustaining a stronger post-traumatic T cell response than males, recover significantly better than males from ISCI. We also describe a post-traumatic vaccination protocol for promoting functional recovery from ISCI. To boost protective autoimmune through vaccination, with minimal risk of inducing experimental autoimmune encephalomyelitis (EAE), we used altered MBP peptides in which the replacement of one amino acid by another renders the peptide non-encephalitogenic. Rats vaccinated, immediately after ISCI, with the altered MBP peptide did not develop EAE symptoms and their functional outcome was significantly improved (Hauen et al, J Clinical Investigation, 108(4):591-9 [2001]). Several myelin-derived peptides, including Nogo, were effective in inducing a benign T-cell-mediated neuroprotective response. Accurate interpretation of the role of autoimmunity in CNS recovery may lead to the development of a therapeutic vaccine for treatment of ISCI.

Keywords: Neuroprotection, Autoimmunity, Paralysis, Myelin.

Generalization and the evolution of internal states of neural microcircuits

Häusler S., Maass W. and Markram H.
Universität Graz; 4-8010 Graz, Austria; 2 Dept. of Neurobiology, Weizmann Institute for Science, Rehovot, 76100 Israel

Liquid state machines store salient information about previous input patterns in form of high dimensional complex dynamical states, whereas their readout transforms equivalent states to a stable output. We have examined the ensembles of trajectories of internal states caused by similar inputs, to which a readout neuron after training is supposed to assign the identical same output. More precisely, we have analyzed to what extent these trajectories share some common properties. In order to measure this quantitatively we have compared these ensembles of trajectories of internal states of a circuit with randomly drawn arbitrary internal states of the same circuit, that were not caused by related circuit inputs. Furthermore we have analyzed through computer simulations the generalization capabilities of such simulated neural microcircuits. We have tested to what extent a readout neuron can give correct inputs to novel inputs, both to inputs that were generated by the same distribution as the training inputs, and to inputs which differ essentially from those inputs on which the system had been trained.

Keywords: Microcircuits, Generalization, Dynamical systems

Classification power of readout neurons in neural microcircuits

Häusler S., Maass W. and Markram H.
Institute for Theoretical Computer Science, Technische Universität Graz; A-8010 Graz, Austria; 2 Dept. of Neurobiology, Weizmann Institute for Science, Rehovot, 76100 Israel

Recently Maass, Markram & Natschliger proposed a new theoretical model, called "liquid state machine", which represents a convenient framework for neural computations in real time for rapidly time varying input functions. The liquid may for example be a computer model of a recurrent neural microcircuit, whose complex dynamical state serves as a source for readout neurons to extract salient information about past and present stimuli, their capability to transform different transient internal states of the liquid into given target outputs strongly depends on how well transfer functions of the input neurons are separated in the high dimensional state space. We show that if time varying inputs are injected into a sufficiently large recurrent neural microcircuit, a single readout neuron is in principle able to classify the inputs. This effect is well-known in the machine learning community (since support vector machines rely on it), but has hardly been explored in the context of computational neuroscience. We have quantitatively analyzed the classification power of a single readout neuron in dependence of the size of the recurrent neural microcircuit into which the input has been injected. In order to test the potential classification power of a single readout neuron we studied how well different input patterns are linearly separated in the state space of the liquid. For this purpose we used Fisher's linear discriminant analysis to find the linear transformation (projection) to a low dimensional subspace that separates the different sets of liquid states in an optimal way and determined the hyperplane orthogonal to this transformation with the least classification error. Further we studied the dependence on various parameters like the structure and the size of the liquid, the neuron types, the synaptic properties as well as the special form of the input patterns. The study also demonstrates the capability of recurrent neural microcircuits to store and retrieve memory in real time without stable states.

Keywords: Neural coding, Pattern classification

Molecular diversity of pyramidal cells

Herzberg C., Toledo-Rodríguez M., Mae S.L., and Markram H.
Dept. of Neurobiology, Weizmann Institute of Science, Rehovot

Pyramidal cells are excitatory (glutamatergic) cells and the most abundant (70-80%) neurons in the neocortex. This cell type exhibits a stereotypical morphology in layer 2-5 and most pyramidal cells display similar discharge patterns. Pyramidal cells in layer 6 may display different discharge patterns. However, most of pyramidal cells through the layers exhibit different electrophysiological behaviors. Very little is known about the molecular diversity of recently developed single cell multiplex RT-PCR protocols that allow simultaneous detection of mRNAs for around 40 proteins from neurons morphologically and electrophysiologically characterized. The mRNA profile includes 3 calcium binding proteins, 9 neuropeptides, 4 enzymes and over 30 ion channel alpha and beta subunits. Whole-cell patch clamp recordings from pyramidal cells in all neocortical layers were performed in somatosensory cortex neocortical slices of juvenile rats (P13-P16). After whole-cell the electrophysiological properties of the cells were studied in detail, the neuron was loaded with biocytin and a subsequent 3D anatomical computer reconstructions and at the end of the experiment cytoplasm was aspirated for subsequent single cell RT-PCR.

Keywords: Pyramidal neurons, Single cell RT-PCR, Ion channel, Electrophysiology.

Chronic treatment from weaning with amitriptyline prevents hyperactivity and depressive-like behavior in prenatally-stressed rats

Herzog, Raabag P., Poltyrev T., Bejar C. and Weinstock M.
Dept. of Pharmacology, School of Pharmacy, Hebrew University of Jerusalem, Israel

Adult offspring of rats stressed during the last week of pregnancy display heightened anxiety in intimidating environments and a faster acquisition of immobile posture than controls [C] in the forced swim test (FST). The aim of this study was to see whether an antidepressant, amitriptyline could reduce the symptoms of anxiety and depression in prenatally-stressed [PS] rats, when given daily from weaning to adulthood. To avoid handling, water or amitriptyline (4.5 mg/kg/day) was administered to PS and C rats in the drinking water, from the age of 3 to 8 weeks. The rats' behavior was assessed at 10 weeks in a mildly stressful environment, the open field (OF) and in the plus maze, (PM) a validated test for anxiety. PS rats given water showed significantly less exploration than C in the OF and spent less time in the open arms of the PM, indicating hyperactivity; PS, 2.6 ± 1.4 sec; C, 11.5 ± 3.1 sec. PS rats given amitriptyline showed significantly more exploration in the OF and spent much more time (40.4 ± 9.7 sec, P<0.01) in the open arms of PM, resembling behavior induced by dizapam. By contrast, amitriptyline had no effect in C rats. In FST, amitriptyline also decreased immobility in PS rats from 210 ± 17 to 135 ± 21sec (P<0.01) but increased immobility in C rats from 131 ± 10 to 189 ± 4 sec. In conclusion, the data show that early treatment with amitriptyline abolishes the symptoms of hyperactivity and depression induced by prenatal stress.

Keywords: Prenatal stress; Anxiety; Depression; Amitriptyline.
Auditory Cortex Specialization Processing Temporal Aspects of Natural Speech: Onset Time of Voicing vs. Analogous Non-Speech Stimuli

Horev N. ¹, Most T. ² and Pratt H. ¹
¹Evoked Potentials Laboratory, Technion-Israel Institute of Technology, Haifa, ²Dept. of Communication Disorders, School Of Health Sciences, Tel Aviv University.

Speech is thought to be perceived and processed in a unique way by the human auditory system. In this study we show evidence for different brain processing of speech and analogous non-speech stimuli.

Cortical auditory evoked potentials (AEPs) were obtained from Hebrew-speaking listeners using 21 scalp electrodes in an active identification task. Speech stimuli were selected from a naturally produced /ba/-/pa/ continuum that varied in voice-onset time (VOT), which refers to the time between the stop burst and the onset of voicing. Non-speech stimuli were selected from a synthesized two-formants continuum that varied in the onset time of the first formant, i.e., (Formant-onset-time - FOT). The formants frequencies and the intensity of the FOT stimuli were adjusted to match the spectra of the speech stimuli and to elicit similar behavioral responses.

Analysis of the AEPS suggested that the differentiation in processing speech and non-speech signals starts as early as 100 ms after stimulus onset: VOT values had a significant effect on primary auditory cortex activity, whereas FOT values affected later activity. In addition, the non-speech stimuli of +15ms FDT evoked larger late responses, which might reflect the innate (not speech-specific) sensitivity for onset-asynchronies of this primary auditory cortex activity, whereas FOT values affected similar behavioral responses. Time between the stop burst and the onset of voicing. Non-speech stimuli of +15ms FDT evoked larger late responses, which might reflect the innate (not speech-specific) sensitivity for onset-asynchonies of this primary auditory cortex activity, whereas FOT values affected similar behavioral responses.

Keywords: Evoked potentials, Hemispheric specialization, Auditory cortex

Changes in morphology and electrophysiology of neurons and glial cells in mouse sensory ganglia following partial obstruction of colon

Huang Y. ¹ and Hanani M.
¹Hebrew University-Hadassah Medical School, Mount Scopus, Jerusalem 91240

Obstruction of visceral organs induces hypertrophy of neurons innervating these organs, but there is little information about the changes in electrical properties of the neurons and in the characteristics of glial cells in the corresponding sensory ganglia. In this study we investigated the morphological and electrophysiological changes in neurons and satellite glial cells (SCs) of mouse dorsal root ganglia (DRG) after obstruction of the colon. We found that the neuron responses to mechanical stimuli using DiI retrograde tracing and found that both DRG L1 and S2 innervate the colon. After 6 days of obstruction we observed the following cellular changes: 1. The thresholds for firing an action potential, membrane potentials and input resistances of the neurons were significantly lower than controls. The proportion of neurons with spontaneous action potentials increased about 4-fold in S2 and L1. The proportion of neurons with subthreshold potential oscillations increased by 116% in S2 and 102% in L1. 2. About 14% of SCs in S2 and 11% in L1 became dye coupled to SCs surrounding neighboring neurons and thus formed dye coupling between glial envelopes. 3. The cross-sectional area of DRG neurons increased by 35%. 4. Inflammatory responses were observed within the colon wall. These results suggest that obstruction-induced inflammation caused hyperexcitability and hypertrophy of the neurons and dye coupling between glial envelopes. These changes are similar to those observed in DRGs after axotomy of sciatic nerves. We propose that changes in DRGs contribute to visceral pain, as is the case for somatic pain.

Keywords: Dorsal root ganglia, Glial cells, Intestinal obstruction, Electrophysiology

Stress and pain responses of rats lacking cholecystokinin A (CCK-A) receptors.

Bourguignon J. Y. 1st, Lebon Y. L. ², Malkesman O. ³, David A. ⁴ and Weller A. ⁴
¹stInterdisciplinary Program in the Brain Sciences and ²stDept. of Pharmacology, Hebrew University, Jerusalem, Israel.

CCK mediates several behavioral effects, including stress induced ultrasonic vocal responses (USV) of infant rats (reduced via the CCK-A receptor) and opioid-analgesia (modulated via the CCK-B receptor). In this study we studied CCK involvement in stress-responsiveness by using OLETF rats (obese Long Evans Tokushima) and LETO rats (control) and analyzing their responses to a moderate thermal pain stimulus by immersing the tail in hot water (49°C or 53°C) and measuring the tail flick response. Rate of USV (USV/min) was significantly greater (5 fold) during the first 8 min, and during the subsequent 8 min (12 fold) in the container with water, in OLETF compared to LETO rats in the milk test condition, USV rate of OLETF rats was reduced, and was not different from controls. Adult OLETF rats reacted to thermal pain significantly faster than controls at both test temperatures. The results support previous findings, suggesting that CCK mediates infant vocal responsiveness through the CCK-A receptor. The hyperalgesia found in OLETF rats may be due to an alteration in the number or sensitivity of CCK-A receptors.

Keywords: USV, Pain, CCK.
180

Neuroscience [in press]), in line with findings implicating the orbitofrontal cortex but not the dorsolateral prefrontal cortex in the production of obsessions and compulsions. These results provide a temporal framework for understanding the mechanisms that underlie these disorders.

Keywords: Obsessive-compulsive disorder (OCD); Animal model, Operant behavior

Corneal nerve damage in diabetic rats - correlation between sensitivity and morphology

Kadar T.1, Glover JP.1, Zuckerman A.2, Hermelin R. and Robison WG Jr.1

1National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; 2Israel Institute for Biological Research, Ness Ziona

Decreased sensitivity is a typical phenomenon of the diabetic cornea. However, its pathogenesis is still not clear. The present study was aimed to characterize the clinical and morphological alterations of corneal innervation in the galactose-fed rat model of diabetic ocular complications. Corneal sensitivity and the structure of corneal nerves were investigated in galactosemic rats and in aged-matched control animals (24 months old), and compared to corneal function in normal eight month-old control animals. Corneal sensitivity was measured by means of a Cochet-Bonnet aesthesiometer, and the blinthead reflex in an objective parameter. Whole-mount flat corneas, stained by the Karnovsky method for acetylcholinesterase activity were used for light microscopy observations and computerized morphometric analysis of neural density.

Corneal sensitivity declined significantly with age and further deterioration was seen in the galactosemic rats. Age-related morphological changes were found in the corneal nerve structure of the 24 months old rats, expressed mostly as a dense network of fine regenerative fibers originating from the subepithelial plexus. This regenerative process was not seen in the galactosemic corneas, where the density of the nerves was markedly reduced. In addition, most galactosemic corneas exhibited a unique pattern of irregular blister-like axonal swellings, suggested to be an expression of frustrated regeneration. A close relationship was found between the corneal nerve density and the degree of sensitivity. It is concluded that the abnormal corneal nerve changes and loss of corneal epithelial nerve endings might be the basis for the clinical abnormalities, reported in the diabetic cornea.

Keywords: Corneal innervation, Diabetes, Acetylcholinesterase (AChE)

In V1 duplex cells, the form of responses to gratings depends on temporal frequency

Kaufman L., Gur M.1,2 and Snodderly DM.1,2

1Dept. of Biomedical Engineering, Technion, Haifa, Israel; 2Schepps Eye Research Institute; and Dept. of Ophthalmology and Program in Neuroscience, Harvard Medical School, Boston, MA

Our earlier studies have shown that responses to gratings of “duplex” cells, the dominant type in V1 of alert monkeys, are diverse and can not be predicted from receptive fields’ spatial maps. These cells have overlapping increment and decrement activating regions (ARs), but many have a significant fundamental (F1) harmonic in responses to drifting sinusoidal luminance gratings. Conversely, transient stimuli, such as flashing bars and counterphase gratings, evoke mostly on-off, or frequency doubled (second harmonic, F2) responses. This mixture of “linear” and “nonlinear” properties suggests that the temporal dynamics of interactions between increment and decrement ARs and the suppressive surround play an important role in shaping duplex cells responses. Therefore, in this study we used gratings of varying temporal frequency to study the responses of duplex cells in paralvofix V1 of a monkey performing a fixation task. We have found that many cells responded with a significant linear (F1) modulation to high temporal frequency gratings, but show frequency doubled (F2) responses at low temporal frequencies. This temporal frequency-dependent F2 modulation differs from low spatial frequency doubling that we observed in a large portion of duplex cells. These results reveal an elaborate spatiotemporal structure of duplex receptive fields.

Keywords: Primary visual cortex, Gratings, Spatial frequency, Temporal frequency

Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition

Kalichkin C. and Burstein-Cohen T.

Dept. of Anatomy and Cell Biology, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120

Delamination of premigratory neural crest cells from the dorsal neural tube depends upon a gradient of BMP4 activity along the neuraxis which is generated by changing levels of noggin. The latter are in turn modulated by an inhibitory activity from the dorso-medial somite which coordinates the timing of cell emigration with the elaboration of a migratory mesodermal substrate. Cell-intrinsic mechanisms also regulate delamination. Here we show that neural crest cells synchronously emigrate from the neural tube in the S-phase of the cell cycle. Specific inhibition of the transition from G1 to S both in vivo and in vitro blocks delamination, whereas inhibition at S or G2 phases has no immediate effect. Thus, the transition between G1 to S is necessary for the epithelial-to-mesenchymal conversion of crest precursors and may be required for the cells to respond to environmental signals that trigger delamination.

Keywords: Neural crest, Control of proliferation, Migration, Morphogenesis.
Micromolar concentrations of hydrogen peroxide modulated neuronal plasticity in CA1 region of rat hippocampus in a bi-modal manner

Kamal S. and Segal M.
Dept. of Neurobiology, Weizmann Institute of Science, Rehovot

Hydrogen Peroxide (H₂O₂) is produced in cells as a byproduct of oxygen metabolism. Excess amounts of H₂O₂ are toxic and may underlie neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We have examined the effect of H₂O₂ on neuronal transmission and synaptic plasticity in CA1 region of rat hippocampus slices. We found a bi-modal, concentration dependent effect of H₂O₂ on synaptic physiology. High concentration of H₂O₂ (5mM) drastically reduces all neuronal activity as is indicated by a marked suppression of excitatory post synaptic potentials (EPSP's). Lower concentration of H₂O₂ (20 μM) did not affect basic properties of EPSP's but prevented Long Term Potentiation (LTP) of reactivity to afferent stimulation following a tetanic train of stimuli. This concentration also inhibited the phosphorylation of extracellular regulated kinase (ERK) which is required for LTP induction. Conversely, applying a similar protocol of stimulation under even lower concentration of H₂O₂ (1 μM) resulted in LTP that was increased two-fold compared to control. This potentiation could be achieved in control slices by multiple trains of stimulation. We are currently investigating the molecular mechanisms underlying this dual action of H₂O₂. Our data suggest a role for H₂O₂ as a second messenger in signal transduction cascades that control neuronal excitability.

Keywords: Hydrogen peroxide, Synaptic plasticity, Hippocampus

Induction of experimental antiphospholipid syndrome with CNS involvement in 5 different mouse strains

Methods: Weanlings (both male and female) from five mouse strains were immunized once with 132-GPI in complete Freund's adjuvant (CFA) or with CFA alone (controls). Neurological assessment in a staircase test was performed before and after the immunization. Results: Immunization with 132-GPI resulted in elevated levels of antibodies against negatively charged phospholipids and β2-glycoprotein I (β2-GPI). We have recently reported the induction of APS associated with behavioral and cognitive deficits in Balb/C female mice that developed 4-5 months following immunization with β2-GPI. In the present study, we examined the influence of genetic factors on the ability to induce experimental APS with CNS involvement by testing several mouse strains immunized with β2-GPI. Differences in the ability of mice to develop APS were found to be associated with the αI chain of β2-GPI in control Freund’s adjuvant (CFA) or with CFA alone (controls). Neurological assessment in a staircase test and in a T-maze alteration test was performed 4-5 months following the immunization. Results: Immunization with β2-GPI resulted in elevated levels of antibodies against negatively charged phospholipids and β2-GPI in all five mouse strains. Autoantibody levels were significantly higher in Balb/C, ICR, and C3H/eb mouse strains. Anxiety reflected by more frequent rears, was seen in the Balb/C, AKR, and C3H/eb mouse strains. Cognitive decline in the T-maze alteration test was seen in the Balb/C, AKR, and C3H/eb mouse strains. Cognitive decline in the T-maze alteration test was seen in the Balb/C, AKR, and C3H/eb mouse strains. Confidence decline in the T-maze alteration test was seen in the Balb/C, AKR, and C3H/eb mouse strains. Confidence decline in the T-maze alteration test was seen in the Balb/C, AKR, and C3H/eb mouse strains. Confidence decline in the T-maze alteration test was seen in the Balb/C, AKR, and C3H/eb mouse strains. Confidence decline in the T-maze alteration test was seen in the Balb/C, AKR, and C3H/eb mouse strains.

Keywords: Antiphospholipid syndrome, CNS, Experimental APS, Mouse strains

Learning and memory affecting aplysia feeding: nitric oxide and protein synthesis

Katzoff A., Shoachat M. and Susswein A.J.
Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900

We have examined the roles of Nitric Oxide (NO), and protein synthesis, in learning and memory affecting Aplysia feeding. Aplysia were trained with an inedible food. Aplysia orient to the food, bite and attempt to swallow it, before rejecting it, and then stopping to respond. Memory is shown by a reduced response to the food. Training with NO scavenger PTIO. Protein synthesis was blocked with anisomycin. Treatment with L-NNAME or PTIO before training with inedible food did not affect orientation and feeding responses during training, and animals learned to stop responding to the food. However, short term (0.5 hr), intermediate-term (4 hr) and long-term (24 hr) memories were all blocked, indicating that NO is required for all forms of memory. Treatment with anisomycin before training with inedible food did not affect training. Short-term memory was also not significantly different from that in control animals. However, long-term memory was blocked.

We also examined the effects of blocking NO transmission or protein synthesis following training. Injecting L-NNAME immediately after training had no effect on either short- or long-term memory. By contrast, injecting anisomycin immediately following training blocked long-term, but not short-term memory. Thus, NO transmission and protein synthesis have different roles in memory formation. NO is needed for all forms of memory, but only during training, whereas protein synthesis is needed only for long-term memory, during the consolidation period.

Keywords: Nitric Oxide, Protein synthesis, Learning and memory

Peptides of affiliation: oxytocin advances weaning in the rat, vasopressin does not.

Kavushansky A. and Leshem M.
Dept. of Psychology, Haifa University, Haifa

Weaning enables the infant to separate from its mother, consolidate other social interactions, and forage and explore. We believe this "behavioral metamorphosis" is mediated by changes in the neurochemical substrates of attachment and affiliation, such as the oxytocin and vasopressin systems examined here. Eighteen-day-old rat pups (‘sucklings’) and thirty-five-day-old ‘weanlings’ were given intracerebroventricular injections of oxytocin, its antagonist (VPA) (both 0.5µg/µl), vasopressin (1ng), its antagonist (VPA) (0.5µg), or vehicle. Pups were tested in a behavioral maze monitoring exploration, and responses to their anesthetized dam or awake sibling. The only age-dependent effects were that oxytocin completely abolished nipple attachment in sucklings, and in weanlings, OTA increased time spent near the dam. We conclude that the vasopressin system does not influence weaning as tested in our maze (although other effects on affiliation were observed). Oxytocin contributes to weaning by inhibiting nipple attachment at the initiation of weaning, and, in weanlings, reducing the need for proximity to the dam. In psychological parlance this could be interpreted as respectively satisfying the infant’s need for ‘contact comfort’ and a ‘secure base’, thereby promoting separation from the dam.

Keywords: Affiliative behavior, Oxytocin, Vasopressin, Weaning, Rat

Presenilin 1 independently regulates β-catenin stability and transcriptional activity

Kilkic R., Pollard C.E.1, Assin A.J.1, Mudher A.K.1, Richardson J.C.3, Rupniak H.T.R.4, Lovestone S.3 and Anderton B.H.1
1Dept. of Neuroscience, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 2GlaxoSmithKline Research and Development Ltd, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom, 3Dept. of Neuroscience, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 4GlaxoSmithKline Research and Development Ltd, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom

Presenilin 1 (PS1) regulates β-catenin stability, however, published reports regarding the direction of its effect are contradictory. We have examined the effects of wild-type and mutant forms of PS1 on the membrane, cytoplasmic, nuclear and signaling pools of endogenous and exogenous β-catenin by immunofluorescence microscopy, subcellular fractionation and in β-catenin/Tcf dependent transection assay. We found that PS1 destabilizes the cytoplasmic and nuclear pools of β-catenin when they are stabilised by Wnt or Dvl but not when stabilization occurs at lower levels of the Wnt pathway (FRAT1 overexpression and Li inhibition of GSK-3β). The PS1 mutants we examined were all less able to inhibit the stability of β-catenin. PS1 also inhibited the transcriptional activity of endogenous β-catenin and the PS1 mutants were again less inhibitory at the level of Dvl but showed a different pattern of inhibition towards transcription below Dvl. The transcriptional activity of exogenously expressed wild-type β-catenin and a truncated form, ΔN98β-catenin which lacks the
These findings compelled us to modify our understanding of this apparent conflicting effect of these physiological response to central nervous system (CNS) insult. We conclude that PS negatively regulates the autoreactive T cells are essential for endogenous neuroprotection, and mutant PSI. We hypothesize that the ability to produce clusters, which depends on the frontal lobe increases with development.

Keywords: Alzheimer’s, Wnt, β-catenin.

Protective and destructive autoimmunity in CNS degenerative disorders common players and different regulation

Kipnis J., Yoles E., Shaked I., and Schwartz M.
Dept. of Neurobiology, Weizmann Institute of Science, Rehovot 76800

Experimentally induced neuroprotection mediated by endogenous autoreactive T cells was recently shown in our laboratory to be a physiological response to central nervous system (CNS) insult. This finding revealed an apparent conflicting effect of these eucheptial T cells, causing autoimmune diseases on one hand and protecting neurons from post-traumatic degeneration on the other. In this study we show that myelin-associated autoreactive T cells are essential for endogenous neuroprotection, but are effective only in combination with regulatory T cells, which on their own, however, are insufficient for neuroprotection. When this multicellular mechanism is missing or malfunctioning, as in the case of individuals or strains with a genetic propensity to develop autoimmune disease, the insult-evoked response mediated by myelinated T cells may lead to autoimmune damage rather than neuroprotection. Our findings imply that beneficial autoimmunity and the resistance to autoimmune diseases are regulated by a common mechanism. Future animal studies of nerve regeneration and neurotumors should take into account the genetically determined ability of particular strains to exhibit endogenous neuroprotection (Kipnis, J., et al. 2001. J Neurosci. 21:4564-4571; Schwartz, M., and J. Kipnis. 2001. Trends Neurosci. 24:7:252-258). These findings compel us to modify our understanding of autoimmunity and autoimmune diseases, as well as the role of autoimmunity in non-autoimmune CNS disorders.

Keywords: Neuroprotection; CNS; EAE; Beneficial autoimmunity

Salt preference in patients with CAH-21-OH deficiency (congenital adrenal hyperplasia)

Kochli A., Rakover Y., and Leshem M.
Dept. of Psychology, Haifa University; Pediatric Endocrine Unit, Habek Medical Center, Afula

It is commonly believed that increased salt intake in humans is due to availability and dietary habits established in infancy. However, studies have failed to confirm this belief. In contrast, research in animals has shown that salt intake is determined by physiological and genetic factors. In humans, the only reports of physiologically-related salt appetite have been sporadic and anecdotal, in cases of Addison’s disease. Here we report on a systematic study of salt appetite in CAH patients with various mutations of the CAH-21-OH gene. We compared their salt appetite to that of their relatives, both carriers and non-carriers. Preliminary results of our study suggest that salt preference may be increased in some cases.

Keywords: Congenital adrenal hyperplasia, Genetic, Salt, Salt intake

Developmental aspects of clustering in verbal fluency in Hebrew

Koren B., Kofman O., and Berger A.
Dept. of Behavioral Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva

Verbal fluency is an executive function (EF) task that requires the timed production of words according to specific criteria. Phonological fluency involves naming words beginning with a certain letter and semantic fluency involves naming words belonging to a particular semantic category. The fluency task requires that the participant select words from the appropriate sub-category, produce the words, and switch to another sub-category. Healthy participants spontaneously cluster words according to phonological cues (first sound, rhyme, etc.) or semantic categories. Clustering has been used as a measure of EF in brain-damaged adults such as Parkinson’s disease and Alzheimer’s disease patients (Troyer et al. JNNS 4:137-143 (1998)). Developmental aspects of fluency were tested in children in grades 3 and 5 using the sounds /t, s, p, sh, d/ for the phonological fluency and the categories animals, food, clothing, things that are seen on the street for semantic fluency. The number of clusters, cluster size, repetition errors and rule break errors were analyzed for differences between grade and gender. It was hypothesized that there would be greater fluency, more frequent and longer clusters and fewer errors in the fifth grade pupils. Verbal fluency was higher in fifth grade pupils, as was the number of clusters in the semantic, but not phonological fluency task. The findings confirm the hypothesis that clusters, which depends on the frontal lobe increases with development.

Keywords: Phonological fluency, Semantic fluency, Executive functions, Development

Blood-Brain Barrier Disruption In Humans Is Associated With Abnormal Cortical Rhythm Generation and Neurological Sign and Symptoms

Kom A., Golan H., and Friedman A.
Dept. of Photography and Neurosurgery, Ben Gurion University and Soroka Medical Center, Zlotowski Center of Neuroscience, Beer Sheva, 84105, Israel. Nuclear Medicine Dept., Rabin Medical Center, Golda-Hasharon Campus, Petach-Tikva, Israel.

Numerous pathological diseases of the human central nervous system have been reported to involve perturbation of blood-brain-barrier (BBB) integrity. Both the mechanisms underlying BBB disruption and the physiological and functional consequences of such pathology are poorly understood. We report a series of 13 patients, aged 15-54, who were found to have a focal BBB disruption in single photon emission computerized-tomography (SPECT) following injection of 99mTc-Di-ethylhlytetraiminespentaetaic Acid (Tc-DTPA). Of these patients, 5 were 6-12 months post-surgery for removal of a benign meningioma, 5 were post-mild head injury, 2 suffered from idiopathic seizures and one was 36 months post-radiotherapy for an arterio-venous malformation. All patients displayed symptoms that were consistent with partial or complex seizures and none were symptomatic during the examination. Except for BBB disruption, no other gross anatomical lesions were found in brain CT or magnetic resonance imaging (MRI). To explore the effects of BBB disruption on cortical activity, high-density 128 channel electroencephalography was collected. Spectral analysis revealed abnormally high-powered slow wave (3-6Hz) activity in all patients. In 9 patients, low-resolution-electroencephalography (LORETA) localized the slow activity to originate in the same region as the BBB lesion. Regions of abnormal activity were significantly larger in patients displaying prolonged clinical history, despite similar size of their BBB lesions. Our data suggest that focal BBB lesions, as the solely detected anatomical brain pathology, may adversely affect cortical activity. Future studies are needed to clarify which clinical disorders may be associated with pathologies of brain microvasculature, and what is their natural history.

Keywords: Blood Brain Barrier, SPECT, Spectral analysis, LORETA

Molecular basis of cerebellar granule cell development

Krizhanovsky V. and Ben-Arie N.
Dept. of Cell and Animal Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

The cerebellum is essential for coordination of movement and posture, and its dysfunction disrupts balance and impairs control of speech, limb and eye movements. Hence, normal development, survival and well being of the cerebellar neurons are essential for maintaining proper cerebellar function. One of the key genes for cerebellar development is Math1 which encodes a basic helix-loop-helix transcription factor. Math1 is expressed in cerebellar granule cell precursors and their deviates, and is essential for their proliferation, as well as for the survival of cerebellar granule cells. To characterize molecular mechanisms controlling the generation and survival of cerebellar granule cells we aimed at identifying Math1 target genes. We utilized DNA arrays to compare multiple gene expression knockouts in embryonic mice. From 1200 genes tested, 28 were differentially expressed. A confirmatory semi-quantitative RT-PCR was performed on 17 of them, of which 14 displayed different expression between Math1 null and wild type cerebella. The decreased expressed genes participate in proliferation, apoptosis and patterning, while others are transcription factors and neuronal specific genes. To identify possible Math1 direct targets we performed a database search for putative Math1 binding sites in genomic sequences flanking their transcriptional activity.
human orthologs. In four of the identified genes, a sequence very similar to Math1 autoregulatory binding site was found. Hence, these genes may be putative direct Math1 targets. This is the first identification of Math1 direct targets, thus our results shed light on cerebellar granule neuron development at the molecular level.

Keywords: Math1, Cerebellar granule cells, Transcription factor, Target genes.

Modulation of neuronal plasticity relevant genes, CAM-L1 and laminin, by antidepressants and stress.

Laienfeld D., Karry R., Grauer E., Klein E., Ben-Shachar D.

1Laboratory of Psychobiology and Dept. of Psychiatry, Rambam Medical Center and B. Rappaport Faculty of Medicine, Technion; 2Dept. of Pharmacology, Israel institute of biological research, Ness Ziona.

Stressful life events have been implicated as a predisposing factor in depression, and altered noradrenergic transmission has been observed in both stress and depression. Recent research focusing on an involvement of long term intracellular processes in stress as well as in response to antidepressant treatment led us to study long term noradrenergic effects on neuronal plasticity and relevant gene expression. We previously reported a differentiating role for NE on the SH-SY5Y noradrenergic cell-line, including an ability to promote neurite outgrowth in these cells, accompanied by a NE-induced increase in the expression of the cell adhesion molecule CAM-L1 and of laminin, interacting proteins that play a role in neuronal differentiation and neurite outgrowth. Presently, we studied alterations in the expression levels of CAM-L1 and laminin in healthy rats treated with either the noradrenergic antidepressant desipramine or the SSRI fluoxetine. We found consistent alterations in the expression levels of CAM-L1 and laminin, which differed according to brain region (hippocampus, frontal cortex, striatum). Moreover, we found that rats exposed for 6 weeks to variable unpredictable stress, previously suggested as an animal model for post-traumatic stress-disorder (PTSD), also exhibited altered expression of both CAM-L1 and laminin, in a brain region specific manner and in a pattern different from that observed consequent to antidepressant treatment. Given the ability of NE to regulate the above-mentioned genes, we suggest a possible mechanism whereby noradrenergic regulation of genes involved in synaptic connectivity may be associated with the pathophysiology and the treatment of depression.

Keywords: Depression, Stress, Noradrenergic, Neural cell adhesion L1, Laminin.

Mechanisms of cholinergic sensitivity to neurotoxic stimuli

Landman N., Greenberger V., Groner Y. and Segal M.

Dept. of Neurobiology and Molecular Genetics, Weizmann institute of Science, Rehovot 76100.

The cholinergic system of the basal forebrain has been shown to play an intricate role in normal learning and memory function. Its significance is exemplified by the fact that selective neurodegeneration of cholinergic neurons in Alzheimer’s disease (AD) strongly correlates with the degree of cognitive impairment. However, most of the AD research thus far failed to determine the underlying mechanisms of selective cholinergic cell death. We hypothesized that oxidative stress is a potential underlying mechanism of cholinergic degeneration. Immunohistochemical examination of the basal forebrain cholinergic system in brain sections of Tg-SOD1 mice, a model of oxidative stress, showed a 30-40% lower number of ChAT-positive neurons in Tg-SOD1 mice as compared to age-matched controls. We then used prenatal (D19) cultures from normal rat basal forebrains to assess the sensitivity of basal forebrain cholinergic neurons (BFCN) to neurotoxic stimuli. At 10 or 14 days post-natal or cultures exposed to various concentrations of H2O2 or NMDA (10-100 μM). Low doses of H2O2 (10-30 μM) or NMDA (50-100 μM), which did not induce a cell death in normal cholinergic neurons, resulted in degeneration of 50% of ChAT-positive neurons. These results suggest that BFCN are hypersensitive to neurotoxic stimuli. Various neurotoxic stimuli have been shown to exert their effect through changes in calcium homeostasis. To examine the potential role of calcium-related mechanisms in BFCN degeneration, basal forebrain cultures were exposed to the calcium ionophore A23187. The treatment resulted in decreased survival of cholinergic vs. non-cholinergic neurons, suggesting that there is a difference between the two cell populations in the ability to handle sustained calcium load. This possibility is currently under investigation.

Keywords: Alzheimer’s disease, Cholinergic degeneration, Neurotoxicity.

Processing of Frequent and Deviant Speech Stimuli as Revealed by LORETA

Lauper J. and Pratt H.

Evoked Potentials Laboratory, Technion- Israel Institute of Technology, Haifa, Israel.

The mismatch negativity (MMN), which is elicited by deviance, was evoked in ten normal hearing, right-handed native Hebrew speakers, whose age ranged between 19-30 years. Subjects had to discriminate between two V-C-V sequences (/aga/ and /ada/), which were auditory objects formed by fusion of speech elements, which differed in occurrence (standard and deviant). Former research using either tones or complex sounds found that the sources of the mismatch magnetic field (MMF) are located bilaterally in the supratemporal planes, as well as in the right inferior parietal cortex. The purpose of this study was to localize the MMN generators in the context of speech, using brain functional imaging (LORETA-low resolution functional tomography), which directly estimates the current density throughout the brain’s activated areas using AEPs as input.

In agreement with former findings, results show that the MMN involves the activation of bilateral supratemporal planes, which tended to be more extensive in the right hemisphere. However, in the present study additional hemispheric differences in processing were found: activity in response to the frequent stimulus was more enhanced in the left supratemporal plane, whereas activity in response to the rare stimulus tended to be more enhanced in the right supratemporal plane. These results corroborate other findings which suggest differential hemispheric processing of change detection, and a more prominent role of the right hemisphere in this process.

Keywords: Evoked potentials, Auditory object, Auditory cortex.
obtained from 11 subjects demonstrated higher activity in the LOC for the “whole” and “grid” conditions compared to the “scrambled” images (% signal change: “whole” -1.3 ± 0.17, “grid” -1.0 ± 0.14, “scrambled” -0.6 ± 0.08). Since the local features in both these conditions were identical the enhanced response obtained in LOC indicates the presence of non-local completion effects in this area. Furthermore, this pattern of activity was comparable to subjects’ recognition performance. In contrast, early retinotopic areas responded similarly in both the “grid” and the “scrambled” conditions. Overall, these results point to the LOC as a central cortical area in which object completion effects are manifested.

Supported by Israel Academy 80099/00-1 and MP 6971 grants.

Keywords: Functional MRI, Object recognition, Visual areas, Occlusion.

Correlation between blood-free testosterone concentration and sleep duration in healthy young men

Lev-ites Y., Mandel S.1, Maor G.1 and Youdim M.B.H.1

Dept. of Internal Medicine B, 1Gynecology and 1Radiology, Rabin Medical Center, Petach-Tikva, and Sackler School of Medicine, Tel Aviv University, Tel-Aviv

A growing body of evidence suggests that the pathological effects of the allele E4 of apolipoprotein E (apoE), a key risk factor for Alzheimer’s disease, are related to impairments in neuronal maintenance and repair. Recent studies indicate that apoE plays a critical role in brain development. The extent to which the roles of apoE in neurodegeneration and development are related and share common mechanisms is an enigma. In the present study we addressed these issues and examined whether cognitive development can be affected differentially by the different apoE genotypes. This was performed by subjecting 3 weeks’ old mice transgenic for the human apoE isoforms apoE3 or apoE4 on a mouse null apoE background and control mice to an enriched environment for 10 weeks, and comparing, by means of T-tests, the extent to which this affected their learning and memory capabilities. This revealed that the learning ability of the controls and apoE3 transgenic mice increased markedly following exposure to the enriched environment, whereas that of the apoE4 was unaltered. Furthermore, the working memory (delayed match to sample on the T-maze) of the control and apoE3 transgenic mice also improved by experiencing the enriched environment, whereas that of the apoE4 transgenic mice was unaltered and similar to that of the non-treated apoE3 and control mice. The finding that cognitive development is affected by the apoE genotype provides a novel link between the developmental and neurodegenerative functions of apoE and suggests that the latter may be mediated by impairments in remodeling reconstructive processes.

Keywords: Alzheimer’s disease, Apolipoprotein E, Learning and memory development

Conclusions: An increase in free serum testosterone concentration, following varicocoele chemical embolisation, was associated with a decreased need for short sleep duration.

Keywords: Testosterone, Sleep, Varicocoele.

Gene profile and signal transduction events for neuroprotective and proapoptotic actions of 3,3'-epigallocatechin-3-gallate

Lev-ites Y., Mandel S.1, and Youdim M.B.H.1

Eve Topf and US National Parkinson’s Foundation Centers for Excellence for Neurodegenerative diseases, Bruce Rappaport Family Research Institute and Depts. of Pharmacology, Faculty of Medicine, Technion, Haifa.

Tea extracts have been previously reported to possess radical scavenger, iron chelating and anti-inflammatory properties in a variety of tissues. Recently we have shown that green tea extract and major green tea polyphenol, EGCG prevented MPTP-induced dopaminergic neuronal loss in mice. In the present work we extended this in vivo study to neuronal culture where two parkinsonism-inducing neurotoxins, 6-OHDA and MPP were employed. Pretreatment for 15 min with EGCG (0.1-5uM) prevented 6-OHDA (20uM, from 40 to 70% cell survival) and MPP (400uM, from 60 to 80% cell survival) induced neuroblastoma (NB) SH-SYSY cells death, whereas higher concentrations (10-50uM) lead to cell death. In order to elucidate specific events in neuroprotection and neurodegeneration induced by EGCG, RNA from NB cells treated with EGCG (1 and 50 uM) was extracted, cDNA probes were synthesized and hybridized to a cDNA array consisting of 36,000 genes related to apoptosis and cell survival. EGCG (1uM) reduced the expression of Bax, mdm2, TRAIL, and p21Waf1 mRNAs. However, a high, toxic concentration of EGCG (50uM) elevated the expression of Bax, Caspase 4, GADD 45, mdm2 and TRAIL mRNAs whereas Bcl-2 was down-regulated. We further examined signal transduction events as possible mechanistic action of EGCG. The low, 1 uM EGCG concentration did not affect the levels of phosphorylated ERK2 by itself, but prevented their decrease induced by 6-OHDA. Similarly, this concentration did not change phosphorylated SAPK/J-NK levels related to control, but did not manage to prevent the induction caused by 6-OHDA. However, a high EGCG concentration (50 uM) exacerbated the effect of 6-OHDA on both MAPKS. This concentration range may reflect its respective therapeutic window in vivo. This study demonstrates that EGCG has concentration dependant neuroprotective and proapoptotic activity and these have been confirmed by gene expression analysis.

Keywords: EGCG, Neuroprotection, Apoptosis, Signal transduction, 3,3'-epigallocatechin-3-gallate attenuates neuronal cell death in 6-OHDA and MPTP models of Parkinson’s disease: possible gene targets

Lev-ites Y., Mandel S.1, Maor G.1 and Youdim M.B.H.1

Eve Topf and US National Parkinson’s Foundation Centers for Excellence for Neurodegenerative diseases, Bruce Rappaport Family Research Institute and Depts. of Pharmacology and Cell Biology, Faculty of Medicine, Technion, Haifa.

Oxidative stress is a contributing factor to the pathogenesis of neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. Recently we have shown that tea extracts inhibit iron-induced lipid peroxidation of brain mitochondrial fraction as well as 6-hydroxydopamine-induced cell damage in neuronal cell lines and MPTP-induced dopaminergic neurons loss in vivo. In an attempt to elucidate the neuroprotective skills of major tea polyphenol, 3,3'-epigallocatechin-3-gallate (EGCG) and possible gene targets for its action, the MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson’s disease was employed. C57-BL mice were treated with EGCG (4-20μmol/kg/day/14 days, orally). MPTP (24 mg/kg/day, i.p.) was given for the last 5 days. 3 days after last injection, the mice were decapitated and brains were used for further investigations. Striatal Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) content were determined by HPLC. MPTP caused a marked reduction in DA levels (40% of control). However, EGCG (4μmol/kg/day/14 days) conferred a significant neuroprotection against MPTP-induced DA loss, as indicated by striatal dopamine and its metabolites content (80% of control) as well as by Tyrosine hydroxilase (TH) content and activity and Superoxide dismutase (SOD) and Catalase activity. Gene expression profile induced by EGCG was analyzed using Atlas mouse cDNA custom_array consistig of 25 genes related to apoptosis and cell death.

Keywords: 3,3'-epigallocatechin-3-gallate, Oxidative stress, MPTP, Neuroprotection, Parkinson’s disease, Apoptosis.
expression array. The expression of different genes involved in signal transduction pathways leading to neuronal survival, such as c-jun, CREP1, MAP3K, MEK1/2, STAT1, IGF1R, was up-regulated. This study is the first to demonstrate the neuroprotective activities of EGCG as well as a detailed profile of simultaneous gene changes in brain as a result of EGCG consumption.

Keywords: EGCG, Neuroprotection, Parkinson’s disease

Conformational polymorphism of wild-type and mutant prion proteins: A molecular dynamic study
Levy Y. and Becker O.
Dept. of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv 69978

Conformational transitions are thought to be the prime mechanism of prion diseases. In this study the dynamics of a wild-type prion protein (PrP), as well as the D178N and E200K mutant proteins, were explored, enabling the characterization of the normal isoforms (PrP\textsuperscript{\textnormal{WT}}) and partially unfolded isoforms (PrP\textsuperscript{\textnormal{TM}}) of the three prion protein analogs. It was found that the three PrP analogs differ in three respects: (1) The relative stability of the PrP\textsuperscript{\textnormal{WT}}, and the PrP\textsuperscript{\textnormal{TM}} states, (2) the transition pathways from PrP\textsuperscript{\textnormal{WT}} to PrP\textsuperscript{\textnormal{TM}}, and (3) the relative stability of the three helices in the PrP\textsuperscript{\textnormal{WT}} state. In particular it was found that while helix 1 (residues 144-156) is the most stable helix in wild-type PrP, its stability is dramatically reduced by both mutations. This destabilization is due to changes in the charge distribution that affects the internal salt-bridges responsible for the greater stability of this helix in wild-type PrP. Though both mutations result in similar destabilization of helix 1, they have different effects on the overall stability of PrP\textsuperscript{\textnormal{WT}} and of PrP\textsuperscript{\textnormal{TM}} isoforms and on structural properties. The destabilization of helix 1 by mutations provides additional evidences to the role of this helix in the pathogenic transition from the (PrP\textsuperscript{\textnormal{WT}}) to the pathogenic isoform (PrP\textsuperscript{\textnormal{TM}}).

Keywords: Prion proteins, Conformational transition, D178N and E200K

Identification of determinants in a cytosolic domain of L-type Ca2+ channel responsible for channel kinetics
Livneh A. and Atlas D.
Dept. of Biological Chemistry, Hebrew University of Jerusalem, Jerusalem 91904

Influx of Ca2+ through voltage gated calcium channels is necessary for release of neurotransmitter from nerve endings. The kinetic properties of these channels determine the amount of Ca2+ ions entering the cell, and thus determine the amount of transmitter released. We used Xenopus laevis oocytes as a heterologous expression system for mRNAs of mutated calcium channel \(\alpha\) subunit, and measured the kinetic properties of inward currents. We show that replacing negatively charged motif in a cytosolic domain of the Ca2+ channel α1 subunit changes the kinetic properties of the cardiac L-type channel. The mutated channel displays kinetic properties similar to neuronal channels. We discuss the possible role of this motif in channel kinetics, and its physiological and structural implications.

Keywords: Calcium channel, Xenopus oocytes, Activation rate, Inactivation rate

Synaptic information efficacy: bridging the gap between biophysics and function
London M., Shraiman A.2 and Segen L.1
Dept. of Neurobiology and Center for neural computation, Dept. of Computer Science, Hebrew University, Jerusalem

We provide a new functional measure, termed the “synaptic information efficacy” SIE, to assess the impact of synaptic input on spike output. The SIE is the mutual information (in bits/s) shared by the pre-synaptic input and post-synaptic output spike trains. To estimate SIE we use a novel method based on a modern compression algorithm. This method detects the effect of a single synaptic input on the post-synaptic spike output, in the presence of massive background synaptic activity in neuron models of progressively increased realism. SIE increases both with the increase in time-locking between the input synapse activity and the output spike, as well as with increase in the average number of output spikes initiated by the synapse, and it is critically dependent on the “context” within which the synapse operates. Systematic exploration of the effect of the synaptic and dendritic parameters, and the statistics of the background input on the SIE, provides a fresh look at the synapse as a communication device and furnishes a novel quantitative measure concerning “how much the dendritic synapse informs the axon”.

Supported by the BSF and the Israel Science Foundation.

Keywords: Synaptic efficacy, Dendritic processing, Information Theory

Modulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis
Makranz C., Slébodová L., Reisert F. and Rotschesker S.
Dept. of Anatomy & Cell Biology, Hebrew University Faculty of Medicine, Jerusalem

The removal of damaged myelin is central to repair after injury to axons and in autoimmune demyelinating diseases. Myelin contains molecules that inhibit the growth of adult axons. The removal of injury-produced degenerating myelin eliminates myelin-related inhibition of regeneration. In autoimmune demyelinating diseases, myelin that was first damaged by autoimmune mechanisms can activate the complement system, which leads to the formation of membrane attack complexes that further disrupt myelin. The removal of autoimmune-damaged myelin may slow down a vicious circle where already damaged myelin leads to the further disruption of intact myelin. Macrophages and microglia remove myelin by phagocytosis. We have previously suggested that macrophages and microglia may be present at different functional/activation states that determine the efficiency by which they phagocytose myelin, and further documented that macrophages that were exposed to different inflammatory environmental conditions differed in their capacity to phagocytose and degrade myelin. We have previously suggested that the modulation of myelin phagocytosis may be carried out through CR3/MAC-1, which mediates and dominates receptor-mediated myelin phagocytosis. We presently document that CR3/MAC-1-mediated myelin phagocytosis is subject to modulation by a variety of mechanisms. First, by cytokines GM-CSF and M-CSF, which upregulate cell surface expression of CR3/MAC-1. Second, by complement, which augments CR3/MAC-1-mediated myelin phagocytosis. Third, by extracellular ligands, which produce conformational changes in CR3/MAC-1, some inhibit and other augment CR3/MAC-1-mediated myelin phagocytosis. Fourth, by altering intracellular cAMP levels, which modulates CR3/MAC-1-mediated myelin phagocytosis.

Keywords: Wallerian-degeneration, Regeneration, Demyelination, Macrophage, Microglia

Mother-infant interaction in rats lacking the CCK\textsubscript{R} receptor
Malkesman O.1,2, Avnon Y.L.1, Hurwitz I.1 and Weller A.1,2
Dept. of Psychology and Interdisciplinary Program in the Brain Sciences, Bar Ilan University, Ramat-Gan, Israel.

Studies have shown that the peptide cholecystokinin (CCK) is involved in mother-infant interaction through the activation of CCK\textsubscript{R} receptors. The Otsuka Long Evans Tokushima Fatty (OLETF) rat lacks functional CCK\textsubscript{R} receptors because of a genetic abnormality. In this study we investigated whether this abnormality affects the infant’s and/or the mother’s behavioral characteristics during interaction. 10 OLET\textsubscript{F} dams and 10 control (Long Evans Tokushima LETO) dams were observed during a 10 min interaction. Each dam interacted separately with one OLET\textsubscript{F} and one LETO pup. Infant ultrasonic vocalizations (USV) and maternal behaviors were counted.

We found that OLET\textsubscript{F} pups emitted more ultrasonic vocalizations, received more body and anogenital licking, and were carried in mouth by the dam more than controls. In addition, OLET\textsubscript{F} dams carried pups less frequently and nursed the pups more than the control dams. In accordance with previous findings (Weller & Dubson, Pharmacol Biochem Behav 59: 843-851 [1998]), these results suggest that OLET\textsubscript{F} pups, like normal pups given a selective CCK\textsubscript{R}A antagonist, elicit and obtain more maternal care from the dam. Therefore, activation of CCK\textsubscript{R} receptor may reduce infant’s need for contact and interaction.

Supported by the Israel Science Foundation.

Keywords: Maternal behavior, Mother-infant interaction, USV, CCK, CCK\textsubscript{R} receptors
Early gene expression changes in MPTP model of Parkinson's disease

Mandel S.1, Maor G.1 and Youdim M.B.H.1

1Family Research Institute and Dept.s of Pharmacology and "Cell Biology, Faculty of Medicine, Technion, Haifa

MPTP-induced dopaminergic cell death in mice, human and non-human primates is considered a model most closely resembling idiopathic Parkinson's disease. Recently, we reported specific nigro-striatal gene profile changes in the chronic 5 days MPTP model, in the late stage of degeneration, employing cDNA expression array. As an attempt to elucidate the early (3-24 hr) cascade of events in MPTP-induced cell death, time dependent gene expression profile of acute MPTP treated mice was investigated by means of quantitative real-time RT-PCR and in situ hybridization. The expressions of cyclin B2, N-methyl-D-aspartate (NMDA2A), IL-1β, glutathione peroxidase, GDNF and glutathione reductase mRNAs, were maximally induced already three hours after exposure to MPTP and then they declined to control levels or even below it, except for glutathione peroxidase and GDNF, whose expressions remained high along a period of twenty-four hours and 5 days, respectively. An elevation in the expression of IL-10, IL-1 R type II, parkin and oxidative stress-induced protein, A170 mRNAs, begin to manifest six hours after MPTP exposure. Glutathione-S-transferase and NADPH cytochrome P450 mRNAs induction, became evident only twenty-four hours after MPTP injection. Tyrosine hydroxylase (TH) mRNA alterations strictly correlated with TH protein changes in the substantia nigra. Immunoreactivity of TH along the initial 24h MPTP treatment period, showed no dopaminergic cell loss in the SN. This finding strengthens the importance of investigating the initial gene expression changes induced by acute MPTP dosage, in contrast to the chronic treatment, where gene expression is examined only at the time most neurons have died.

Keywords: MPTP, Microarray, Neuroprotection, Parkinson's disease

Period doubling of calcium spike firing in a model of a Purkinje cell dendrite

Mandelblat Y., Etzion Y., Grossman Y. and Golomb D.

Zlotoswki Center for Neuroscience and Dept of Physiology, Ben-Gurion University, Beer-Sheva 84105.

Recordings from cerebellar Purkinje cell dendrites have revealed that in response to sustained current injection, the cell firing pattern can move from tonic firing of Ca2+ spikes to doublet firing and even to quadruplets or more complex firing. Blockade of Na+ currents doesn’t change these firing patterns substantially. We show that the experimental results can be viewed as a slow transition of the neuronal dynamics through a period-doubling (PD) bifurcation. We develop and study a simple, one-compartment model of Purkinje cell dendrite. The effects of parameters such as temperature, applied current and potassium reversal potential in the model resemble their effects in experimental calcium dynamics including three time scales. Ca2+ dependent K+ currents, with intermediate time scales, and a very slow hyperpolarizing current (ly). Fast-slow analysis of the neuronal dynamics, with the activation variable of ly considered as a parameter, reveals that the transitions occurs via a cascade of PD bifurcations of the fast-and-intermediate subsystem as this slow variable increases. We carry out another analysis, with the Ca2+ concentration considered as a parameter, to investigate the conditions for the generation of doublet firing in systems of this type. We find that PD in these systems can occur only if:

1. The time scale of the intermediate variable (here, the decay rate of the calcium concentration) is slow enough in comparison with the inter-spike interval of the tonic firing at the transition, but is not too slow;
2. There is a bistability of the fast subsystem of the spike generating variables.

Keywords: Purkinje cell, Dendrite, Doublet firing, Period doubling

Synaptic depression mediates bistability of neuronal networks.

Manor Y.1 and Nadim F.2

1Life Sciences Dept., Ben-Gurion University of the Negev, Beer Sheva; 2Biophysics Department, Rutgers University, Piscataway, New Jersey, USA

Synaptic depression is a common dynamical property observed in central synapses. We show that when synaptic depression is incorporated in reciprocally inhibitory loops, bistability in network function can emerge. Experiments were performed by coupling a biological pacemaker neuron to a model neuron using artificial inhibitory depressing synapses. This hybrid biological-model network exhibited two modes of oscillation, one where the oscillation frequency was determined solely by the intrinsic properties of the biological pacemaker and the other where the frequency was largely affected by the dynamics of the depressing synapses. These two modes of oscillation were often present in the same parameter range and could be induced bistability. The activity of the network could be switched from one mode to the other by engaging a regenerative process that increased, or decreased, the strength of both synapses. In the bistable regime, this process could be triggered, for example, by a brief current pulse injected in each cell. This mechanism suggests that, in rhythmically active systems, network reconfiguration can occur by allowing depressed synapses to recover from or decay to their depressed state.

Keywords: Synaptic depression, Bistability, Reciprocal inhibition, Dynamic clamp.

BDNF occludes tetanic stimulation induced-LTP in the rat dentate gyrus in vivo-electrophysiological and molecular characterization

Marcon M.1, Dumas S.2, Mallet J.3 and Larroche S.1

1Laboratoire de Neurobiologie de l'Apprentissage, de la memoire et de la Communication, CNRS UMR 8620, Universite Paris Sud; 2Laboratoire de Genetique Moleculaire de la Neurotransmission et des Processus Neurodegeneratifs, CNRS UMR C9923, Hopital de la Pitié Salpetrière, 75013 Paris, France; 3Preseant address: Dept. of Psychology, University of Haifa, Haifa 31905

Brain-derived neurotrophic factor (BDNF) has been reported to induce long-lasting potentiation of synaptic efficacy in dentate gyrus (DG) neurons of the rat hippocampus in vitro and in vivo. There is some evidence to suggest that the mechanisms underlying BDNF-induced potentiation share some similarities with those that underlie long-term potentiation (LTP). In LTP, one key mechanism is the activation of genes and de novo synthesis of proteins.

In the present study, we investigated whether BDNF-induced potentiation in the DG occludes LTP produced by tetanic stimulation and examined the molecular mechanisms underlying BDNF-induced potentiation.

The results show that intrahippocampal infusion of BDNF (2µM) induced a significant and long-lasting potentiation of the EPSP recorded in the DG in response to perforant path (PP) stimulation, compared to controls. Furthermore, prior infusion of BDNF occluded further potentiation in dentate granule cells produced by tetanic stimulation of the PP, suggesting that both processes share, at least in part, common underlying mechanisms. Using in situ hybridization, we are currently analyzing the molecular basis of BDNF-induced potentiation. We are investigating whether BDNF induces transcription of the immediate early genes (IEGs) Zif268 and Arc, and of the mRNA encoding CaMKII. These three genes have been shown to be differentially regulated in different regions of the hippocampus.

The results from this project will shed light on the molecular mechanisms mediating the late phases of BDNF-induced potentiation and of tetanic stimulation-induced LTP in the DG in vivo.

Keywords: BDNF, LTP, Plasticity, Genes

High B value Q-space analyzed diffusion: a new method of brain imaging following demyelination in Alzheimers and vascular dementia

1School of Chemistry, Tel-Aviv University, Tel-Aviv 69798, Israel; 2Wohl Institute for Advanced Imaging and Dept. of Neurology Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; 3Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69798

Diffusion imaging at high b values was shown to be highly sensitive to white matter (WM) pathology (Assaf et al, MRM 2001, accepted for publication). Diffusion images, when analyzed using the q-space approach, show areas of normal white matter in multiple sclerosis (MS) not detected by other MRI methods like T2-, T-weighted imaging, FLAIR, MTR and DTI.

High B value q-space analyzed diffusion MR images acquired on human subjects with vascular dementia (VaD) showed massive WM loss. These areas of WM tissue loss were not detected with
the other imaging methods. In areas of hyperintense signal in the FLAIR and T2-weighted images, there was a marked reduction in WM loss observed with q-space analysis was much less apparent using other imaging modalities.

To summarize, the high b value q-space diffusion MRI is highly sensitive to WM changes and may be useful in the estimation of tissue loss in VaD and AD. This method might contribute to the discrimination between different WM pathologies such as VaD and AD.

Keywords: Alzheimer’s Disease, Vascular dementia, q-Space, Diffusion MRI.

Dexanabinol is neuroprotective in the MPTP model of Parkinson’s disease

Melvin S., Bar-Joseph A., Lavie V., Grienstein Y. and Fink G.

Pharmos Ltd, Kiryat Weizmann, Rehovot 76326

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by reduction in striatal dopamine (DA) content caused by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and their projections to the striatum. In the present study we investigated whether Dexanabinol (dex), a non-psychoactive cannabinoid and non-competitive NMDA receptor antagonist, with anti-oxidant and anti-inflammatory activities, has a protective effect on central dopaminergic neurons from MPTP toxicity. Mice were treated with MPTP or saline IP. Mice were injected IP with either Dexanabinol (10, 20, 30mg/kg, or twice with 20mg/kg at 24 hours interval) or its vehicle (5ml/kg) prior to the first MPTP administration. The animals were followed for body weight seven days after which their brains were removed, cryosectioned (20µm) at the levels of the SN and the striatum and immunohistochemically labeled by rabbit anti mouse tyrosine hydroxylase (TH)(1:100 Calbiochem). The MPTP-treated (dex treated animals and non treated animals) animals lost about 10% of their body weight within the first 24h after administration. However the body weight of the non-treated animals remained low (p<0.05) whereas the dex treated group gain weight. TH labeling revealed a 60% decrease (p<0.05) in the number of TH immunoreactive neurons in the SNpc following MPTP administration. Dexanabinol 20mg/kg increased by 25-30% the number of TH positive cells compared to vehicle (p<0.05). These results suggest that Dexanabinol is neuroprotective in MPTP-induced PD model.

Keywords: Parkinson's Disease, MPTP, Dexanabinol

Dominant-negative synthesis suppression of CaV2.2 channels, induced by truncated constructs.

Meier A., Bertaso F., Raghib A., Davis A., Page K.M. and Dolphin A.C.

Dept. of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. 1 New address: Alomone labs P. O. Box 4287, Jerusalem 91042

Voltage-gated calcium (CaV) channels play a major role in the normal functioning and pathophysiology of neurons and other excitable cells. CaV channels consist of a four transmembrane domains (each composed of 6 α-helices) protein (α1) and auxiliary subunits. Alternative splicing and mutations of the α1 subunit often result in transcription and translation of partial channels. In purification studies of CaV2.1 and CaV2.2, a substantial protein band of about 95 kD was observed, which was identified as the first two domains of CaV2.1. In Episodic Ataxia 2 (EA2), truncation mutations occur after the end of Domainn, so that substantial portions of the CaV2.1 channel may be synthesized and inserted into the plasma membrane. In order to examine the effect of such proteins, we have constructed hemi-channel proteins (Domainα and Domainα of CaV2.2) and co-expressed them in COS-7 cells either alone or together with full-length CaV2.2 and auxiliary subunits (α2δ1 and β4). In addition to electrophysiological measurements (whole cell and cell attached), we used Green Fluorescent Protein (GFP) tagged channels to examine the level of expression. Co-expression of two of the complementary hemi-channels resulted in fully functional channels with low level of expression. Co-expression of Domainα with the full-length CaV2.2 resulted in large inhibition of the whole cell CaV2.2 current densities and of the level of detected GFP. However, the single channel properties of CaV2.2 under these conditions were unchanged. Together these results indicate that CaV2 related proteins inhibit the membrane insertion of the full-length channel but have no effect on the channel properties once expressed in the membrane. Further biochemical data indicate that synthesis of the full-length channel is suppressed by constructs containing Domainα.

Keywords: Calcium, Channel, CaV2, Truncation, Domain.

Molecular correlates of plasticity in a one-day-old chick as revealed by differential display.

Meiri N., Adelheit S., Radoul M.

Institute of Animal Science, Agriculture Research Organization, The Volcani Center, Bet Dagan 50250 Israel.

Long-term storage of information, whether, memory, habituation, sensitization or accommodation to changing environment, is thought to be subserved by functional and/or structural remodeling of neuronal circuits. This work comes to answer two questions: 1. What are the molecular pathways involved in memory storage? 2. Are the pathways involved, common to both declarative and non declarative memory?

Since memory formation is expected to involve structural changes in network organization, the ideal model for identifying the involved genes will focus on a behavioral paradigm that emphasizes growth and development, where structural changes and hence the involved genes might be amplified. The day-old-chick declarative passive avoidance, and non-declarative thermal conditioning behavior paradigms, are used here to identify the aforementioned molecular changes. In a passive avoidance learning paradigm a chick learns to avoid a beaded with an unpleasant tasting substrate. The intermediate medial hyperstriatum ventrale (IMHV) is centrally involved in storing this memory. Memory for temperature accommodation is neuroanatomically located in the anterior hypothalamus preoptic area (AH/PO).

After either passive avoidance training or thermal conditioning the IMHV or AH/PO respectively are dissected in a time course ranging from minutes to 24 hours and changes in mRNA induction is monitored using mRNA fingerprinting and differential display. Preliminary screening of about 20% of IMHV and AH/PO mRNA from passive-avoidance trained chicks and thermal conditioning revealed a clear induction of 24 genes which are being analyzed. Among the induced genes are 14-3-3, N-CAM and HSP90 which have been implicated with both growth and memory.

Keywords: Memory, Passive avoidance, Thermotolerance, chicks, Differential display.

Memory in liquid neural networks

Melamed O.1, Wolfgang M.2 and Markram H1

1 Dept. of Neurobiology, Weizmann Institute for Science, Rehovot, 76100, Israel; 2 Institute for Theoretical Computer Science, Technische Universitats Graz; A-8010 Graz, Austria

A key challenge is to understand memory storage and retrieval in neural microcircuits while an organism is engaging a rapidly changing environment. Current models propose that perceptions lie within a particular pattern of electrical activity, which requires specific modifications in the microcircuitry to store and retrieve memories. In the framework of a new theory of information processing in recurrent neural networks, termed “liquid computing”, all memories are potentially available at any moment in time within the current state of activity of the network. The plasticity of the microcircuitry is required to improve the capability of the network to maintain past inputs in the current state, rather than to store any specific memory. In this model, the input as a function of time results in complex perturbations in the activity of a recurrent neural network, much like the effect of sound waves on the surface of a liquid. These perturbations represent an analogue environment in which past inputs are integrated across multiple time scales and from which readout elements can learn to extract information at different moments back in time. We used a recurrent network to represent the liquid
and a parallel set of neurons to represent the readout element. The liquid was modified in terms of synaptic properties, connectivity structure and in terms of the number and types of neurons. Spike tracking inputs with different temporal structures were exposed to environmental stimuli to the liquid and the readout was trained to retrieve past activity patterns using only the current state of activity. The study demonstrates the capability of recurrent neural networks to provide a liquid environment that maintains information of past inputs for subsequent real-time memory retrieval.

Keywords: Liquid computing; Recurrent neural networks; Memory storage and retrieval.

Particle tracking in recurrent neural networks: a method for measuring dynamical properties

Melamed O. and Markram H.

Dept. of Neurobiology, Weizmann Institute for Science, Rehovot, 76100

Neural networks provide a powerful method to explore dynamic activity patterns that may emerge in the nervous system. A general approach to measure, characterize, and analyze the potential dynamics of a recurrent neural network is however, still missing. We show that by tracking the probability of finding a “test particle” in any one neuron, a particle distribution can be obtained, which provides the necessary information to derive the dynamical properties of an active recurrent neural network. We show that a spectrum of dynamic properties including the number, location and structure of attractor states, measures of contribution of a single neuron to the dynamic activity state of the entire network, and the number of recurrent sub-loops, as well as various physical measures such as entropy and “kinetic energy” of the network. Particle-numeric distributions can also be used in learning algorithms to engineer specific neural networks.

Keywords: Recurrent neural networks; Dynamical properties; Particle probabilities

TFN alpha decreases learning capacity and NGF expression in mice.

Mendelson A.1, Levav T.1, Green T.1, Huleihel M.2 and Golan H. 1,2

Dept. of Developmental Molecular Genetics and Immunology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva

TNF-α and other cytokines, which are polypeptide growth factors, produced mainly by and involved in the regulation of immune response. Recently, cytokines were demonstrated in the central nervous system (CNS) and were shown to control neuronal functions. Exposure of brain slices to extrinsic TNFα attenuated the induction of synaptic plasticity in different regions of the hippocampus. This may be directly affected by TNF-α or mediated through other factors. To study the involvement of TNFα in neuronal functions we have examined developmental and behavioral aspects in the TNFa knockout (TNFa-KO) mice compared with wild type (wt). TNFα-KO mice showed significant and specific advantage in performance of spatial learning compared to wt, as examined in the Morris water maze (32.2 sec. and 20.4 sec. respectively, in the correct quarter). No significant differences were observed in the performance of both study groups of mice in exploratory behavior, activity, anxiety, or motor coordination. Examination of nerve growth factor (NGF) levels in the mice brains following the accomplishment of the probe test show increased levels of NGF in the TNF-KO mice hippocampus as compared to the wt (70 and 28 ng/mg prot. respectively). This difference was specific to the hippocampus region, since no difference in NGF levels at the frontal cortex, were observed between the KO and wt mice (76 and 89 ng/mg. protein). To explore the possibility that elevated levels of NGF represent developmental difference between both groups of mice, we have examined NGF levels at postnatal days (2, 7, 14 and 21). Higher levels of NGF were detected in TNF-KO mice as compared to wt littermates in all examined days. Accordingly, we suggest that TNFα may control neuronal development and function; this effect could be mediated through NGF. Thus, TNFα may be important in brain regions where NGF is a key molecule for accurate circuit formation and function.

Keywords: TNFα, NGF, Learning and memory, Development.

Studying architecture of G protein coupled K⁺ channels using fluorescence based approaches

Meydani I., Kalmanzon E. and Reuveny E.

Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot

G-protein-activated potassium channels (GIRK) belong to the large superfamily of the inwardly rectifying potassium channels. Members of this family form functional tetramers, in which GIRK1 and GIRK4 channel subunits are linked in alternating positions. The activation of GIRK channels is mainly mediated by the free Gβγ subunits of the G protein, through a direct interaction with the cytosolic C and N termini of the channel. It is not known how the channel N- and C-termini sense the free Gβγ subunits. Recently, we found that proteins with various degrees of Gβγ efficiency depending on the fusion position, suggesting a special architecture of the interaction of SNAP-25 with the channel proteins has various degrees of gating capabilities. We conclude that using Gβγ it is possible to determine the orientation of membrane protein subunits assembly.

Functional implications of the direct interactions of the voltage-gated potassium channel Kv2.1 with syntaxin 1A and SNAP-25

Michallewski I. and Lotan I.

Dept. of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv

Previously, we identified direct interaction of both α and β subunits of the Kv1.1/Kvβ1.1 voltage-gated potassium channel with syntaxin 1A and SNAP-25. Further, we characterized the functional implication of the interaction of the voltage-gated potassium channel in Xenopus oocytes and showed that syntaxin 1A increases the extent of inactivation and affects biphasically the current amplitude (Fili et al., 2001). Recently, we found that another voltage-gated potassium channel, belonging to a different subfamily, Kv2.1, interacts physically with syntaxin 1A and SNAP-25 in oocytes and in vitro. Here we describe the functional implication of the interaction of syntaxin 1A with Kv2.1 channel in Xenopus oocytes. Syntaxin 1A did not affect the current amplitude of Kv2.1, in contrast to Kv1.1/Kvβ1.1, but affected kinetic parameters of Kv2.1. Syntaxin 1A enhanced the entrance to and slowed down the recovery from inactivation. Currently, we characterize the functional effects of the interaction of SNAP-25 with the channel and the interplay between the syntaxin and SNAP-25 modulations of the channels.

Keywords: Kv channel, Syntaxin, SNAPRE complex, Gβγ

Spike driven synaptic dynamics -- a self-saturating Hebbian paradigm

Mongillo G. and Amit D.J.

Racah Institute of Physics, Hebrew University, Jerusalem, Israel; Dept. of Physics, University of Rome “La Sapienza”, Rome, Italy

A detailed spike-driven synaptic dynamics is simulated in a large network of spiking neurons, implementing the full dynamic of the systems and synapses. The repeated presentation of a set of external stimuli is shown to structure the network to the point of sustaining Working Memory (selective delay activity). When the synaptic dynamics is analyzed as a function of pre- and post-synaptic spike rates in functionally defined populations, it reveals a novel variation of the Hebbian Hebbian paradigm: in any functional set of synapses (between pairs of neurons - stimulated-stimulated; stimulated-delay; stimulated-spontaneous etc...) there is a finite probability of potentiation as well as of depression. This leads to a saturation of potentiation or depression at the level of the ratio of the two probabilities. When one of the two is much larger than the other, the familiar Hebbian mechanism is recovered. But where correlated working memory is formed, it prevents over-learning. Constraints relevant to both the stability of the acquired synaptic structure and the regimes of global activity allowing for structuring, are expressed in terms of the parameters describing the single-synapse dynamics.

The synaptic dynamics is discussed in the light of experiments observing precise spike timing effects and related issues of biological plausibility.

Keywords: synaptic plasticity, Hebbian learning, Spiking neurons, Working Memory.
Intracellular evidence for diverse functional role of inhibition in the primary visual cortex
Monsoriu E., Saudet P., Borg-Graham L. and Fregnac Y.
Unité de Neurosciences Integratives et Computationnelles, UPR CNRS 2191, GIF-sur-Yvette, France

In the primary visual cortex, most cells respond selectively to the orientation of edges and their direction of motion. Evidence for the presence of inhibitory input in non-preferred orientation is contradictory. We thus decided to quantitatively readress the respective contribution of excitatory and inhibitory input using intracellular recordings of visual cortical cells. Tuning of sub-threshold responses to moving light bars was established by separating depolarizing and hyperpolarizing components and trial-to-trial variability of the membrane potential was measured to distinguish between no or weak inputs and silent shunting inhibition. In patch recordings under voltage clamp, a decomposition method was applied to extract the excitatory and inhibitory conductance changes. Results show that optimal orientations of significant hyperpolarizing component are observed in majority for non-preferred orientations. We can distinguish between the dominating of excitatory input is in the preferred direction and when it is not. In the first case, the inhibitory tuning is in the preferred, cross-oriented or in the opposed direction. In the second case the cell presents excitatory tuning selectivity for orientation/direction but not in the preferred direction of the spike rate and inhibitory tuning has the same optimal direction as excitatory input. In addition, it shows that large conductance increase was concomitant with a reduction of trial-to-trial variability. In conclusion, inhibition seems to play diverse computational role, critical in cases where the inhibition shapes directly the orientation or the direction selectivity.

Keywords: in vivo intracellular recordings, Visual cortex, Inhibition

High Dehydroepiandrosterone levels decrease the effect of electroconvulsive shock (ECS) in an animal model of depression
Mondal O.1,2, brides P.3, Borg-Graham L.4, and Fregnac Y.1,2

Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfite (DHEAS) are neuroactive steroids which are synthesized in the brain and display allosteric antagonistic properties at GABAa receptor mediating behavioral changes. In a previous study, we found that high basal levels of DHEAS can predict a lack or low response to electroconvulsive therapy (ECT) in depressive patients (Miyano et al. Biol Psychiatry. 1,48(7):693-701[2000]). The present study had three main aims: To determine the effect of ECS on the behavior of FSL rats (an animal model of depression), to measure the levels of pregnenolone, DHEA, and DHEA-S in plasma and brain after ECS, and to evaluate whether DHEA injection parallel to ECS treatment diminishes the behavioral effect of ECS. Our results show that rates immobility in swim test, as a measure of depressive behavior, was reduced by ECS treatment (49±5.53 sec/5 min vs 107±11.8 sec/5 min in controls, p<0.05). Injection of DHEA parallel to ECS treatment reversed the rates immobility almost to level found in naive-FSLs (88±13.8 sec/5 min). All groups that were injected with DHEA showed a significantly increase in serum and cortex levels of DHEA. This increase was dramatically high in the cortex of rats receiving ECS parallel to DHEA (104±14.1 pmol/gr tissue vs 22±4.1 pmol/gr tissue in DHEA group, p<0.001), this group showed also a significant decrease in serum pregnenolone level compared to the three other groups. These results indicate that ECS main ramified directed of depression alter serum and brain neurosteroids and this alteration may associate with behavioral outcome.

Keywords: Neurosteroids, DHEA, ECS, GABA.

The action of L-DOPA and other dopaminergic agents in hemiparkinsonian guinea pigs
Moses D.3,1 and Finberg J.P.M.2
1Neurology Dept., Rambam Medical Center, Haifa; 2Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa

The rat made hemiparkinsonian by unilateral 6-hydroxydopamine injection into the nigro-striatal pathway is one of the most widely utilized Parkinson’s disease models, however, rat striatum differs significantly from the human in MAO isozyme content and affinity to DOPA. This as well in metabolism. Guinea pig (GP) brain more closely resembles the human in the abovementioned parameters. We therefore studied turning behavior in the hemiparkinsonian GP. Male albino GPs were injected with 6-hydroxydopamine into the right substantia nigra. Rotational behavior was recorded after challenge with amphetamine, methamphetamine, and different doses of L-DOPA methylster. Animals were sacrificed after behavioral testing and dopamine content in striatum tissue was measured by HPLC with electrochemical detection. Amphetamine (18 mg/kg) and L-DOPA methylster (4, 8 and 15 mg/kg) induced turning contralateral to lesioned striatum; methamphetamine (7 mg/kg) induced ipsilateral turning. Apomorphine-induced turning was highly predictive of more than 95% striatal dopamine depletion. Apomorphine caused turning only at high dose but at lower doses it induced severe dyskinesias without turning. In animals with greater than 95% depletion of striatal dopamine, acute deprenyl treatment alone (2mg/kg) induced ipsilateral turning but of lower intensity than direct agonist. GP showed greater sensitivity than rat to L-DOPA induced turning and may be a superior model than the rat to study the neuropharmacological aspects of L-DOPA and dopaminergic treatment for Parkinson’s disease.

Keywords: Parkinson’s disease, Dopamine, Locomotor behavior

Real-time computing without stable states: a new framework for neural computation based on perturbations
Karmak H.1, Mass W.1, Natschläger T.2, Melamed O.3, Rotem A.4, and Wasserstrom A.5
1Dept. of Neurobiology, Weizmann Institute for Science, Rehovot, 76100, Israel; 2Institute for Theoretical Computer Science, Technische Universität Graz; A-8010 Graz, Austria

A key challenge for neural modeling is to explain how a continuous stream of multi-modal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real-time. We propose a new framework for neural computation that provides an alternative to previous approaches based on attractor neural networks. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a neural circuit may serve as a universal source of information about past stimuli, from which readout neurons can extract particular aspects needed for diverse tasks in real-time. Stable internal states are not required for a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine that, unlike Turing machines, does not require sequential transitions between discrete internal states. Like the Turing machine paradigm, it allows for universal computational power under idealized conditions, but for real-time processing of time-varying input. The resulting new framework for neural computation has novel implications for the interpretation of neural coding, for the design of experiments and data-analysis in neurophysiology, and for neuromorphic engineering.

Keywords: Recurrent neural networks; Neural coding; Temporal integration

Omega-3 fatty acid treatment of depressive breakthrough during unipolar maintenance
Nemets B., Stahl Z., and Belmaker RH.
Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva

Studies have reported that countries with high intake of fish oil have low rates of depression. We studied a specific omega-3 fatty acid, the ethyl ester of eicosapentaenoic acid (E-EPA) as an adjunct to antidepressant treatment for breakthrough depression in recurrent unipolar patients on maintenance therapy. Design was a four-week parallel group double-blind add-on to ongoing antidepressant therapy. Twenty patients participated, seventeen females and three males, all with diagnosis of current major depression. Highly significant benefits were found by week 3 of treatment for eicosapentaenoic acid compared to placebo. It is not possible to distinguish whether eicosapentaenoic acid augments antidepressant action in the manner of lithium or has independent antidepressant properties of its own.

Keywords: Eicosapentaenoic acid, Omega-3, Fatty acid, Depression, Clinical trial
Dextrorphan potentiates morphine analgesia without preventing morphine tolerance in preweanling rats

Neufeld M. and Frenk H.
Dept. of Psychology, Tel-Aviv University, Ramat Aviv, Israel

Tolerance to both acute and chronic morphine administrations is a known problem, which hinders proper pain management in adult humans. NMDA antagonists are known to prevent the development of morphine tolerance and potentiate its acute analgesic effects in adult mammals. In infant animals the issue of morphine analgesia and tolerance is yet not fully understood. In the current research investigated the effects of the NMDA antagonist dextrorphan (dex) on the development and expression of morphine tolerance in rat pups. Two and eight days old rat pups were injected twice daily for a week with dex+saline, saline+morphine, saline+morphine, saline+saline or saline+salm. At 9 or 15 days of age, respectively, each group was tested with one of the above combinations and tested for analgesia using the tail flick paradigm. Dextrorphin was not able to prevent the development of morphine tolerance when chronically co-administered with morphine. It did, however, potentiate the analgesic effects of morphine even in morphine tolerant pups. Dextrorphan alone had a differential effect in both age groups, having an analgesic effect at age 15 but not 9 days. Furthermore, a non-analgesic dose at 15 days of age was not efficacious in potentiating morphine analgesia. These results may shed some light on the ontogeny of morphine tolerance in rat pups. Two and eight days old rat pups were injected twice daily for a week with alex+morphine, dex+saline or saline+saline. At 9 or 15 days of age, respectively, each group was tested with one of the above combinations and tested for analgesia using the tail flick paradigm. Dextrorphin was not able to prevent the development of morphine tolerance when chronically co-administered with morphine. It did, however, potentiate the analgesic effects of morphine even in morphine tolerant pups. Dextrorphan alone had a differential effect in both age groups, having an analgesic effect at age 15 but not 9 days. Furthermore, a non-analgesic dose at 15 days of age was not efficacious in potentiating morphine analgesia. These results may shed some light on the ontogeny of the interaction between NMDA and opiate receptors.

Keywords: NMDA, Tolerance, Infant rats

Protective and harmful autoimmune in the CNS: experimental data and mathematical modeling

Nevo U.1,2, Kipnis J.1, Gershon I.1, Akselrod S.3, Neumann A.3 and Schwartz M.1
1Dept. of Neurobiology, Weizmann Institute of Science, Rehovot; 2School of Physics and Astronomy; Tel-Aviv University, Tel-Aviv; 3Dept. of Biology, Bar-Ilan University, Ramat-Gan

Autoimmune response is widely viewed as an unfortunate outcome of the presence and activation of harmful immune components directed towards self-antigens. It is now evident, however, that autoimmune response, at least in the central nervous system (CNS), can be beneficial and ‘protect’ the tissue from damage. (Moalem et al., Nat. Med. 5:49–55 [1999]; Hauben et al., J. Neurosci. 20(17):6421–30 [2000]). This ‘protective autoimmune’ is a spontaneous physiological response to insult, at least in some strains (Yoles et al., J. Neurosci. 21(11):3740–8 [2001]; Kipnis et al., J. Neurosci. 21:4564–4571 [2001]). Recently it became clear that the same T cells are responsible for both the protective and the destructive (i.e., disease-related) activities associated with the autoimmune response, and that the way in which the response is regulated will determine whether its outcome is beneficial or harmful.

We have developed a mathematical model of the adaptive autoimmune response to CNS insult. Using basic rules for the dynamics of autoimmunity, with no discrimination between self and non-self, the following situations were simulated: (1) a well-regulated autoimmune response leading to inhibition of the degenerative process, thus reducing the damage; (2) a harmful autoimmune reaction resulting from an insult that occurs in the absence of a timely adaptive autoimmune response or in the presence of an inadequately regulated response; (3) a relapsing/remitting pattern of response to an insult, resulting from loose regulation coupled to intense immune activation. The model accommodates the novel view that protective autoimmunity can be conferred by any mechanism that allows an appropriately controlled adaptive anti-self response (Schwartz and Kipnis, T1MM 7(6):252–8 [2001]).

Keywords: Autoimmune, Protective autoimmunity, Immune model, Neuroprotection.

Comparison of multifocal electroretinogram topography between normal and ocular hypertensive Cynomolgus monkeys and humans.

Ofri R.1, Seeliger MW.2, Percicoto CL.3, Lambrou GN.3,4 and Raz D.5
1Koren School of Veterinary Medicine, Hebrew University of Jerusalem, Israel; 2University Eye Hospital, Dept. II, Tuebingen, Germany; 3Novartis Ophtalmica, Basel, Switzerland; 4Dept. of Ophthalmology, Faculty of Medicine, Strasbourg, France

Purpose. To compare the functional retinal topography between cynomolgus monkeys and humans, and to look for differences in ocular hypertensive eyes. Methods. Multifocal electroretinograms (MF-ERGs) were recorded from both eyes of 9 9-year-old Cynomolgus monkeys (Macaca fascicularis) with experimentally induced unilateral hypertension. After positioning, 7 minute-recordings were obtained, with a stimulus of 103 unscaled hexagons. First and second order responses were evaluated by single element analysis as previously described (Seeliger et al., Invest Ophtalmol Vis Sci 39:718-23 [1998]), and compared to human records. Results. The MF-ERG in monkey showed essentially the same amplitude and implicit time distribution found in humans, except for the lack of a marked delay in the region of the blind spot. In ocular hypertensive monkeys, amplitudes were generally larger, and the range of implicit time variations was greatly reduced both centrally and peripherally, together with an amplitude loss of the second order component. Conclusions. No substantial differences in the functional retinal topography between cynomolgus monkeys and humans were detected, reinforcing the value of this model. The widespread loss of implicit time variability in ocular hypertension may indicate global retinal damage and be related to the visual field loss. Supported by a grant from Novartis Ophtalmics (Ofri R) and by DFG grants SFB 430 C2 and Se837/1-1 (Seeliger MW)

Keywords: Glaucoma, Multifocal electroretinogram, Animal model

In vivo evaluation of demyelination in mouse brain by magnetization transfer imaging

Olsson A.1, Ben-Hur T.2, Mizrahi-Kol R.2, Goelman G.1
1Hadassah Hebrew University Hospital, Medical Biophysics Dept., MRI/NMR Laboratory, 2Hadassah Hebrew University Hospital, Neurology Dept.

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system. The relatively new magnetic resonance imaging techniques, exploiting the effect of magnetization transfer (MT) between immobile protons of macromolecules, such as myelin, and mobile protons of free water (MT-MRI), is accepted as a promising method in following the development of MS. This techniques is currently used to detect and quantify the white matter abnormalities in the brain and spinal cord of MS patients. However, the practical realization of MT-MRI is not trivial and the results depend on the experimental set chosen. In addition, it is important to develop radiological means with experimental models of MS, since evaluation of efficacy of novel therapies currently relies solely on clinical and pathological grounds.

Our study is aimed to assess the ability of MT-MRI to follow in vivo the development of chronic experimental autoimmune encephalomyelitis (CR-EAE) in mice with further perspectives to use this techniques in validation of therapeutic treatments that cause remyelination. CR-EAE was induced by s.c. injection of 300μg MOG with complete Freund adjuvant. The MT-MRI was performed on 4.7T Bruker Biospec system and the magnetization transfer ratio (MTR), was calculated for the control, untreated brain, and at different time points during CR-EAE development. The optimization of the experiment, methodology of data analysis and MTR changes induced upon demyelination, will be discussed.

Keywords: Multiple sclerosis, Magnetization transfer MRI, Demyelination
Astrocyte activation *in vivo* is modulated isoform-specifically by apolipoprotein E3 and not by apolipoprotein E4

Ophir G., Meilin S., Efrati M. and Michaelson D.M.

Dept. of Neurobiochemistry, Tel Aviv University, Tel Aviv

Genetic and immunohistochemical studies revealed that the allele E4 of apolipoprotein E (apoE) is an important risk factor for Alzheimer’s disease (AD) and that the chronic brain inflammation associated with this disease is more pronounced in subjects who carry this allele.

In the present study, we employed mice transgenic for the human apoE3 or apoE4 and a null mouse apoE background and intracerebroventricular injection of LPS, to investigate the possibility that brain inflammation is affected by the apoE genotype. Accordingly, LPS treatment of 12 months old mice resulted in marked activation of brain astrocytes in apoE3-deficient and apoE4 transgenic mice but not in the control and apoE3 transgenic mice. LPS-dependent microglial activation, however, was not affected either by apoE genotype or by the apoE3 and apoE4 transgenics. Furthermore, the brain apoE levels of the LPS-treated apoE4 and apoE3 transgenic mice were comparable.

These results show that LPS-induced astrogliosis in apoE3 transgenic mice is regulated isoform-specifically by apoE3 and not by apoE4 and suggest a novel mechanism via which the phenotypic expression of the apoE genotype may be mediated.

Keywords: Alzheimer’s disease, Apolipoprotein E, Inflammation, Transgenic

Effects of reversible inactivation of TE, perirhinal and entorhinal cortex on serial memory in monkeys.

Orlov T., Yakovlev V., Hochstein S. and Zohary E.

Dept. of Neurobiology, Hebrew University, Jerusalem 91904

Macaque monkeys can utilize a combination of different mnemonic strategies to retrieve lists of ordered images (Orlov et al., *Nature* 401:77-80 [2000]. These include ordinal-number categorization, stimulus-stimulus association and working memory. We found that categorization of the image ordinal number by the subject and different mnemonic rules explain the existence of "category label" neurons (sensitive to images from a specific category), which encode the ordinal position of the images in long-term memory. The goal of the present experiment was to find cortical regions involved in image categorical memory. Two monkeys were trained with fractal images on a Serial recall task and a control DMS task. In one monkey, we reversibly inactivated sites in TE, perirhinal and entorhinal cortex by microinjection of the GABA-agonist muscimol while performing these tasks. Three mkl of 5% muscimol was injected bilaterally in 28 sites of perirhinal (10), entorhinal (6) and parahippocampal (12) cortex. Localization of injection was controlled with MRI images.

Reaction time (RT) in the serial recall task increased significantly after muscimol injections in 10 sites (TE -3, perirhinal – 4, entorhinal – 5, P<0.05). The mean RT increment relative to the baseline was 219.7 +/- 35.6 ms or 27.7 +/- 5.1%. This was mirrored by an increase in the error rate (10.6 +/- 5.6%). No changes were observed following saline injections in the same sites. Muscimol injections in two sites in entorhinal cortex produced categorization specific changes in the RT. These results suggest that medial temporal cortical areas may be involved in ordinal number categorization and memory.

Keywords: Temporal order, Categorization, Muscimol, Perirhinal cortex, Entorhinal cortex.

Can the Ca Voltage hypothesis account for calcium induced release in the absence of depolarization?

Parnas H. and Jaimovich A.

The Otto Loewi Minerva center for cellular and molecular Neurobiology, Dept of Neurobiology, Alexander Silberman institute of life science, The Hebrew University, Jerusalem

The Ca-Voltage hypothesis suggests that the release of neurotransmitter from nerve terminals is governed by two factors. The first is the concentration of the calcium in the vicinity of the release sites. The second is depolarization mediated relief of a tonic block imposed by presynaptic autoreceptors.

However, it was shown earlier (Schneggenburger and Neher, *Nature* 404:89-93 [2000]) that even in the absence of depolarization, elevation of intracellular Ca**2**+ to sufficiently high levels can promote release (hence denoted Ca induced release). These results seem to contradict the Ca-Voltage hypothesis.

We suggest a way to explain the above conflicting results in the framework of the Ca-Voltage hypothesis. We suggest that Ca induced release can be directly derived from the molecular scheme underlying depolarization induced release.

To check for this possibility, we constructed a kinetic model based on the molecular mechanisms that underlie the Ca-Voltage hypothesis, and the results of the model were compared to the experimental results of Schneggenburger and Neher.

The simulation results show that, as expected, even in the total absence of depolarization, the molecular basis underlying the Ca-voltage hypothesis can produce substantial release. This occurs, providing that Ca concentration is significantly higher than under conditions where depolarization is applied. Furthermore, the hypothesis explains the different behavior of the time courses of Ca induced release and depolarization induced release.

Keywords: Ca-Voltage hypothesis, Ca-induced release, autoreceptors.

2-arachidonoyl glycerol (2-AG) alters neurotransmitters following weight loss

Patrusky I., Avraham Y., Hao S., Ben-Shushan D., Mechoulam R., Berry EM.

Depts of Human Nutrition and Metabolism and the Dept of Medicinal Chemistry and Natural Products, Hebrew University-Hadassah Medical School, Jerusalem

Understanding the interaction between nutrition and brain function may lead to strategies for the treatment of the diseases associated with weight loss such including anorexia nervosa.

Cannabis sativa, and its active constituent tetrahydrocannabinol (THC) are known to increase appetite. With the discovery of the endogenous cannabinoids - arachidonoyl ethanolamide (Anandamide, ANA), a fatty acid amide and 2-arachidonoyl glycerol (2-AG) a fatty acid ester - it became possible to examine the effect of these brain constituents on appetite. (Hao et al, *European J. of Pharmacology* 392:147-156 [2000]) 2-AG is present in both the brain and periphery and parallels THC and anandamide in most of their activities. 2-AG is also present in human and bovine milk. The activity of 2-AG alone is low; but it can be significantly increased by 2-palmitoylglycerol and 2-linoleoylglycerol which are present in the body alongside 2-AG. They enhance its activity by delaying hydrolysis and lowering the uptake rate into the cells – the so-called "entourage" effect.

We have shown that, in young female Sabra mice, very low doses of 2AG-entourage (0.001 mg/kg) affect food consumption, cognitive function, catecholaminergic and serotonergic pathways, NE, dopamine, 5-HT and their intermediates increased significantly in the hypothalamus while in the hippocampus dopamine, Dopac and 5HT increased significantly and these effects were reversed after treatment with a CB1 receptor antagonist.

The use of small quantities of endocannabinoids to avoid psychotropic side effects might have important implications for the possible treatment of anorexia nervosa.

Keywords: 2-AG, Neurotransmitters, Weight loss, CB1 receptor antagonist.

Differentiating the types of attention required for feature and conjunction search

Pavlovskaya M., Ring H., Grossewasser Z. and Hochstein S.

Leovenstein Rehabilitation Hospital, Ramona, Sackler School of Medicine, Tel Aviv University and Hebrew University, Jerusalem, Israel

We address a long-standing conflict in the visual search literature by studying search performance of neglect patients using laterally presented search arrays, and comparing performance on feature and conjunction search tasks. The issue relates to whether feature search is performed "pre-attentively" i.e. supposedly independently of attention (Treisman & Gelade, *Cogn. Psychol.* 12, 97-136 [1980]) or with "spread attention" i.e. irrespective of the number or eccentricity of the elements, but demanding attention, nevertheless (Treisman, *Q. J. Exp. Psychol. A* 40, 201-237 [1981]).These questions address the very nature of attention and of feature search. If neglect had to do only with focusing attention, and if feature search were a pure pre-attentive task, we would expect that left-neglect patients would have no problem in performing a feature task in the left visual field. Five neglect patients and three normal controls were tested with stimulus arrays composed of 3x3, 5x5 or 7x7 elements presented centrally, or in the left (LHF) or right hemifield (RHF) at three
Possible eccentricities. Array centers were at 0° or 2.5–6.5° of visual angle from the fixation cross. We found conclusive evidence that feature search of the neglected hemifield is more difficult than the attended hemifield, but not in the opposite direction. When search arrays are placed centrally, neglect subjects have a more difficult time finding targets that fall in the neglected hemi-array. When arrays are placed laterally, there is a tremendous difference between neglect subject performance in finding “pop-out” targets when the array is in their neglected hemifield than when it is in the attended hemifield. We conclude that the difference between feature and conjunction search is indeed related to attention however, not to the need for or independence of attention, but rather in the type of attention needed. Feature search requires spread attention, as indicated by its parallel processing mode, while conjunction search requires focused attention, giving a serial nature and set-size dependence.

Keywords: Visual attention, Feature search, Conjunction task

Neural correlates during learning of new visuomotor mapping
Paz R., Bourdou C., Natan C., Bergman H. and Vaadia E.

Dep. of Physiology, Hadassah medical school, Jerusalem 9120, Israel.
Bordeaux, France

We examined the activity of neurons in primary motor cortex (MI), while a monkey was learning a new visuomotor mapping task. The task includes two epochs. The first included standard 8 directions center-out trials (“standard epoch”). In the second, we introduced unfamiliar transformations (rotation) between the manipulanda and the cursors motion on the screen. At the end of these two epochs (~350 trials), an additional set of similar two epochs (with the same transformations) was repeated. Each day (“session”) a different transformation was introduced. We compared neuronal activity between the matching standard epochs in the two sets, both in the preparatory activity (a hold epoch (with the same transformations) was repeated. Each day (“session”) a different transformation was introduced. We found that the activity of many of the task related neurons was significantly modified, especially in properties of their tuning curves. Some exhibited change in preferred direction, some in baseline activity and some in amplitude. Furthermore, we used the population vector method to predict the actual movement from the neuronal activity and found that the accuracy of prediction improved in the second set of standard movement (after the transformation epoch) compared to the first set. This improvement was specific to the direction of the transformation done in that session and only when performed with neurons from that session.

We conclude that changes of neuronal activity in MI occur during learning of new visuomotor mapping and suggest that they reflect reorganization of neuronal networks that supply better information on the newly acquired behavior.

Keywords: MI, Motor cortex, Electrophysiology

Gαi-GDP negatively regulates the basal activity of G protein activated K+ (Kir3) channel
Peleg S., Ivanina T. and Dascal N.

Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978

The GIRK channels display basal activity (Ibasal), acetylcholine (ACH) activates GIRK via m2 receptor (m2R), causing an evoked current (ICa channels. The activation is mediated by direct binding of Gαi released from Gαi proteins, to GIRK. We conclude that changes of neuronal activity in GIRK channel gating. This was after we have found, unexpectedly, that increasing the density of channels led to a correlated increase in Ibasal, whereas the extent of activation by ACh, Rch (ratio ICa/Ibasal) was reduced. We assumed that there is a blocking molecule, present in Xenopus oocytes in limited amounts, that keeps GIRK closed at rest. The effects of Gαi or Gαt restored low Ibasal and increased Rch. We next asked whether the increase in the activity of GAR inhibits the channel at rest. Is it GαiGDP or GαtGDP or the heterotrimer GαiGβγ? We prepared Gα mutants: Gαi-G205L (constitutively active, GTP- bound), Gαt-G204A (constitutively inactive, GDP- bound) and coexpressed them with the channel and the constitutively inactive Gαt reduced Ibasal, whereas the constitutively active GαiGDP had much smaller and variable effects. We have done also experiments in excised patches with purified proteins GαiGDP alone and with Gβ3 subunit mixed earlier to form heterotrimer.

Preliminary experiments suggest that purified GαtGDP inhibited the channel most efficiently. In addition biochemical experiment showed that Gαt bound better than the heterotrimer (GαiGβγ) to the channel. We propose that the active regulator of the basal activity of GIRK is GαtGDP alone, however the heterotrimer remains a plausible candidate.

Keywords: GIRK channel, G protein, Gating

Reduce sensorimotor cortical basal activity in a rat model of Parkinson’s disease as measured by fMRI
Pelled G., Bergman H. and Goelman G.

1 HBRC, medical biophysics and nuclear medicine dept., Hadassah Hebrew University Hospital, Jerusalem, Israel.
2 physiology dept., Hadassah Medical School, The Hebrew University, Jerusalem, Israel.

The unilateral 6-OHDA rat model of Parkinson’s disease (PD) is a well established model for studying the functional changes that occur in the brain as a consequence of the dopaminergic lesion. Our previous findings have shown significantly bilateral sensorimotor cortical activity, compared to sham-operated rats, as measured by functional magnetic resonance imaging (fMRI). Since fMRI measures the changes in the oxygen/di-oxygen-hemoglobin, we examined if this higher fMRI signal is a result of over activity or if, it corresponds to changes in the cortical basal level. For this purpose the sensorimotor basal level in 6 PD model rats and 6 sham-operated rats using [12] Gradient-Echo EPI images of 4 cortical slices were obtained during rest. Regions of interest (ROI) of the left and right motor and sensory cortex were chosen and their intensity was normalized. The analysis was done in two different ways: 1) Calculation of the mean and the standard deviation (SD) of all the pixels in the ROI of each image and their average along time. 2) Calculation of the mean and SD of each pixel in the ROI along time, and then the average of all the pixels. Our results show that there is a significant decrease (P<0.01) of the mean basal activity level in the motor and sensory cortex of the PD model rats compared to the sham-operated rats. These results agree with the classical basal ganglia circuit model, and explains the discrepancy of our previous results with the model.

Keywords: fMRI, BOLD, Parkinson’s disease, Sensorimotor cortex activity

Observation of high correlation between fMRI signal and dndrites density
Pelled G.., Bergman H. and Goelman G.

HBRC, medical biophysics and nuclear medicine dept., Hadassah Hebrew University Hospital, Jerusalem, Israel.

Measuring the functional magnetic resonance imaging blood oxygenation-level-dependent (BOLD) signal simultaneously with electrophysiology recording, has shown high correlation of the BOLD signal with the local field potentials (LFP) in the visual cortex of the monkey (Logothetis et al., Nature 421:150-157 [2003]). The LFP recording represents the summation of the activity in the dendrites, as opposed to single unit recording, which represents the output activity of the neuron. Measuring the BOLD signal in the different layers of the cortex, can expand our understanding of the neuronal components of the cortex. It is composed of 6 layers when the lower layers consist mostly of the cell bodies and the dendrites, while the upper layers consist the white matter. The BOLD technique measures the changes in the oxygen/di-oxy-hemoglobin ratio during rest represents the basal level activity. We measured the BOLD signal in six urethane-anesthetized rats during rest. Four slices in the cortex were chosen, and 50 Gradient-Echo EPI images were obtained. Regions of interest (ROI) in the motor and sensory cortex were chosen with their intensity was normalized. The analysis was done in two different ways: 1) Calculation of the mean and the standard deviation (SD) of all the pixels in the ROI of each image and then their average along time. 2) Calculation of the mean and SD of each pixel in the ROI along time, and then the average of all the pixels. Our results show that there is a significant decrease at the lower layers (P<0.01) of the mean basal activity level in the motor and sensory cortex of the PD model rats compared to the sham-operated rats. These results agree with the classical basal ganglia circuit model, and explains the discrepancy of our previous results with the model.

Keywords: fMRI, BOLD, LFP
Functional correlation maps of inter-laminar pyramidal neurons

Penny C., Silberberg G., Wu C.Z. and Markram H.

Dept. of Neurobiology, Weizmann Institute of Science, Rehovot

The neocortex is parcelled into numerous functional columns that are approximately the diameters of the basal dendritic and axonal arbors of pyramidal neurons and stretch across all six layers. The intriguing feature of functional columns is that there are no anatomical boundaries at the microcircuit level, suggesting that boundaries are formed dynamically depending on the evolution and dynamics of the activity in microcircuits we obtain multineuron whole-cell recordings of pyramidal neurons across layers and across columns. Sub-threshold cross correlations were obtained before, during and after the network was stimulated with a solution containing high [K+]o and low divalent ions. Preliminary data indicates specific interlayer and cross layer correlation maps.

Keywords: Pyramidal cells; Neocortex; Interlayer; Intercolumns; Subthreshold cross-correlations.

Interaction of KCNE1 and KCNQ1 C-termini: implication for \(\text{IK}_\text{s} \) channel assembly and gating

1 Dept. of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel; 2 Dept. of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; 3 Beer Yaacov Mental Health Center

Acetylcholine mediates synaptic transmission in the vertebrate central nervous system through the activation of two major receptor subtypes, the muscarinic and nicotinic acetylcholine receptors (ACHRs). Several recent studies have suggested that nicotinic \(\text{a7} \) AChR may be associated with some aspects of schizophrenia. In search for peripheral biological markers for schizophrenia that may enable early and rapid diagnosis of this disorder we have investigated \(\text{a7} \) mRNA levels in peripheral blood lymphocytes (PBLs) of schizophrenic patients and healthy controls. Blood samples were collected from 34 medicated and unmedicated (drug naive) patients and from 21 healthy smokers and nonsmokers. RNA was prepared from isolated lymphocytes and its amount and quality determined. PCR products specific for human \(\text{a7} \) AChR were quantified by densitometry using Scion Image software. A significant decrease (20-95%) of \(\text{a7} \) mRNA levels in PBLs of schizophrenic patients has been observed, compared with controls. The decrease in \(\text{a7} \) mRNA levels was not a result of medication, since unmedicated patients showed the same range of reduction as hospitalized schizophrenic patients. In addition, we have ruled out the possibility that the observed decrease in \(\text{a7} \) mRNA levels resulted from nicotine consumption by smoking, as healthy smokers exhibited the same levels of \(\text{a7} \) mRNA as nonsmokers. If the observed changes in \(\text{a7} \) mRNA levels in PBLs, reflect the state of this receptor in the brain, our findings support the assumption that a deficit in \(\text{a7} \)AChR is involved in the pathophysiology of schizophrenia. We propose that \(\text{a7} \) AChR mRNA may serve as a peripheral marker for schizophrenia.

Keywords: Peripheral blood lymphocytes (PBL); \(\text{a7} \) acetylcholine receptor; Schizophrenia; mRNA; RT-PCR.

Activity-dependent neuroprotective protein (ADNP) gene expression is developmentally regulated

Pinhasov A., Goldweig AM., Brenneman D.E., and Gozes I.

1 Dept. of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 69978; 2 Department of Developmental Neurobiology, NICHD, National Institute of Health, Bethesda, MD 20892 USA

The glial-derived Activity-Dependent Neuroprotective Protein (ADNP) is associated with cellular protection (J. Biol. Chem. 276: 708-714 [2001]). ADNP is widely distributed with increased expression in the hippocampus, cerebral cortex and cerebellum. ADNP contains an 8 amino acid peptide NAPVSIPQ (NAP) that exhibits neuroprotective activity, stimulates brain development (J. Neurochem. 72: 1283-1293 [1999]) and improves learning and memory (J. Pharmacol. Pharm. Exp. Therap. 293: 1091-1098 [2000]). To further evaluate the role of ADNP in the organism and its' importance in the CNS, the expression of the protein during development was evaluated. Using whole mouse in situ hybridization, ADNP mRNA was detected at early stages of the mouse embryonic development (E9.5). RNA was extracted daily from embryonic mouse brain (E12.5) using phenol/chloroform hybridization. ADNP mRNA was detected as constitutively expressed at all stages tested, with an apparent slight decline at birth. In comparison, when RNA was extracted daily from whole embryos (E7-birth), a period of strong expression was observed at E9.5 followed by a gradual decline toward birth.
Postnatal expression of ADNP mRNA was measured in mouse brains at day 1, week 3, month 3 and month 18. Results showed that the ADNP gene expression decreased during maturation up to postnatal day 21, then reached a plateau and declined with aging. Taken together, these data indicate an important role for ADNP during brain development and aging.

Support: ISF, BSF, Neufeld, 199A, Gildor Chair.

Keywords: ADNP, Northern blots, In situ hybridization, Gene expression.

An EEG Study of Neural Integration in Schizophrenia During a Visual Somatosensory Illusion

Raz S., Berger B.D.1

1Dept. of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Institute for Psychiatric Studies, Sha’ar Menashe Mental Health Center, Beer Sheva, Israel; 2Institute for Psychiatric Studies, Sha ‘ar Menashe Mental Health Center, Beer Sheva, Israel; 3Institute for Psychiatric Studies, Sha ‘ar Menashe Mental Health Center, Beer Sheva, Israel

The neuronal mechanisms that provide for a rapid interaction between visual and somatosensory neuronal systems probably involve short-term synaptic plasticity and neuronal reorganization. In this study we investigate neuronal processing and organization of the rubber hand illusion (RHI) with EEG evoked responses. The RHI is an illusion in which tactile sensations are referred to synthetic alien limb, it was first described by Botvinick and Cohen (1998), which have proposed that this illusion speaks of a three-way interaction (i.e., integration) among vision, touch and proprioception.

Going from pre-illusion condition to an illusion state a marked dipole (i.e., depolarization of electrical recording) over the central (pial) and occipital regions is evident in control subjects. This dipole is evident up to around 0.2-millisecond range i.e., early processing intervals that probably reflect information processing of lower-level neuronal hierarchical systems such as those of unimodal multimodal association regions.

In schizophrenic patients these relations of hierarchical organization during the formation of the RHI are significantly altered. Early wave-forms of the evoked responses do not differ much at the time of the illusion compared non illusion epochs. The conditions associated with the illusion prevail only after 0.4 milliseconds. From this work it seems that the hierarchical organization of information processing in schizophrenic patients is disturbed compared to controls.

Calcium dynamics in secretory vesicles

Raveh A., Blank P., Coorssen J., Epstein J., Shani L., Zimmerberg J. and Rahaminoff R.

Dept. of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University Hadassah Medical School, POBox 12272, Jerusalem 91120, Israel; The Laboratory for Cellular and Molecular Biophysics, NICHD, NIH, Bethesda, MD, USA.

Membrane fusion is a fundamental cellular process involved in transmitter release and fertilization, triggered by elevated Ca2+ concentrations [Ca2+]. Extracellular and intracellular sources may contribute to this elevation. Since secretory vesicles contain high [Ca2+], we examined its dynamics in sea-urchin eggs, using confocal microscopy and stochastic analysis of the fluorescence data. The study of the fluctuations in fluorescence intensities in intact eggs, shear-isolated membrane cortices and vesicles, labeled with fluorescent Ca2+ indicators (Fluo-4 and Fluo-4 AM), revealed a complex calcium dynamics.

The following observations were made:

1. The fluorescence intensity decayed faster in secretory vesicles than fluorescent beads or cytoplasm, most probably due to bleaching in a confined volume

2. The variance of the fluorescence intensity was higher than that of beads of comparable mean intensity

3. Calcium waves were inferred from oscillations in the intravesicular fluorescence signal.

The non-stationary behaviour of the calcium signals in the secretory vesicles may indicate that the vesicles have a role in regulation of the fusion process. It may also suggest the existence of a novel pathway of presynaptic regulation of transmitter release.

Supported by the US-Israel BSF and ISF

Keywords: Calcium, Secretory vesicles, Fluctuation analysis

Isolated housing in laboratory rats: selective or non selective effects on drug seeking behavior

Raz S. and Berger B.D.

Dept. of Psychology, University of Haifa, Haifa

Isolated housing increases aggression and interferes with the performance of a cooperation task in male rats. Although the behavioral mechanisms for these effects of isolated housing are not known, presumably isolated housing increases or exacerbates irritability or stress that are also known to influence drug seeking behavior in humans.

Keywords: EAE, Sickness behavior, Pro-inflammatory cytokines, Prostaglandins
The present series of studies attempts to determine if isolated housing affects voluntary morphine consumption in laboratory rats and if so, to determine the selective nature of this effect. Adult male Wistar rats, were housed in one of two conditions: isolated housing (1 per cage) or social housing (2 per cage). Intake of water alone, water + morphine HCl (0.5 mg/ml), water + quinine HCl (0.024 mg/ml) or water + diastreptomine sulfate (0.025 mg/ml) were measured repeatedly over several weeks both in one - bottle (forced) and in two - bottle (choice) tests. Isolated housing significantly decreased intake of morphine, quinine, and amphetamine across the series of forced - choice trials. However when morphine, quinine, or amphetamine were presented Vs water in a series of choice trials, isolated housing significantly increased intake only of morphine and quinine. There were no differences in water intake between the groups in these choice trials. These results indicate that environmental and situational factors influence drug intake in laboratory rats as they do in humans, and thus support the utility of this animal model to the study of drug seeking behavior in humans. More studies are required in order to evaluate the conditions under which drug intake is affected by these manipulation.

Keywords: Drug seeking behavior, Isolated housing, Morphine.

Dissociation of working and reference memory in LTP-deficient GluR1-/- mice

Dept. of Experimental Psychology, University of Oxford, UK; Max-Planck Institute for Medical Research, University of Heidelberg, Germany; Dept. of Physiology, University of Oslo, Norway

L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activity is required for long-term potentiation (LTP), a postulated model of cellular mechanisms underlying learning and memory. GluR1 (GluR-A), one of four AMPA receptor subtypes, is thought to mediate a postsynaptic mechanism of LTP expression. Previous studies have demonstrated that GluR1-deficient mice lack LTP in the afferent pathways to the CA1 area of the hippocampus, yet their spatial reference memory is intact (Zamanillo et al, Science 284:1805-1811 [1999]). The present study investigated the role of AMPA GluR1 in working memory. Using male GluR1-/- mice, we examined the functional significance of this receptor subtype in a rewarded alternation task on the elevated T-maze, a measure of spatial working memory. Performance on the 1-maze was dramatically impaired by GluR1 deletion (varients: 81.0%, mutants: 50.8% F(1, 26)=5.84, p<0.0001). We then tested the same GluR1-/- mice on the standard version of the Morris water maze task, a measure of spatial reference memory. In agreement with the previous study, performance in the Morris water maze was unimpaired; there was no difference between GluR1-/- mice and controls on a probe test with the hidden platform removed (wild-types: 44.8%, mutants: 46.9% F(1, 26)=0.57, p=0.42). These results support an important role for AMPA GluR1 in spatial working memory but not in spatial reference memory.

Keywords: AMPA, GluR1 (GluR-A), Working memory.

Na⁺ ions may be an important second messengers acting via GlpY

Rishal I. and Dascal N.

Dept. of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Avi69978

The G-protein activated inwardly K⁺ channels (GIRK) mediate postsynaptic inhibitory effect of various transmitters in brain and in arium via 7-helix, G-protein coupled receptors (GPCRs). GIRKs are normally activated by neurotransmitters via direct binding of GlpY subunits released from Giβγ heterotrimers. However, GlpY is also activated by extracellular Na⁺. An antibody in the proximal C-terminus of GIRK2 (D226N) is crucial for the gating by Na⁺ (Ho et al, J. Biol. Chem. 274: 8539-8648 [1999]). Surprisingly, a channel composed of GlpY1 and NαBARK (GIRK2 and NαBARK) is a single point mutation, that abolishes the direct Na⁺-dependent activation of GIRK) behaves in the same way as wild-type channel. Na⁺ influx increases I Na of GIRK1/2 and GIRK2/NαBARK, an effect that is strongly affected by cGARK and is fully eliminated when I Na-train is given in the presence of tetrodotoxin (TTX). In excised Xenopus oocyte membrane patches, elevated Na⁺ activates a GIRK1/1β/γ channel (which, unlike the GIRK1/1γ, is able to form functional homotetrameric channels), in a manner sensitive to this effect. GIRK2/NαBARK activation is Gβγ-dependent. To explain the above results, we proposed that Na⁺ causes the release of Gβγ from Gβγ-binding proteins and, thus, elevates free Gβγ concentration. Direct binding experiments showed that GIRK2 is a high affinity Gβγ-binding protein, supporting our hypothesis. Thus, an important conclusion from the work done so far is that there are two processes of GIRK activation by Gβγ: one direct and other Gβγ-dependent and that Na⁺ may be an important second messenger acting via GlpY.

Keywords: Na⁺, GIRK channel, G protein.

Voltage Dependent Ionic Currents in the Octopus Arm Muscle Fibers.

Rokni D. and Hochner B.

Dept. of Neurobiology and Interdisciplinary Center for Neural Computation, Institute of Life Sciences, Hebrew University, Jerusalem 91904

The octopus arm is a model for studying the motor control of flexible arms. In a previous study we characterized the synaptic inputs and membrane properties of the octopus arm muscle cells (Matzner et al, J. Neurophysiol: 83: 1315, 2000). In order to better understand the transformation of neural signals into muscle action, we characterized the ionic currents in dissociated muscle cells, which were then incorporated into a HH type model. By applying a discontinued whole cell voltage clamp technique to these isopotential cells, we found three types of ionic currents: a Ca⁺ current, a transient K⁺ current, and a late Ca⁺-activated K⁺ current.

Keywords: Voltage Dependent ionic currents, Octopus arm muscle fibres.

The role of ERK1/II in late phase LTP

Rosenblum K., Voss K. and Bliss T.

Brain Research, Haifa University, Haifa 31905, Israel. 2Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.

Inhibitors of extracellular regulated kinase (ERK1/II), in common with inhibitors of protein synthesis, affect long-term memory without impairing short-term memory. Previous studies have shown that ERK1/II activity modulates the initial as well as subsequent levels of LTP obtained by tetanic stimulation. To dissociate between the roles of ERK1/II in early and late plasticity we recorded the field EPSP in CA1 region of the hippocampus for at least 4 hours post-tetanus and applied the MEK inhibitor PD98059 (35µM), either 40 min before or immediately after the tetanus. In slices exposed to PD98059 40 min before the induction of LTP there was a significant reduction in the potentiation 20 min post-tetanus (52±8.8% versus 62±5.9%, p<0.01). The potentiation of the drug-treated slices continued to decline over the following four hours (26±7.1% compared to 54±4.2% in the control group after 60 min, p<0.05, and after 240 min 18±6.3% compared to 43±5.7% in the control group after 60 min, p<0.05). In slices exposed to PD98059 immediately (2 min) after the tetanus there was no significant differences between control and the drug treated slices 20 or 60 min after induction (62±4.9% versus 45±11% respectively at 20 min, p>0.05, 54.7±4.2% versus 41.6±7% at 60 min, p>0.05), but potentiation was significantly greater in control than in drug treated slices when measured 240 min post induction (48±4.6% versus 18.5±6.3%, p<0.005). Thus, ERK1/II activity is needed for the full expression of both early and late LTP.

Keywords: Long term memory, Synaptic plasticity, Gene induction
A physical liquid processor
Rothem A., Melamed O. and Markram H.
Dept. of Neurology, Weizmann Institute for Science, Rehovot

A recent model shows that the dynamical state of recurrent networks embeds a continuous input across multiple time scales, solving the fundamental problem of temporal integration. In this system, readout neurons can train to retrieve information across any combination of time-scales in order to solve complex temporal processing tasks. The dynamical state of the recurrent neural network was equated with physical perturbations in a liquid. We therefore explored whether it is possible to use an actual physical liquid as a recurrent neural network and tested the capability of such a system to process sound information. Sound was translated into a mechanical vibration, which was then used to perturb the surface of water in a chamber. The perturbations on the surface of the water were captured using a video camera. The movie of perturbations was digitized and each pixel value was used to scan the current was injected into a parallel set of readout neurons at each moment in time. The synapses onto the readout neurons were trained using a modified perceptron learning rule, to generate a target output which represented a specific computation on the sound input. We tested the system as a standard voice recognition tasks, as well as complex temporal integration and memory retrieval tasks. We will present data showing how a physical liquid can act as a universal analogue processor and show how such a system can solve complex temporal processing tasks.

Keywords: Liquid computing; Physical processor; Temporal processing; Sound and voice processing

β-endorphin mediates rewarding effects of cocaine: a neurochemical, fMRI and behavioral study
Roth D., Aleli M., Pelleg G. and Yadid G.
Faculty of Life Sciences, Bar-Ilan University and Dept. of Medical biophysics and Nuclear Medicine, Hadassah Hebrew University Hospital Jerusalem

The mechanism that leads to hedonism and motivation involved in drug craving is poorly understood. β-endorphin is an endogenous opioid peptide that acts as a neuromodulator and neurotransmitter in the central nervous system. The neurons in the brain that synthesize and release β-endorphin are predominantly located in the nucleus accumbens (N.A.C) and projects a dense innervation to the nucleus accumbens (N.A.C). Although β-endorphin is known for its analgesic effect it also has rewarding properties. Thus, leading to the hypothesis that β-endorphin may be spontaneously released in the brain not only in response to pain but also as a result of reinforcement and hedonia. We used in vivo microdialysis to simultaneously record monoamines and regional release of β-endorphin in the brain following cocaine exposure. Our results demonstrate that acute exposure or self-administration of cocaine stimulates the release of β-endorphin in the N.A.C and the N.A. We also used functional magnetic resonance imaging (fMRI) to correlate with our neurochemical measurements using the blood oxygenation level-dependent (BOLD) contrast fMRI technique. Our results show significant focal signal increases in the N.A.C and the Ar.N following cocaine exposure. In order to realize the crucial role of the endophytic system in cocaine seeking behavior, we conducted a behavioral analysis using the self administration technique. Specific lesioning of the hypothalamic endorphinergic neurons abolished the cocaine-seeking behavior of the rats. These results suggest that the endophytic system of the Ar.N may be implicated in the brain circuitry mediating cocaine-induced reinforcement.

Keywords: β-endorphin, Cocaine, fMRI

Brain mapping in vicinity to lesions: differential probing of tissue by functional and diffusion weighted MRI
Dept. of Anesthesia, Pain and Neural Research, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

Programmed cell death, or apoptosis, plays a very important role in nervous system development during embryogenesis and postnatal life. The interplay of different proapoptotic and antiapoptotic factors is necessary for the regulation of the final count of neurons in the developing brain. It is hoped that the use of these techniques will findings on one hand, and additional connectivity information on the other hand. It is hoped that the use of these techniques will improve brain surgery outcome by decreasing behavioral side effects.

Keywords: Pre-operative mapping, Clinical fMRI, Diffusion Tensor Imaging

Ketamine induces apoptosis in the developing brain in mice
Rudin M., Gazi I., Tashiiov V., Tender Y. and Katz Y.
Dept. of Anesthesia, Hadassah Medical Center, Jerusalem, Israel; Laboratory of Anesthesiology, Hadassah Medical Center, Afula, Israel; Laboratory of Anesthesiology, Pain and Neural Research, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

Programmed cell death, or apoptosis, plays a very important role in nervous system development during embryogenesis and postnatal life. The interplay of different proapoptotic and antiapoptotic factors is necessary for the regulation of the final count of neurons in the developing brain. Currently it is established that one of the key roles in synaptogenesis and neuronal survival is played by the ionotropic glutamate receptors. Activation of these receptors triggers neuronal death. The present study demonstrates that a non-competitive NMDA receptor antagonist, which is known as a dissociative anesthetic ketamine, and is widely used in the practice of anesthesiology, can result in excessive apoptosis in neonatal mice even with single-dose administration. Apoptotic effect was confirmed by observation of neurodegeneration (silver stain) and DNA fragmentation (TUNEL technique). The extent of apoptotic neuronal damage was clearly dose-dependent, but a remarkable increase in the rate of apoptosis was shown even after subclinical dose of ketamine (1.25 mg/kg). Use of high-dose ketamine caused widespread apoptosis, with lack of postapoptotic potentiation of formation of new synapses (demonstrated by reduced levels of synapsins I and II) that suggests long-term neuronal damage. In spite of the above morphological changes, no gross neurobehavioral effects, as determined by righting reflex, were detected. These results indicate that administration of ketamine in obstetric and pediatric practice could be a trigger of a pathological rate of apoptotic elimination of neurons that may have long-term consequences.

Keywords: Ketamine, Apoptosis, Neurodegeneration, Synapsins.

Learning-induced enhancement of synaptic potentials in pyramidal neurons: post synaptic modifications
Siar D., Grossman Y. and Barak E.
Dept.s of Physiology and Morphology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva

We studied the effect of olfactory learning-induced modifications in piriform (olfactory) cortex pyramidal neurons on the propagation of PSPs. Rats were trained to distinguish between odors in a pair, in an olfactory discrimination task. Three days after training completion, PSPs II pyramidal cells in piriform cortex brain slices by electrical stimulation of two pathways. Stimulation of layer II activated the intra-cortical fibers that terminate on the proximal region of the apical and basal dendrites. Stimulation of layer Ia activated the efferent fibers that originate from the olfactory bulb and terminate on the distal apical
dendrites. PSP rise time in neurons from trained rats was significantly shorter in both the intrinsic (2.64 ± 0.58 ms, n=26) and the afferent pathway (3.04 ± 0.49 ms, n=30, P< 0.05) compared to neurons from pseudo-trained (2.93 ± 0.62 ms, n=53, P<0.05 and 3.66 ± 0.98 ms, n=43, P<0.01 respectively) and naive rats (3.05 ± 0.51 ms, n=34, P<0.005 and 3.67 ± 0.63 ms, n=22, P<0.001 respectively). The post-burst AHP, that is generated by potassium conductance shunted the PSPs more efficiently in these neurons by an average of 30% in the intrinsic pathway and 53% in the afferent pathway. We suggest that in neurons from trained rats PSPs are generated electrotonically closer to the soma.

Keywords: Olfactory-learning, Pyramidal neurons, PSPs, Electrotonic distance

Minimal requirements for Gß6-mediated activation of G protein-coupled potassium channels using a tandem tetrameric approach
Sadik R.D. and Reuveny E.
Dept. of Biochemical Chemistry, Weizmann Institute of Science, Rehovot 76100

G protein-coupled inwardly rectifying potassium channels, GIRK/Kir3.x, are important elements in maintaining the resting potential of excitable cells. The gating of these channels mainly involves the association of the Gß6 subunits of the G protein, which are released upon stimulation of neurotransmitter receptors. In the brain, GIRK channels are responsible for slow postsynaptic inhibitory signaling and in pacemaker cells of the heart, GIRK form the muscarinic-gated atrial potassium channel (I_Ka), responsible for slowing of the heart rate. GIRK channels are believed to function as a tetrameric complex. Each of the channel tetrameric monomers was previously found to bind the Gß6 subunits followed by transduction of a conformational signal via the channel transmembrane domains to open the channel. It is still not clear how many Gß6 subunits are required for this action or what are the minimal channel elements involved in the gating process. We employed a tandem tetrameric approach to study these questions. We constructed a series of tetramers containing at various positions of channel elements from the G protein independent inwardly rectifying K channels and tested the ability of these tetramers to undergo gating by G protein coupled receptor stimulation. Our results indicate that tetramers containing less than the full complement of Gß6 binding domains can still undergo receptor mediated gating, suggesting that Gß6 gating stoichiometry is less than four.

Keywords: Ion channels, G proteins, Gating

Neuroprotective and neurorescuing properties of rasagiline and TV3326 in MPTP model of Parkinson's disease
Sagi N1, Yekutieli Y1, Hochner B1 and Yarom Y1
Depts. of Neurobiology and Cell and Animal Biology, Institute of Life Sciences, Hebrew University, Jerusalem

The mechanism of MPTP (1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine) selective dopaminergic neurotoxicity is associated with its metabolism by monoamine oxidase (MAO) -B to the active toxin MPP'. Selective MAO-B inhibitors, including rasagiline, protect against MPTP neurotoxicity in nonhuman primates and rodents (mice). The cholinesterase-MAO inhibitor anti-Alzheimer drug, TV3326, has been developed from the pharmacophore of the anti-Parkinson drug, rasagiline. It inhibits cholinesterase as a consequence of its carbamate moiety. This drug, on chronic treatment, is also a brain selective inhibitor of MAO-A and -B, while its optical isomer, TV3279, is devoid of this activity. We have examined the neuroprotective and neurorecovery properties of TV3326 in the mouse MPTP model. Chronic i.p. administration of TV3326 (75 or 150 µ mole/kg) or TV3279 (150 µ mole/kg) daily for 14 days prior to MPTP (24 mg/kg/day x 4 days) treatment, demonstrated total neuroprotection only with TV3326 by preventing the depletion of striatal tyrosine hydroxylase activity, dopamine and its metabolites DOPAC and HVA levels. This action of TV3326 can be explained by the observed inhibition of both brain MAO-A and -B (>75%) in these animals. Similar to other nonselective MAO inhibitors, it initiates dopaminergic behavioral syndrome in response to L-dopa. Thus, besides its possible anti-Alzheimer property, TV3326 might also have anti-Parkinson activity. This is not unwarranted since both selective MAO-A and MAO-B inhibitors (selegiline and rasagiline) have been shown to possess beneficial anti-Parkinson activities. Results of neurorescue by TV3326, TV3279 and rasagiline will be presented.

Keywords: MPTP, TV3326, Rasagiline, Neuroprotection

The role of GABA transporter in circadian chloride regulation in SCN neurons
Sagiv N1, Belenky M2 and Yarom Y1
Depts. of Neurobiology and Cell and Animal Biology, Institute of Life Sciences, Hebrew University, Jerusalem

The mammalian circadian clock, located in the suprachiasmatic nucleus (SCN), is composed of densely packed GABAergic neurons. We have previously shown that GABA has a dual effect on SCN neurons, excitatory during the day, and inhibitory at night (Wagner et al. Nature 387: 598-603 [1997]). This duality has been attributed to changes in intrinsic chloride selectivity along the circadian cycle. We have demonstrated that chloride is transposed into and out of SCN neurons by two mechanisms, the efficiency of which is object of the diurnal regulation (Wagner et al. J. Physiol (in press) [2001]). We investigated the role of the GABA transporter, GAT1, in regulating chloride concentration in SCN neurons. This transporter, located in the SCN on neuronal cell bodies, axon terminal both select MAO-A and MAO-B, translocates GABA along with chloride and sodium. We studied the decay time of an induced GABA current in the absence and presence of the GAT1 inhibitor SKF-89976A. The blocker caused elongation of the decay time constant, and had a larger effect on inward than on outward currents. We next investigated the influence of the blocker on the recovery of intracellular Cl- concentration. Loading or depletion of intracellular Cl- was induced by a prolonged GABA application, which generated either influx or efflux of chloride, depending on the membrane holding potential. Recovery was deduced from the change in chloride reversal potential calculated from the response to a test GABA pulse presented at 30sec delay after the first GABA pulse. Recovery from chloride depletion was slower in the presence of SKF-89976A. This effect was more evident during subjective night.

Keywords: GABA, SCN, Circadian, Transporter

Studying a control mechanism of the octopus arm extension using a computerized dynamic model
Sagi R1, Yekutieli Y1, Hochner B1 and Flash T2
Dept. of Neurobiology, Institute of Life Science and Center for Neuronal Computation, Hebrew University of Jerusalem 91904, Israel; 1 Dept. of Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

A two dimensional dynamic model of the octopus arm was developed in an earlier study. The model includes both external forces (gravity, buoyancy and water drag force) and internal forces (muscle forces and constant volume constraint force) and it is controlled by an activation signal - a simplified neuronal command of an activation wave that travels along the arm. The model was used to study a stereotypical motion of the octopus arm - the reaching movement where a bend in the arm travels towards the tip (Sagiv, et al. Eur. J. Neurosci., Vol 12 (suppl 11) p:99 [2000]). In the current study we introduce two issues. 1. The muscle model was upgraded from a linear- spring like model to a more realistic non-linear model based on experimental data. We show that during the simulated reaching movement the fully activated muscles proximal to the bend point work mainly in an isometric manner and the muscles distal to the bend point are passive. 2. We investigate the control possibilities of the extension motion in which two parameters are used: the maximal muscle force and the wave of activation to travel along the arm. We show that there is a relationship between these two parameters, which suggests a possible minimal force control scheme.

Keywords: Octopus, Motor-control, Dynamic-model, Muscular-hydrostatic.
The transition from inter-ictal to ictal like epileptic discharges is mediated by a calcium-activated cationic current. Schiller Y. Dept. of Neurology, Rambam Medical Center, Haifa

Epilepsy is characterized asymmetric inter-ictal spikes and synchronous inter-ictal seizures. The main difference between them lies in their duration. While inter-ictal spikes are produced by a single synchronized burst, epileptic seizures are composed of recurrent synchronized bursts lasting many seconds. The main goal of this study was to elucidate the cellular mechanisms that sustain ongoing synchronized firing during electrographic seizures. The study was performed in Bicuculline treated neocortical brain slices and recordings were performed using whole-cell patch clamp recordings from single neurons. A prolonged depolarizing envelope followed the entire course of current. It had an average amplitude of 12.7±1.1 mV an average half-width of 13.3±1.4 seconds and reversal potential of 5.4±2.4 mV (n=24). It was unaffected by changing the intracellular chloride concentration or adding mGluR blockers. The seizure-associated prolonged depolarization waveform (SAPDW) was dependent on the intracellular calcium concentration. The initial bursts of seizures were associated with large dendritic calcium transients (up to 70 nM). Addition of intracellular BAPTA eliminated the SAPDW and electrographic seizures (n=10). Similarly, FFA eliminated seizures in neocortical brain slices exposed to a magnesium-free extracellular environment (n=7). Involvement of T and B lymphocytes in the endogenous toxic amino acids NAPVSIPQ (NAP) that has shown neuroprotective features (Ann N Y Acad Sci, 897:125-135 [1999]) and the Aβ neurotoxin (J Neurochem, 72:1283-1293 [1999]). The current study was designed to find out whether NAP can block the aggregation of Aβ.

Methods used to evaluate aggregation: 1) Fluorimetry based on association with thioflavine-T. 2) High throughput screening method using synthetic amyloid-β well plate (Nature Biotech, 15:258-263 [1997]). This assay is based on aggregation of radio-labeled Aβ(1-40) and Aβ(1-40) coated plates (Synthaloid plates). 4) Congo red staining of rat cerebral cortical cultures. The experiments were conducted using either the Aβ fragment from (15-35) or the natural Aβ(1-40) fragment. In all the experimental paradigms, NAP had shown an ability to block or delay Aβ aggregation peaking at two concentrations: 10-5 M and 10-6 M. Thus, the protective action of NAP against Aβ may be due in part to peptide-mediated disruption of amyloid beta sheets.

Supported by: BSF, Neufeld, ISOA, Gildor Chair. The Synthaloid plates were from Biosource International, a kind gift from Dr. M. Scott, The R. W. Johnson Pharmaceutical Research Institute, Spring House, PA.

Keywords: Epilepsy, calcium, cationic current.

Learning-induced reduction in post-burst AHP is mediated by activation of PKC. Seroussi Y, Brosh I, Barkai E. Dept. of Morphology, Faculty of Health Sciences and Zlotowski center for Neuroscience, Ben-Gurion University, Beer Sheva

We have previously shown that pyramidal neurons in the rat piriform cortex from trained rats have reduced post-burst AHP for three days after odor-discrimination learning. In the present study we examined whether this long-lasting reduction in AHP is mediated by second messenger systems.

The broad-spectrum kinase inhibitor H7 (10 μM) increased the AHP in neurons from trained rats (averaged AHP amplitudes in GF were 4.4±1.24 mV, n=25 in N.S.R. to 5.89±1.00, n=11 in H7, P< 0.01), but not in neurons from pseudo trained (6.02±1.76, n=20 in N.S.R. compared with 6.08±1.53, n=11 in H7 and naïve (from 5.79±1.41, n=17 in N.S.R. compared with 6.64±2.1, n=12 in H7) rats. Consequently, the difference in AHP amplitude between neurons from trained and control animals was diminished. The specific PKC inhibitor GF-109203x (10 μM) significantly reduced the AHP in neurons from trained rats (3.66±1.18, n=7) but not in neurons from trained rats (3.30±1.25, n=12), so that the difference between the groups was abolished. The PKA-specific inhibitor H-89 (10 μM) increased the AHP in neurons from all groups to a similar extent, and the difference in AHP amplitude between neurons from trained rats and controls remained.

We suggest that while the post-burst AHP in piriform cortex pyramidal neurons is modulated by both PKC and PKA, a PKC-dependent process maintains the learning-related reduction of AHP in these cells.

Keywords: olfactory-learning, pyramidal neurons, post-burst AHP, PKC.

Activity-dependent change in large random cortical networks Shafrir G and Marom S. Dept. of Physiology, Faculty of Medicine, Technion, Haifa, 31096 Israel

In a recent study we have shown that large random networks of cortical neurons developing in vitro may be “trained” to express input-output relations using a simple closed-loop arrangement in which the network has a capacity to affect its own stimulation parameters (Shafrir and Marom, J Neurosci in-press; Marom and Shahaf, Q Rev Biophys in-press). During the training process, the functional connectivity, defined in terms of correlated activities with various time delays, changes in response to the stimuli. We are now characterizing the nature of the change in functional connectivity in the presence of repetitive stimulation. We show that activity-dependent change in the correlation between network activities follows a Hebbian-like rule. This Hebbian behavior is observed in correlated activities with time delays extending up to 100 milliseconds, demonstrating that there is a functional ordering of correlated activity which is experimentally induced. This results in a “learning” style corresponding to well-established experimental paradigms in which correlated activity follows a Hebbian-like rule. This Hebbian behavior is observed in correlation between network activities with time delays extending up to 100 milliseconds, demonstrating that there is a functional ordering of correlated activity which is experimentally induced. This results in a “learning” style corresponding to well-established experimental paradigms in which correlated activity follows a Hebbian-like rule. This Hebbian behavior is observed in correlation between network activities with time delays extending up to 100 milliseconds, demonstrating that there is a functional ordering of correlated activity which is experimentally induced. This results in a “learning” style corresponding to well-established experimental paradigms in which correlated activity follows a Hebbian-like rule.

Keywords: Activity-dependence, Cortical-networks; Hebb;
In studying the mechanism of the CNS, recent studies demonstrated that CNS secondary degeneration correlates with susceptibility to experimental autoimmune encephalomyelitis (Kipnis J et al., J Neuroscience 21:4564-4571[2001]). In studying the mechanism of action of protective autoimmunity at the site of injury and the way in which the endogenous autoimmune response is regulated, I found that site-specific recruitment of cellular elements of the innate immune response following optic nerve crush differs amongst susceptible and resistant rat strains in regards to EAE development. I also gained insight regarding the role of autoimmune T cell reactive to myelin proteins in activation of cellular elements innate immune response in the CNS. Further identification of each of the participants in the beneficial inflammatory process that occurs at the site of the damaged CNS and the molecular regulation will lead us to further understand the mechanism of "autoimmune" neuroprotection.

Keywords: Neuroprotection, EAE, Protective autoimmunity, Innate immunity.

Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder

Shalhubina A., Einat H., Szechtman H., Shimon H. and Belmaker RH.1,2
1Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva, Israel; 2Dept. of Psychiatry and Behavioral Sciences, McMaster University, Hamilton, Ontario, Canada

A potential model for bipolar disorder, quinpirole-induced biphasic locomotion, was used for a preliminary evaluation of behavioral effects of oral anticonvulsant treatment. Quinpirole, a D1/D3 agonist, induces a biphasic locomotor response starting with inhibition and followed by excitation, resembling the oscillating nature of bipolar disorder. The present study developed a paradigm for oral administration of anticonvulsants that resulted in therapeutic blood levels and tested the effects of treatment on the quinpirole-induced response.

Eleven days treatment with valproate (12 g/liter water), phenytoin (6 g/kg food), and carbamazepine (8 g/kg food) resulted in therapeutic blood levels and in a borderline significant reduction in hyperactivity without effects in the hypoactive phase. Valproate effects became more significant at the height of the hyperactivity response. Eleven days treatment with topiramate (30 mg/kg) resulted in a significant attenuation of quinpirole-induced hyperactivity, qualitatively similar to the effects of the other anticonvulsants. The results suggest that mood-stabilizing anticonvulsant drugs including topiramate may attenuate quinpirole-induced hyperactivity.

Keywords: Anticonvulsant, Bipolar, Topiramate, Quinpirole.

The role of the right ventromedial prefrontal cortex in empathy

Shamay-Tsoory S.G.,1,2 Tomer R.,1,2 Berger B.D.2 and Aharony-Perecman J.1
1Rambam Medical Center, P.O.B 9602, Haifa 31096, Israel; 2Dept. of Psychology, University of Haifa 31905

Patients with brain damage may show altered emotional and social behavior, such as lack of empathy in social situations, especially when the damage is located in the prefrontal cortex (PFC). However, the neuroanatomical basis of impaired empathy has not been studied in detail. The empathic response of patients with localized lesions in the prefrontal cortex (n=25) was compared to responses of patients with posterior (n=17) and healthy control subjects (n=19). Patients with prefrontal lesions were significantly impaired in comparison to posterior patients and healthy controls. However, among patients with posterior lesions, those with damage to the right hemisphere were impaired (though not as severely as patients with prefrontal lesions), whereas those with left posterior lesions displayed empathy levels similar to healthy controls. A comparison of lesion sizes of 8 patients with the most profound empathy deficit revealed that lesions in the right ventromedial area were significantly larger than the lesions in either the left or right dorsolateral region. Superimposition of lesions of these patients indicated an involvement of right ventromedial impairment in a subset of eight of nine patients. These findings suggest that prefrontal structures play an important part in a network mediating the empathic response and specifically that the right ventromedial cortex has a unique role in integrating cognition and affect to produce the empathic response.

Keywords: Prefrontal cortex, Empathy, Brain injury.

Nonlinear population codes in correlated neural networks

Shamir M. and Sompolinsky H.
Racah Inst. of Physics and Center for Neural Computation, Hebrew Univ., Jerusalem, Israel 91904

It is widely accepted that information in the cortex is coded in a distributed manner, an example of which is the broad tuning of neurons in M1 hand area, to the direction of voluntary reaching movements. Although the responses of single neurons are highly stochastic, it is often assumed that the system can overcome this noise by averaging over large populations of neurons. However, experiments show that considerable correlations exist in trial-to-trial variability of firing rates of different cells, and recent theoretical study suggests that these noise correlations limit the information capacity of the system. Hence, simple schemes such as the Linear Population Vector (LPV) are inadequate for extracting information from correlated populations. This raises serious questions regarding the utility of population codes in the brain. Here we study coding of information in the variances and cross-correlations of neuronal firing, in correlated populations. We show that the information embedded in the second order statistics of the neuronal responses is not suppressed by the presence of noise correlations. However, linear readouts are inadequate for extracting this information. A simple readout model, termed the Bilinear Population Vector (BPV), is proposed for extracting information embedded in neuronal correlations and variances. This readout is a nonlinear generalization of LPV. Assuming Gaussian statistics, we show that BVF is locally optimal for discrimination tasks. Application to directional coding yields that estimation error provided by BPV decreases inversely with the size of the system while the error of LPV saturates to a finite limit due to noise correlations. Finally we investigate plausible neuronal implementations of BPV.

Supported by the Israeli Science Foundation and the US-Israel BSF.

Keywords: Population coding, Fisher information, Nonlinear readout.

Effects of Postoperative Pain Management on the Immune Response to Surgery

Shavit Y.,1,2 Belian B.,2 Besliski M.,2 Trabekin E.,4 Maybord E.,2 Zeidel A.2 and Mordashov B.1
1Dept. of Psychology, Hebrew University of Jerusalem; 2Dept of Anesthesiology, and 3Research Institute, Rabin Medical Center-Goanza-Hasharon Campus, Petach Tiqva, and Dept of Anesthesiology, Schneider Children's Medical Center, Petach Tiqva.

Surgery is associated with immune suppression, which could affect infection rate, healing process, and tumor metastases disseminated during surgery. This suppression is the combined result of tissue damage, anesthesia, postoperative pain, and psychological stress. The present study compared the effects of several postoperative pain management techniques on immune alterations in the postoperative period.

Patients hospitalized for abdominal surgery were randomly assigned to one of three postoperative pain management techniques: Opiates on demand (intermittent opiate regimen, IOR), patient-controlled epidural analgesia (PCA-IV), and patient-controlled epidural analgesia (PCEA). Postoperative pain was assessed using the visual analogue scale. Blood samples were collected before, 24, 48 and 72 hrs following surgery. The following immunological assays were performed: Production of IL-4, IL-6, IL-10, IL-1, IL-12, IL-9, and natural killer cell cytotoxicity (NKCC), and lymphocyte mitogenic responses.

Patients of the PCEA group exhibited lower pain scores during coughing in the first 24 hrs postoperatively compared with patients of the IOR and PCA groups. Lymphocyte mitogenic responses were
In sheep, the mother-young relationship is characterised by the existence of individual recognition and the rapid development of an exclusive bond. The current research examined the role of the opioid system as a possible neurochemical mechanism in the establishment of individual recognition and the rapid development of their choice between their mother and an alien ewe. At 24 h, lambs in all groups (n=10-11/group). A single i.p. injection of the opioid receptor antagonist Naltrexone 1.5 mg/kg (Nalh) or 3 mg/kg (Nalt3) or a saline control, was administered within minutes following birth. Ewes and their newborn lambs were left undisturbed until 24h and 48h of age, when lambs were tested for their choice between their mother and an alien ewe. At 24h, lambs in the Nalt3 group spent less time near the mother compared to control (P<0.01) and Nalt1 treated lambs (P=0.05). Furthermore, both control and Nalh groups spent significantly more time near the mother than near the alien ewe (P<0.01 and P=0.05 respectively), while no statistical difference was obtained for Nalt1. Moreover, Nalt1 treated lambs tended to spend more time near the alien ewe. The effect of Nalt1 persisted at 48h. No other significant difference in the behavior of the lambs was observed during both tests. These results support the hypothesis that opioid receptors are involved in the establishment of the preference for the mother and that the formation of this unique bond can be impaired by a single injection of an opioid receptor antagonist at birth, depending on the dose given.

Keywords: Postoperative pain, Immunity, Cytokines, Opiates, Inflammation

The role of opiates in infant-mother bonding in sheep

Shaviv M.1, Nowak R.2, Keller M.3 and Weller A.4

1Dept. of Psychology, Bar Ilan University, Ramat-Gan, Israel; 2MR6073 CNRS/INRA/University of Tours INRA PRC, Nouzilly, France

In sheep, the mother-young relationship is characterised by the existence of individual recognition and the rapid development of an exclusive bond. The current research examined the role of the opioid system as a possible neurochemical mechanism in the establishment of individual recognition and the rapid development of their choice between their mother and an alien ewe. At 24h, lambs in all groups (n=10-11/group). A single i.p. injection of the opioid receptor antagonist Naltrexone 1.5 mg/kg (Nalh) or 3 mg/kg (Nalt3) or a saline control, was administered within minutes following birth. Ewes and their newborn lambs were left undisturbed until 24h and 48h of age, when lambs were tested for their choice between their mother and an alien ewe. At 24h, lambs in the Nalt3 group spent less time near the mother compared to control (P<0.01) and Nalt1 treated lambs (P=0.05). Furthermore, both control and Nalh groups spent significantly more time near the mother than near the alien ewe (P<0.01 and P=0.05 respectively), while no statistical difference was obtained for Nalt1. Moreover, Nalt1 treated lambs tended to spend more time near the alien ewe. The effect of Nalt1 persisted at 48h. No other significant difference in the behavior of the lambs was observed during both tests. These results support the hypothesis that opioid receptors are involved in the establishment of the preference for the mother and that the formation of this unique bond can be impaired by a single injection of an opioid receptor antagonist at birth, depending on the dose given.

Keywords: sheep – lamb – newborn – mother - opiates – Naltrexone

Growth morphology of two-dimensional insect neural networks

Shafi O.1,2, Ben-Jacob E.1, and Ayali A.2

1School of physics and astronomy and 2Dept. of Zoology, Tel-Aviv University,

We are studying the morphological development of neural networks in order to understand the rules that govern network self-organization. Two-dimensional in vitro networks generated from cultured locust ganglion cells offer an attractive model system due to the large size of the neurons, and their ability to grow in relative isolation as well as to develop elaborate networks.

We focused on two aspects of network formation. First, we characterized the morphology of the single neuron, and studied the effects of neuronal vicinity on the neuron's growth pattern. Second, we investigated the dynamics of the neuronal growth. We followed the timing and sequence of events leading from single isolated neurons to an interconnected network using time lapse techniques. We tested for possible pre-determined growth patterns, and for the effect of neuronal vicinity on the basic patterns.

Our results demonstrate the presence of some predetermined growth characteristics together with a strong effect of neuronal vicinity. In the absence of external stimuli (no close neighbor cells), growth cones split, demonstrating a preferred branching angle. This preferred angle gave rise to a much wider, environment-dependent range of angles in the presence of neighboring neurons.

During the growing process, growth cones connected to self or non-self neurites. As connections stabilized, tension was generated along the neurites. The structure of the single neurons as well as the network as a whole simplified as the network matured. Fully developed networks were characterized by the generation of large cell clusters connected by nerve-like structures.

Keywords: Self-avoidance, Self-organization, Growth morphology, neural network, Culture, Locust

A genetic haplotype shared by Jewish patients suffering from vacuolating megalencephalic leukodystrophy relates to an ancestral mutation in the MLC1 gene

Shinar Y., Ben Zeev B., Englister Y. and Pras E.

Sheba Medical Center, Tel Hashomer

The criteria for the diagnosis of this newly defined autosomal recessive neuro-degenerating disease are: gross motor delay and megalencephaly from infancy, slow motor deterioration and a typical pathologic image of brain white matter. Twelve Israeli patients presented with variable disease severity and with heterogeneous neurological symptoms. Following the localization of the responsible gene to a 2 cM region on chromosome 22q by Topol et al. we screened the DNA of the Israeli families at this interval with 8 polymorphic markers including 5 newly developed ones. Analysis of linkage between the disease and these markers narrowed the disease locus down to the 530,000 base pairs at the telomere of 22q (LOD score 5.95 was obtained at the STS9510 marker site (θ=0.0)). All of the Libyan and Turkish Jewish carrier chromosomes shared a common haplotype composed of the three most telomeric markers, suggesting a common founder. Recently Lecoeur et al. identified AAA0027 at 22q12 as the disease gene (MLC1) in most affected families. We have sequenced the entire coding region of this gene and detected a 291G→A substitution at the extremity of exon 2 in the Jewish patients. The mutation leads to the substitution of glycine by glutamic acid (G59E) within a predicted transmembrane region of the putative protein. The phenotypic disease variability in these patients clearly indicates that other factors are involved in determining the final phenotype. In an Agrawali-indian patient of a consanguineous family we have detected a single base pair insertion within exon 2, leading to a frameshift in translation of 13 amino acid codons. In a patient of a mixed Ashkenazi-Libyan ancestry we found the G59E mutation on the Libyan chromosome, however, no sequence variation was yet found on the Ashkenazi chromosome. Parental screening is now available for the Israeli affected families.

Keywords: Leukodystrophy, Linkage analysis, MLC1 mutation, Myelin

Layer I of neocortex inhibits underlying laminae

Shlosberg D. and Amitai Y.

Dept. of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva

Mammalian cortical layer I is essentially white matter, consisting of axons of sub- and intra-cortical origin, as well as adjacent tufts of pyramidal neurons. A prominent feature of layer I is an extensive plexus of GABAergic axons that can be traced down to smooth stellate cells in other laminae (Martinozzi cells). We postulated that the integrated effect of layer I on the underlying cell populations is an inhibitory one. Field potentials were recorded from mouse brain slices using two extracellular electrodes placed at least 1 mm apart in layers II-III while electrical stimulation was delivered alternately to the two corresponding cortical columns. Recordings were made prior to and following layer I dissection.

In control conditions, the removal of layer I did not result in any epileptiform phenomena. However, larger field potential amplitudes were observed following stimulations at control-equivalent intensities. When inhibition was partially blocked by low concentrations of the GABA_A receptor blocker bicuculline (5-60µM), the removal of layer I resulted in a significant rise in the propagation velocity of an epileptic field potential, and a significant reduction in the threshold stimulus intensity required to generate these events. There was no change in either parameter following layer I dissection when GABA_A-mediated inhibition was completely blocked (picrotoxin, 100 µM).

Our results show that removal of layer I renders the underlying cortical cell populations greater excitability, implying that layer I confers a net inhibitory influence upon them.

Keywords: Epilepsy propagation, Martinozzi cells, Dendritic inhibition.
Neuroprotective Role of 2-Arachidonoyl Glycerol, an Endogenous Cannabinoid, in Brain Injury

Shohami E., Panikashvilli D., Simeonidou C., and Mechoulam R.
Dept. of Pharmacology and Dept. of Medicinal Chemistry and Natural Products, The Hebrew University School of Pharmacy, Jerusalem

The metabolic arachidonic acid cascade is triggered in the brain after injury and some of its products contribute to brain damage. However, protective mechanisms are also set in motion, and reports suggest that 2-arachidonoylglycerol (2-AG), an endocannabinoid identified in recent years, may contribute towards neuroprotection. In the present study we investigated: 1) The temporal changes of 2-AG in mouse brain after closed head injury (CHI). 2) The neuroprotective effect of exogenous 2-AG, and 3) the role of CB1 receptor in this effect. Methods: 1) Mice were subjected to CHI using a weight-drop device. At various time intervals (1-24h) after CHI their brains were removed, lipid extraction and separation were performed and 2-AG was identified and quantified using GC-MS analysis. 2) 2-AG (0.1-10mg/kg) was injected after CHI, and its effect on edema (water content), clinical recovery, infarct volume (TTC staining) and hippocampal cell viability (H&E) were evaluated. 3) CB1 antagonist (SR-14176A) was injected with 2-AG and edema was evaluated at 24h. Results: 1) A massive increase in 2-AG levels was found peaking (~10-fold) at 4h. 2) 2-AG significantly reduced brain edema and infarct volume, improved clinical recovery and increased neuronal survival. In the presence of 2-linoleoylglycerol and 2-palmitoylglycerol, 2-AG improved clinical recovery even at 1 mg/kg. This is known as the “entourage” effect. 3) The protective effect of 2-AG was abolished by the CB1 antagonist, demonstrating selectivity. Conclusions: We suggest that 2-AG may represent a novel endogenous neuroprotective pathway, and serve as a basis for a therapeutic approach to the untreatable condition of brain trauma.

Keywords: Traumatic brain injury; Endocannabinoid, Neuroprotection

Failure of fluoxetine to inhibit olanzapine - induced body weight gain and leptin stimulation in schizophrenic patients

Shitai B.1, Gil-Ad I.1, Poyurovsky M.2, Nechmad A.,1, Maayan R.1 and Weizman A.1
Lab Biological Psychiatry, Felsenstein Institute Pethah-Tiguva 49100 and Tel-Aviv University; 2Tirat Carmel Hospital, Haifa

Weight gain and increased adipose tissue are undesired side effects frequently associated with the treatment of olanzapine (Zyprexa) and other atypical neuroleptics in schizophrenic patients. Previous work has suggested that for the olanzapine-induced weight gain is its serotoninergic (5-HT) and histaminergic receptor antagonistic activity. Fluoxetine (Prozac), a selective serotonin reuptake inhibitor (SSRI), enhances central 5-HT activity and was reported to lower food intake and leptin levels. The aim of the study was to evaluate the effect of combined administration of fluoxetine and olanzapine on weight gain and on hormonal profile in schizophrenic patients. Thirty schizophrenic patients (21 men and 9 women) during first episode of schizophrenia were studied. Patients were treated with olanzapine (10mg/day) with either fluoxetine (20mg/day) or placebo for eight weeks. Body weight was registered and blood samples were taken before initiation, and at the end of the study for the determination of prolactin, cortisol, TSH, Leptin, and serum serotonin. Our data showed that olanzapine treatment caused a significant increase in body weight in both placebo and fluoxetine co-treated patients. The increase in body weight was accompanied by a significant increase in leptin levels (from 4.3 to 10.0mg/ml and form 5.1 to 11.2ng/ml) in the olanzapine+placebo and olanzapine + fluoxetine groups respectively. Serum serotonin levels slightly increased after olanzapine, and significantly decreased after the combined olanzapine+ fluoxetine treatment. No significant difference was recorded in prolactin, cortisol, and TSH serum levels. Our data suggest that SSRI are ineffective in preventing olanzapine-induced increased body weight gain, and that this undesired side-effect is independent of olanzapine 5HT2 receptor antagonistic activity.

Keywords: Olanzapine, Fluoxetine, Weight gain, Leptin.

Functional correlation maps in neocortical microcircuits

Silsberg G., Wu C.Z. and Markram H.
Dept. of Neurobiology, Weizmann Institute of Science, Rehovot

The neocortex consists of a diverse set of neurons intricately and precisely interconnected to form a recurrent microcircuit. The anatomy and physiology of the individual neurons and synaptic connections have been studied extensively, but the manner in which these neurons are active with respect to each other (their functional relationship) is however, not known. We developed an approach based on correlated sub-threshold synaptic activity to explore these functional relationships. Simultaneous multiple neuron whole-cell recordings were obtained from different neurons in rat neocortical slices and synaptic input was recorded before, during and after the network was stimulated with a solution containing high [K+] and lowered divalent ions. Cross correlations of the sub-threshold membrane potential during network excitation were used to represent functional relationship between neurons. The electrophysiological identity of the different neurons was obtained from a detailed electrophysiological investigation and the anatomical identity was obtained after loading cells with biocytin and 3D anatomical reconstructions. The study reveals characteristic functional correlations between neurons depending on the type of neurons involved and the underlying synaptic architecture. We found that the functional correlations can also be used to predict detailed microcircuit properties. We conclude that this approach offers new potential insight into the functional structure of the neocortical microcircuit during activation.

Keywords: Multineuron recordings; Subthreshold correlations; Neocortex; Microcircuitry

Acoustic and linguistic priming effects interact to create efficient language processing

Sinn A. and Pratt H.
Evoked Potentials Laboratory, Technion- Israel Institute of Technology, Haifa

Brain potentials were recorded from native Hebrew (first language) speakers that also speak English (second language), using 21 scalp electrodes. Stimuli were word pairs from seven linguistic categories: words and pseudowords in Hebrew and English, words in English and Hebrew pronounced with the other language accent and words played backwards. Acoustic and linguistic parameters (phonemic envelope, pre-voicing, vowels, consonants) were controlled and balanced. Peak amplitudes and latencies of potentials to the response to the second word in the pair were measured, analysis of variance was conducted on peak measures and low resolution electromagnetic tomography analysis (LORETA) in the time frames around the ERP peaks. Results from both analysis methods indicate early (from around 100ms after stimulus onset) differences in processing of the same words according to the preceding word’s category. When preceded by words played backwards those differences were greater than all other categories and resembled the mismatch negativity (MMN) component. The differences were located to temporo-parietal regions.

Conclusions: Auditory processing from its early stages affected by previous context including acoustic and semantic features of the previous stimulus.

Keywords: Priming, Second language, ERP’s, LORETA

Analysis of M2 muscarinic receptor knockout mice reveals the mechanism that controls acetylcholine release

Slutsky L.1, Wess J.2, Gomez J., Parnas L.1 and Parnas H.1
1The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, Dept. of Neurobiology, The Hebrew University, Jerusalem, Israel; 2Laboratory of Neurotransmitter Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.

Neurotransmitter release (amount and kinetics) in fast synapses is considered to be controlled by [Ca2+]. However, recent studies suggest that the action potential may play a direct role in determining the kinetics of release by a mechanism which involves presynaptic autoreceptors. In this study, we used the mouse phrenic-diaphragm preparation as a model system to provide direct experimental support for this novel concept. Experimental manipulations that affected [Ca2+] greatly changed the amount but not the kinetics of acetylcholine release in wild-type mice. In contrast, in mutant mice lacking functional
Homocysteine-reducing strategies in schizophrenia
Stahl Sz, Levine J. and Belmacker RH.

Ben Gurion University of the Negev, Beer Sheva

Elevated plasma homocysteine has been found to be a risk factor for Alzheimer’s disease as well as in cerebral vascular disease, suggesting that some risk factors can accelerate or increase the severity of several CNS. Kratz et al, J Neurosci 20:6920-6 (2000) reported that homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. An oral methionine load was classically and experimentally demonstrated in acerbate schizophrenia and is of course converted to homocysteine.

Two strategies can be used in order to lower plasma homocysteine level. One enhances the methylation of homocysteine by exogenous administration of folate and B-12 (cobalamin).

Another uses low methionine diet, thus enhancing the formation of methionine from homocysteine, leading to reduced levels of homocysteine.

Therefore, we are screening chronic schizophrenic patients in our catchment area for plasma homocysteine levels and collecting a 10cc blood sample for plasma homocysteine on 150 patients. The highest 25% of plasma homocysteine will be offered a treatment trial of folic acid and B-12 plus a low methionine diet or placebo tablets plus a control diet in a blind randomized fashion. The low methionine diet is similar to a vegetarian diet. The control diet will be vegetarian with supplement disguised to preserve double blind. Diet treatment will last 3 months and 10-15 patients are expected to enter and complete each arm of the study. Psychiatric and psychometric rating scales will be administered every two weeks and plasma homocysteine measured. No changes will be made in patients’ ongoing neuroleptic treatment.

This poster presents homocysteine levels and preliminary results of the first stage of the survey.

Keywords: Schizophrenia, Homocysteine, Methionine low diet.

Prenatal Cyclic Psychosis in Female Adolescents
Stein D, Blumenstein R, and Wittuem E.

*The Chaim Sheba Medical Center, Tel Hashomer, *Ness Ziona Mental Health Center, *Ben Gurion University, Beer Sheva

Prenatal cyclic psychosis is an uncommon disorder, not included under accepted definitions of functional psychoses or the premenstrual syndrome. We present three 14-15 years female adolescents who developed an acute psychosis a few days before menstruation, which resolved completely upon bleeding or several days later, only to reappear with the following cycle. An extensive laboratory work-up did not show any significant physical disturbances. Psychotropic treatment had no effect on the course of the psychosis. Treatment with steroid hormones (progesterone) in the second half of the cycle in one patient, and with a combined progesterone/estrogen contraceptive agent in another resulted in full recovery within several cycles. The third patient showed a spontaneous remission within four cycles. Remission continued in all cases after discontinuation of hormonal treatment for a period of 1-4 years. We discuss several possible etiologies for this disorder including a cycloid non-specific affective disorder, a temporary functional hypothalamic-pituitary dysfunction, and the association of the pathophysiology of premenstrual cyclic psychosis with anovulation. We also discuss the role of psychotropic and hormonal treatment in this disorder.

Keywords: Psychosis, Menstruation, Affective disorders.

Homocysteine-reducing strategies in schizophrenia
Stahl Sz, Levine J. and Belmacker RH.

Ben Gurion University of the Negev, Beer Sheva

Elevated plasma homocysteine has been found to be a risk factor for Alzheimer’s disease as well as in cerebral vascular disease, suggesting that some risk factors can accelerate or increase the severity of several CNS. Kratz et al, J Neurosci 20:6920-6 (2000) reported that homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. An oral methionine load was classically and experimentally demonstrated in acerbate schizophrenia and is of course converted to homocysteine.

Two strategies can be used in order to lower plasma homocysteine level. One enhances the methylation of homocysteine by exogenous administration of folate and B-12 (cobalamin).

Another uses low methionine diet, thus enhancing the formation of methionine from homocysteine, leading to reduced levels of homocysteine.

Therefore, we are screening chronic schizophrenic patients in our catchment area for plasma homocysteine levels and collecting a 10cc blood sample for plasma homocysteine on 150 patients. The highest 25% of plasma homocysteine will be offered a treatment trial of folic acid and B-12 plus a low methionine diet or placebo tablets plus a control diet in a blind randomized fashion. The low methionine diet is similar to a vegetarian diet. The control diet will be vegetarian with supplement disguised to preserve double blind. Diet treatment will last 3 months and 10-15 patients are expected to enter and complete each arm of the study. Psychiatric and psychometric rating scales will be administered every two weeks and plasma homocysteine measured. No changes will be made in patients’ ongoing neuroleptic treatment.

This poster presents homocysteine levels and preliminary results of the first stage of the survey.

Keywords: Schizophrenia, Homocysteine, Methionine low diet.

Prenatal Cyclic Psychosis in Female Adolescents
Stein D, Blumenstein R, and Wittuem E.

*The Chaim Sheba Medical Center, Tel Hashomer, *Ness Ziona Mental Health Center, *Ben Gurion University, Beer Sheva

Prenatal cyclic psychosis is an uncommon disorder, not included under accepted definitions of functional psychoses or the premenstrual syndrome. We present three 14-15 years female adolescents who developed an acute psychosis a few days before menstruation, which resolved completely upon bleeding or several days later, only to reappear with the following cycle. An extensive laboratory work-up did not show any significant physical disturbances. Psychotropic treatment had no effect on the course of the psychosis. Treatment with steroid hormones (progesterone) in the second half of the cycle in one patient, and with a combined progesterone/estrogen contraceptive agent in another resulted in full recovery within several cycles. The third patient showed a spontaneous remission within four cycles. Remission continued in all cases after discontinuation of hormonal treatment for a period of 1-4 years. We discuss several possible etiologies for this disorder including a cycloid non-specific affective disorder, a temporary functional hypothalamic-pituitary dysfunction, and the association of the pathophysiology of premenstrual cyclic psychosis with anovulation. We also discuss the role of psychotropic and hormonal treatment in this disorder.

Keywords: Psychosis, Menstruation, Affective disorders.
action mechanisms of these genes, a transgenic mouse containing the coding sequence of the LATs was generated. Results and Conclusions: The transgenic mouse developed and grew well and no gross or histological abnormality was observed. Both LATs were expressed and spliced in neuronal (trigeminal ganglia, brainstem, brain) and non neuronal (liver, spleen, muscle) tissues. However, differential metabolism of these transcripts was observed in neuronal versus non-neuronal tissues, in association with the reactivation ability of the virus. At the time of abstract submission, in vitro experiments investigating the factors related to the ability of the LATs to protect the viral reservoir from constant cytopathic infections and to serve as a barrier that prevents recurrent herpes infection to penetrate the same ganglion, and spreads into the brain leading to herpes encephalitis will be presented.

Keywords: Herpes virus, latent infection, viral pathogenesis, nervous system

Activity-dependent neuroprotective protein promotes PC12 cell survival.

Steenstra R.A., Bremenen D.E.1,2 and Gozes I.1
1,2Dep. of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; 12SDMP, LDN, NICHD, NIH, Bethesda MD 20892, USA.

The human Activity-Dependent Neuroprotective protein (hADNP) is a 114 kD novel protein which was recently cloned (J. Biol. Chem. 276:706-714 [2001]). The ADNP transcript was recently enriched in the human cerebellum, cerebral cortex, hippocampus. In the present study, hADNP cDNA was subcloned into a vector that contains the VP22 protein, a Herpes viral protein that is able to penetrate through cell membranes. Thus, fusion VP22-proteins gain the capability of membrane penetration. The fusion protein, VP22-ADNP, was expressed in E. Coli and further purified. To address the question of cellular neuroprotection, the purified fusion protein was incubated with PC12 cells and was detected within the cells after a 40min. incubation period. Results showed that VP22-ADNP treatment protected against β amyloid peptide (Aβ) toxicity in PC12 cells. Furthermore, treatment with 300 μM H2O2 reduced PC12 cell survival to 47% as compared to control, while, incubation with 1 and 2 μg VP22-ADNP prior to the H2O2 treatment significantly increased cell survival to 65% or 75%, receptively. In order to examine if ADNP inhibits apoptosis caused by H2O2, the amount of the pro-apoptotic protein p53 was determined. H2O2 slightly increased p53 protein level while treatment with VP22-ADNP prior H2O2 significantly reduced p53 protein level. Moreover, treatment with VP22-ADNP alone reduced p53 level. These results suggest that ADNP has a role in supporting neuronal survival as well as protecting under stress conditions. Furthermore, this protection is via the inhibition of apoptosis.

Keywords: ADNP, Oxidative stress, Apoptosis.

Morphological studies of synaptic plasticity and learning in rat hippocampus

Stewart M.G.1,2, Eyre M.D.1 and Richter-Levin G.2
1Dept. of Biological Sciences, The Open University, Walton Hall, Milton Keynes. MK7 6AA UK; 2Dept. of Psychology, University of Haifa, 31905

The effects of spatial learning on hippocampal synaptic and neuronal structure in male Sprague-Dawley rats were examined 3, 9 and 24h after training in a Morris water maze. Control rats were either naïve animals or those exposed to swimming only without spatial learning. Ultrathin sections were prepared for electron microscopy and images taken from the middle molecular layer of the dentate gyrus granule cell dendritic field. Synapse density (Nv) and size of excitatory synapses were measured using unbiased counting techniques. Synapses were identified by the presence of a post-synaptic density and presynaptic vesicles, and were categorized as axo-dendritic or axo-spinous, and as perforated or non-perforated.

A significant increase occurred in non-perforated axo-spinous (NAS) synapse density in rats 9h after training compared to controls, but transient decrease, the reduction being greatest at 9h. A transient decrease also occurred in the mean apposition zone area per NAS synapse. Synapse to neuron ratio were calculated but was also showed a significant increase 9 hours after training for non-perforated axo-spinous synapses, as compared to controls. These results suggest a transient decrease of synaptic circuits occurs as a result of training in the water maze paradigm, the data contrasting with more subtle alterations in hippocampus which we found previously 5 days after water maze training (Rusakov et al, 1995, Neuroscience 68(1), 77-27), or the longer term alterations 24h after LTP (Stewart et al Neuroscience 2000, 100(2), 221-227).

Supported by: BBSRC grant 504435

Coordinated action of rhythmogenic networks in the neonatal rat spinal cord.

Strass J. and Lev-Tov A.
Dept. of Anatomy & Cell Biology, The Hebrew University School of Medicine, Jerusalem.

The present work used surgical manipulations and drug application to specific regions of the spinal cord to test the longitudinal coupling between the limb and tail moving networks in isolated spinal cords of newborn rats. Rostrocaudal coupled activation of the locomotor and tail-moving networks could be obtained by application of 5HT/NMDA with or without dopamine, or by noradrenaline (NA) with or without NMDA to a single compartment bath, or to the thoracolumbar compartment of a dual chamber bath. Caudorostral spread of rhythmic activity was observed for tens of seconds when NA or NA/NMDA were added to the sacrocaudal compartment of the split bath. Surgical manipulations of the white matter funiculi revealed that propriospinal pathways traveling in the ventral, ventrolateral and lateral funiculi contributed to the rostrocaudal coupling between the two networks.

Stimulation of sacrocaudal afferents induced a robust rhythmic activity in the sacrocccygeal cord and in the flexor-dominated segments of the lumbar cord (L1-L3). Less regular rhythm was observed under these conditions in the extensor dominated L5 segment. Pressure ejection of calcium to specific sacral segments and surgical lesions of the white matter funiculi revealed that the rhythm induced by sacrocaudal afferent stimulation in the lumbar cord depended on efficacious synaptic activation of S3/S4, and on intact ventral funiculi.

In summary, coordinated limb and tail movements during various rhythmic motor behaviors are made possible by a strong coupling between the locomotor and tail-moving networks. This coupling is obtained by propriospinal pathways traveling in most of the white matter funiculi.

Keywords: Pattern generation, Spinal cord, Propriospinal pathways.

Evaluation of Donepezil in the Management of Schizophrenia with Associated Dementia

Styrer R., Bar F.1, Strous RD.1,2, Shaked J., Mendelson E.1, Schram J., Buchin J., Werber E.1, and Bleich L.1
1Beer Yaakov Mental Health Center, 2Asaf Harofeh Hospital, Sackler School of Medicine, Tel Aviv University

Background: Comorbidity schizophrenia and dementia is a common clinical phenomenon, however management of the coexisting illnesses remains inconclusive. Donepezil, a cholinesterase inhibitor, may be beneficial in the management of symptoms of Alzheimer Disease; a disease in which cholinergic pathways in the cerebral cortex and basal forebrain are well known to be compromised. Impaired cognition in elderly schizophrenic patients has been observed to be over two-thirds, however there are no published studies reporting the use of cholinesterase inhibitors in the management of schizophrenia and associated dementia.

Method: Nine patients with chronic schizophrenia (6 residual, 2 paranoid, 1 undifferentiated, mean age 67) were administered donepezil (mean dose 7.5mg), mean treatment duration 20 days (for open pilot study) and 60 days (for double blind study). Patients were evaluated with MMSE, ADAS-Cog, PANS and the CGI scales. Results: Seven patients (4 in double blind, 3 in the pilot study) improved significantly according to the CGI. The MMSE improved from a score of 17.8 to 21.8 (p<0.05), ADAS-Cog improved from 27.5 to 21.3. PANS improved from 109 to 92 (p<0.05). Two patients showed no change.

Conclusions: Donepezil appears to be an effective treatment for the management of comorbid schizophrenia and dementia. Schizophrenia creates a vulnerable state in which even mild neuropathological degeneration is expressed in more severe cognitive impairment. Dementia associated with chronic schizophrenia may be based on a different neuropathophysiological mechanism compared to dementia not associated with schizophrenia. Cholinergic modulation may affect both positive and negative psychotic symptoms.

Keywords: Donepezil, Dementia, Schizophrenia
Decreases in synapses in mouse brain after head injury

Tashlykov V., Gazit V., Pick CG., and Katz Y.

1Laboratory of Anesthesia, Pain and Neuropathology Research, Bruce Rappaport Faculty of Medicine, Technion, Haifa; 2Depart. of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; 3Depart. of Anesthesiology, HaEmek Medical Center, Afula

Mild traumatic brain injury (MTBI) involves numerous metabolic and biochemical processes that may eventually lead to irreversible neuronal damage and death. Signaling events occurring in synaptic terminals are believed to play important roles in either promoting or preventing neuronal cell death in various physiological settings. This process correlates with mechanical and biochemical changes of synaptic vesicle membrane proteins. Using a non-invasive closed-head plummet drop model in mice, we found that low-weight groups (5, 10 and 20 g) had negligible microscopic changes in neurons or glial cells, but in high-weight groups (25 and 30 g) there was a prominent degree of apoptosis at 72 h post injury in the cingulated, temporal and frontal cortex areas. To understand the signaling events occurring in synaptic terminals due to neuronal cell death, we used Western blot analysis to measure isoforms of vesicle-binding neuronal phosphoproteins synapsins I and II (Syn Ia, Ib, Ila, Ifb). Brains were removed from mice after traumatic brain injury (n=6) and compared with brains obtained from non-traumatized mice (n=6). We did not find any change in levels of Syn Ib and Ifb. In general, Syn Ib appeared to have the most widespread distribution, which is identical with other synapse-specific proteins, meaning that there is no change in synaptic contact levels after MTBI. A decrease in Syn Ia and Ila levels in the high-weight groups (>20 g) may demonstrate a dysfunction of inhibitory synapses. We conclude that neurodegeneration due to MTBI is expressed by dysfunction of inhibitory synapses, without a change in synaptic contact levels.

Keywords: Neurodegeneration, Minor traumatic brain injury, Synapsins.

Aptoposis in traumatic brain injury in mice

Tashlykov V. 1, Gazit V. 1, Pick CG. 2 and Katz Y. 1, 3

1Laboratory of Anesthesia, Pain and Neuropathology Research, Bruce Rappaport Faculty of Medicine, Technion, Haifa; 2Depart. of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; 3Depart. of Anesthesiology, HaEmek Medical Center, Afula

Mild traumatic brain injury (MTBI) produces prolonged and lasting cognitive and emotional derangements, manifested as amnesia, concentration disability, depression, apathy and anxiety. We simulated MTBI state by applying a non-invasive closed-head plummet drop model in mice. Mice weighing 5, 10, 15, 20, 25 or 30 g were dropped from 80 cm height. Mice (6 per group) were decapitated at 1, 6, 24, 48 and 72 h post injury. Brains were stained with hematoxylin-eosin (H&E) to detect gross morphological damage and thereafter with silver staining and TUNEL to qualitatively determine degree and location of apoptosis. We also measured level of the p53 tumor suppressor gene, which is identical with other synapse-specific proteins, meaning that there is no change in synaptic contact levels after MTBI. A decrease in Syn Ia and Ila levels in the high-weight groups (>20 g) may demonstrate a dysfunction of inhibitory synapses. We conclude that neurodegeneration due to MTBI is expressed by dysfunction of inhibitory synapses, without a change in synaptic contact levels.

Keywords: Neurodegeneration, Minor traumatic brain injury, Synapsins.

Molecular basis of electrophysiological diversity of neocortical interneurons

Toledo-Rodriguez M., Wu C.Z., Luo J.Y., Mac S.L. and Markram H.

1Dept. of Neurobiology, Weizmann Institute of Science, Rehovot 76100; 2Dept. of Physiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv

Neocortical GABAergic neurons exhibit a daunting heterogeneity in electrophysiological properties. At least 15 major electrophysiological subclasses have been identified. This electrophysiological diversity is due to different constellations K+, Ca2+ and non-specific ion channels. Studies investigating the ion channel basis of the electrophysiological behavior have been limited to a few channels. Recently we have developed a series of single-cell multiplex RT-PCR protocols that allow the simultaneous investigation for the expression of over 30 voltage activated ion channel alpha and beta subunits at the single cell level. We have included virtually every channel subunit that may play a role in shaping the neurons electrophysiological behavior. Whole-cell patch clamp recordings were obtained from interneurons in neocortical slices, a detailed electrophysiological analysis carried out in which over 50 parameters of the passive and active properties of the neurons were obtained and cytoplasm was aspirated for subsequent single cell multiplex RT-PCR. During recording, neurons were also loaded with biocytin in order to allow subsequent 3D anatomical computer reconstructions, morphometric analysis and objective anatomical classification of interneurons. We will present the results of detailed correlations between mRNA profiles of ion channels and the different electrophysiological features of the cell as well as correlations between expression patterns and anatomically defined neurons.

Keywords: Single Cell RT-PCR, Ion channels, Interneurons, Electrophysiology.

Molecular profiles of anatomically and electrophysiologically characterized neocortical interneurons

Toledo-Rodriguez M., Luo J.Y., Wu C.Z., Mac S.L. and Markram H.

1Dept. of Neurobiology, Weizmann Institute of Science, Rehovot 76100

The neocortex is composed of a small fraction of highly diverse interneurons. These interneurons are diverse in terms of anatomical and physiological as well as biochemical properties. The biochemical properties have been assessed in terms of protein or mRNA expression profiles. Studies relating morphology and electrophysiological with molecular profiles have mostly focused on protein or mRNA for the calcium binding proteins, calbindin, parvalbumin and chlaretinin as well as the neuropeptides, vasoactive intestinal peptide, neuropeptide Y, somatostatin and cholecystokinin. Recently we developed a single cell multiplex RT-PCR protocol that allows the detection of mRNA encoding for a larger spectrum of biochemical markers in combination with a comprehensive quantitative anatomical and electrophysiological characterization of the neuron. We describe here an approach to characterize the anatomy of the cell that comprised of about 50 parameters of the axonal and dendritic morphology obtained by morphometric analysis of 3D reconstructed neurons. An e-Coder, with more than 50 parameters of the passive and active properties of the behavior of the neurons was used to as a biophysical marker of the cell type. The e-Coder was obtained from the mRNA expression profile which extended the above to include substance P, corticotropin releasing hormone, ca2+ion gene related peptide, dynorphin, proenkephalin, preproenkephalin, nitric oxide synthase and choline acetyltransferase. A detailed correlation between the g-, e- and m-Codes will be presented.

Keywords: Single Cell RT-PCR, Interneuron, Anatomy, Electrophysiology, mRNA.

Coordinated shuttling affects post session reward consumption and neurotransmitter metabolism

Tsai M., Youdim M.B.H. and Schuster R.

1Dept. of Psychology, University of Haifa; 2The Eve Tof and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Disease Research, The Bruce Rappaport Faculty of Medicine, Technion, Haifa

To explain why and how cooperation occurs, an 'INDIVIDUAL' perspective focuses on individual behavior and outcomes, while a 'SOCIAL BEHAVIOR' perspective focuses on the influence of the presence and behaviors of participants. We study cooperation using a model in which pairs of laboratory rats are rewarded with...
a saccharine solution for coordinating shuttles in a shared chamber with unrestricted social interaction. Previous research has shown that coordination and post-session consumption of the reward solution (PSRC) are both influenced by social interaction. We report here on evidence for adaptive changes in neurotransmitter systems selectively associated with social cooperation. A three-stage procedure was used: 1) baseline PSRC was measured in five groups maintained on water deprivation; 2) three groups were rewarded for individual shuttling; 3) the same three groups were rewarded as pairs. COOP-pairs were rewarded for coordinated shuttles; SOC-pairs were together but rewarded independently for individual shuttling; INDIV- continuation of Stage 2. A fifth group, CONT, were never rewarded and maintained in home-cage conditions. PSRC was measured throughout all stages. The COOP group alone developed coordinated shuttling and an increase in post-session reward consumption from Stages 2 to 3, demonstrating selective effects of coordinated shuttling and the ‘SOCIAL’ perspective. These data also point to physiological systems underlying cooperation. Results from HPLC analysis examine whether coordinated behavior is associated with adaptive changes in dopamine, noradrenaline, and serotonin function in the frontal cortex, hippocampus and striatum.

Keywords: Laboratory rat, Laboratory model, Social behavior, Coordinated behaviors, Social reward.

Plasmin modulates the axon guidance properties of F-spondin

Tzur-Nativ Y., Klar A., Dept. of Anatomy and Cell Biology, Hebrew University - Hadassah Medical School, Jerusalem

The floor plate has a profound influence on the initial axonal trajectory of various embryonic neurons. The commissural neurons are directed toward the floor plate by a diffusible molecule emanating from the floor plate. Motor neurons extend axons away from the floor plate due to repellent molecules present in the ventral neural tube. F-spondin, a gene expressed in the floor plate encodes secreted guidance protein. F-spondin plays a dual role in patterning axonal trajectory in the spinal cord. It promotes outgrowth of commissural axons and inhibits outgrowth of motor axons. The carboxy terminal half of F-spondin contains 6 thrombospondin type 1 repeats (TSR). The TSR domain is processed in vivo. Serine proteases activators, implicated in a variety of processes during neurogenesis, including cell migration, axon outgrowth, and synapse elimination, are also expressed in the floor plate during embryonic development. We demonstrate that plasmin cleaves F-spondin at its carboxy terminus. By using nested deletion proteins, and mutating potential plasmin cleavage sites, we have identified two cleavage sites – the first between the 5th and 6th TSR repeats, and the second at the 5th TSR repeat. The cleaved products of F-spondin have different properties and activities. The TSR 1-4 fragment, do not bind the extracellular matrix (ECM) and inhibit outgrowth of motor axons, while the 5th and 6th TSR bind ECM and promotes outgrowth. Thus, plasmin controls the dual activity of F-spondin by modulating F-spondin interaction with the ECM, and demarcates between the outgrowth promoting and inhibiting domains of F-spondin.

Keywords: Axon guidance, Plasmin, Extracellular matrix.

Neuronal adaptation in auditory cortex

Ulanovsky N., Ahud L. and Nelken I.

Dept. of physiology, Hebrew University - Hadassah Medical School, and the Interdisciplinary Center for Neural Computation, Hebrew University

Neuronal adaptation has been only very sparsely studied in the auditory system, although the lability of the responses of auditory neurons has been repeatedly noticed. To address this question, we presented 7 halothane-anesthetized cats with an oddball paradigm: blocks of tones at a standard frequency, in which tones with a deviant frequency were embedded. The probability ratios of standard/deviant (90/10, 70/30 and a control 50/50 case) and the frequency difference (4%, 10%, 3%) were manipulated. The activity of single neurons from primary auditory cortex (AI) and auditory thalamus (MGB) was recorded. We found that neurons in AI adapt differentially to the two frequencies, so that responses to the standard frequency are more depressed than responses to the deviant frequency. This effect is positively correlated with df magnitude and negatively correlated with deviant probability. Moreover, there is a significant effect even for df=4%, which is an order of magnitude smaller than the width of typical frequency tuning curves.

In MCB we observed lower neurons showing differential adaptation, and the effect was much weaker than in AI, suggesting that the adaptation is primarily cortical in origin. The observed frequency-specific adaptation is reminiscent of mismatch negativity (MMN), an event-related component implicated in change detection in oddball paradigms. We suggest that our data are the correlate of MMN at the single neuron level. More generally, these results show a strong form of stimulus-specific adaptation in auditory cortex. In contrast with visual analogs, we show super-resolution in frequency, the first such demonstration in the auditory system.

Keywords: Adaptation, Auditory cortex, Super-resolution, Mismatch negativity.

Seizures and alterations in peripheral-type benzodiazepine receptor protein components in the rat brain due to systemic kainic acid injections are attenuated by PK 11195

Yoemann I., Leschiner S., Spanier I., Weisinger G., Weizman A, and Gavish M.

Rappaport Family Institute for Research in the Medical Sciences, Technion, Haifa (MG, SL, IS, LV); The Endocrine Institute, Tel Aviv Sourasky Medical Center, Tel Aviv (GW); Geha Mental Health Center, Felsenstein Medical Research Center, Robin Medical Center, Bellinson Campus, Petah Tikva (AW)

Peripheral-type benzodiazepine receptors (PBR) are located in glial cells in the brain and in peripheral tissues. Mitochondria form the primary subcellular location for PBR. Functional PBR appear to require at least three components: an isoquinoline binding protein, a voltage dependent anion channel, and an adenine nucleotide carrier. In the present study, rats received intraperitoneal kainic acid injections, which are known to cause seizures, neurodegeneration, hyperactivity, glosis, and a 5 fold increase in PBR ligand binding density in the hippocampus. In the forebrain of control rats, hippocampal voltage dependent anion channel and adenine nucleotide carrier abundance was relatively low, while isoquinoline binding protein abundance did not differ between hippocampus and the rest of the forebrain. One week after kainic acid injection, isoquinoline binding protein abundance was increased more than 20-fold in the hippocampal mitochondrial fraction. No significant changes were detected regarding hippocampal voltage dependent anion channel and adenine nucleotide carrier abundance. Pretreatment with the isoquinoline PK11195, a specific PBR ligand, attenuated the occurrence of seizures, hyperactivity, and increases in isoquinoline binding protein levels in the forebrain, and usually follow kainic acid application. These data suggest that isoquinoline binding protein may be functionally involved in the effects of kainic acid injections.

Keywords: Epilepsy, Neurodegeneration, Peripheral-type benzodiazepine receptors.

Multi-unit activity in the dorso-medial prefrontal cortex during the extinction of learned fear in mice

Vouimba R.M., Garcia R., Baudry M., and Thompson R.F.

Dept. of Psychology, Haifa University, Haifa 31905 Israel, Laboratoire de Physiopathologie Universite de Nice-Sophia Antipolis, 06108 Nice, France, Neuroscience Program, USC, Los Angeles,CA 90089-2520, U.S.A.

A neutral explicit cue, such as a tone or a light, can become an aversive conditioned stimulus (CS), capable of eliciting freezing behavior, following its pairing with an aversive footshock. Repeated presentation of the CS in the absence of shock causes a reduction or elimination of freezing behavior to the CS. This process, called extinction of learned fear, is thought to involve cognitive learning: the CS is no longer reinforced. Recently, we showed that neurons in the dorso-medial prefrontal cortex (dmPFC) decrease their activity as a function of the degree of predictability of the CS (Garcia et al., Nature 18:294-296 1999).However, dmPFC HRM data have no effect on extinction learning per se (Vouimba et al., Behav Neurosci. 114:720-724 [2000]). We therefore hypothesized that dmPFC neurons may encode cognitive (i.e., the CS is no longer reinforced) but not emotional (i.e., emotional in freezing levels) aspects of the fear response. To examine this issue, spontaneous multi-unit activity in the dmPFC was recorded during extinction of conditioned freezing responses to either auditory or visual CS.
The results show that, while freezing behavior decreased gradually over days, multi-unit activity in the dmPFC was reduced only on the first day of extinction but returned to baseline levels on the following days. The data suggest that the neurons in the dmPFC mediate cognitive functions during the extinction of learned fear.

Keywords: Fear conditioning, Extinction, Multi-unit activity, Medial prefrontal cortex.

Activity-dependent neurotrophic factor (ADNF) and heat shock protein 60

Vulchanov I., Steingart R.A.1, Brodie C.2, Birk O.S.3, Brenneman D.E.4 and Gozes I.1

1 Dept. of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; 2 Gonda Center, Life Science, Bar Ilan University, Ramat Gan 52900, Israel; 3 Beer Sheva University, Israel; 4 Molecular and Developmental Pharmacology, LDN, NICHD, NIH, Bethesda, MD 20892, USA.

Femtomolar concentrations of ADNF and related peptides (ADNF14 and ADNF9) provide neuroprotection. ADNF14 and ADNF9 are structurally similar to heat shock protein 60 (hsp60) that is stimulated under stress conditions. Hsp60 antibodies mediate cognitive functions during the extinction of learned fear. Hsp60 antibodies produce neuronal cell death that is inhibited by ADNF (J. Clin. Invest. 97: 2299-2307 [1996]; J. Mol. Neurosci. 14: 61-64 [1996]).

A working hypothesis was put forth that vasoactive intestinal peptide (VIP) causes a rapid release of intracellular hsp60 and that hsp60 is processed to yield ADNF-like molecules. Results showed that astrocytes treated with antisense oligodeoxynucleotides complementary to hsp60 mRNA exhibited a significant reduction in the amount of intracellular hsp60-like protein (measured by Western blot analysis with specific hsp60 antibodies). When the same blots were treated with anti-hsp60 antibodies, no change was observed. In contrast, when ADNF-14 antibodies were used, a significant reduction in the ADNF-14,000 Dalton immunoreactive band was observed following hsp60 antisense oligodeoxynucleotide treatment. The reduction in ADNF-like immunoreactive band paralleled the reduction in hsp60-immunoreactivity.

Recent experiments, with transfected glioblastoma cells, including an hsp60 expression vector, indicated that increases in hsp60 resulted in increases in ADNF-like immunoreactivity. These studies are now extended to measurements of biological activity, using either co-cultures with the C6-hsp60 expressing cells and primary cortical neurons or with purified ADNF (14,000 Dalton)-immunoreactive protein from C6-hsp60 glioma cells. In both cases, ADNF-like neuroprotection was observed, against starvation-induced neurodegeneration caused by electrical blockade (tetrodotoxin), respectively. Thus, a direct association between hsp60 and an ADNF-like (14,000 Dalton) protein is suggested.

Support: ISF, BSF, Neufeld, ISOA, Gildor Chair.

Keywords: ADNF, hsp60, Antisense oligodeoxynucleotide, Glia

Patterns of Eye Movements During Motion Induced Blindness

Wagner M.

The Charles E. Smith National Institute for Psychobiology in Israel

Recently, Bonneh et al reported a phenomenon of “visual disappearance” observed with normal-sighted observers, in natural conditions. When a global moving pattern is superimposed on high contrast stationary stimuli, the latter disappear and reappear alternately for durations of several seconds. They termed the phenomenon “motion induced blindness” The MIB results provided by Bonneh et al showed that it is unlikely to reflect retinal suppression or sensory masking, but rather is a result of a conflict generated between cortical representations of dissociated stimuli which shifts the system dynamics into a winner-takes-all mode. Other alternative interpretations refer to attentional mechanisms, which cannot be allocated or divided between different representations at the same location, and at the same time, resulting in a reduced level of sustained attention, or alternatively competing attention mechanisms assigned to objects in space.

The purpose of this study was to investigate the attentional mechanisms underlying the MIB phenomenon as reflected by patterns of eye-movement. Utilizing the “EyeLink” eye-tracking system we have detected relatively small patterns and gaze-directions, with subjects’ reports of display component “disappearance” during a MIB situation. Study results have reveal affects of time schedule / eye movement dependence on target appearance and disappearance (e.g., likely preceded by a specific eye movement features) We have also reveal depth perception effects, which might be reflected by specific dynamic patterns of binocular convergence. Results support the view that attentional mechanisms underlie the MIB phenomenon.

Keywords: Eye-movements, MIB, Visual search 3D.

Autonomic function of α5 neuronal nicotinic acetylcholine receptors subunits

Wang N., Om-Utreger J., Chapman J., Rabiniwitz R., Nachman R., Korczyn A.D.

1 Dept. of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv; 2 Genetic Institute and Dept. of Pediatrics and Neurology, Tel Aviv Sourasky Medical Center and the Sieratzki Chair of Neurology, Tel Aviv University, Tel Aviv.

In 11 distinct subunits of neuronal nicotinic acetylcholine receptors (nAChRs), α2- α9 and β2-4), α5 subunit appears to have unique properties in their sequences and their combinations with other subunits. In the present study, a series of autonomic tests were performed in mice lacking α5 nAChR subunit (α5-/−) and their wild-type mice to characterize the properties of α5 nAChR subunits in vivo. The results showed that rectal temperature changes in an ambient temperature of 21 °C, during exposure to cold stress (6 °C) and following 30 mg/kg morphine were similar both in α5-/− and wild-type mice. All the mice showed normal pupillary size. Morphine (30 mg/kg) induced mydriatic effect was similar in the two strains of mice. Heart rate were not significantly different between the α5-/− and wild-type mice at rest, stressed by cage shaking, during exposure to cold stress or anaesthetized, although interestingly in both awake and anaesthetized mice the α5-/− mice had a slightly higher HR. An impairment of cardiac parasympathetic ganglionic transmission was observed during high frequency vagal stimulation. Deficiency of α5 subunits strikingly increased the sensitivity to a low dose of hexamethonium (Ca) leading to a nearly complete blockade of bradycardia in response to vagal stimulation as well as elimination of rebound post-vagal-stimulation tachycardia. Such a dose of Ca only slightly depressed the effects of vagal stimulation in control mice. Another strikingly different was that deficiency of α5 subunits significantly increased ileal contractile responses to carbachol and ephedrine, but not to dimethylphenylpiperazinium iodide and nicotine. Since it is well known that α5 subunits are integral parts of the normal ganglionic nicotinic receptors, their lack is well compensated for, presumably by the formation of other combinations. The results presented here suggest inhibitory effects of α5 subunits on affinity and sensitivity of agonists in the native receptors and imply that α5 subunits modulate the interactions between α5 and other α and β subunit nAChR in vivo.

Keywords: Autonomic nervous system, nAChRs, α5 subunit

The liquid neuron: a new perspective on single neuron processing

Wasserman A., Melamed O. and Markham H.

Dept. of Neurobiology, Weizmann Institute of Science, Rehovot.

Neurons are characterized by complex dendritic arbors that provide a surface to receive several thousand inputs. Despite several decades of intensive research, the main computational advantages of this complex dendritic structure remain obscure. A recent theoretical framework, termed “liquid computing” may provide new insight into the computational power of dendrites.

Liquid computing shows how information can be extracted in real-time from a dynamical system. While recurrent neural networks were studied as “liquid circuits”, this framework could in principle, also apply to any system, which exhibits complex inherent dynamics acting over multiple time scales. The characteristic of such a system is that the response to a series of perturbations rather than a series of stable states (such as in attractor neural networks) and that a readout element can be constructed to read from these perturbations. In this framework, liquids are ideal for temporal memory; the current state of perturbations represents all past inputs across a continuum of time scales. The liquid therefore provides an analogue environment for real-time readout. In single neurons, voltages detected by inputs interact to potentially generate a complex series of voltage perturbations. We therefore explored whether it is possible to view single neurons as a “liquid”. We explored two questions: First, whether the volleys present at different locations
in the dendritic tree could hold information about a spectrum of potential features of the input to the neuron. We employed differential synaptic transmission with a spectrum of synaptic dynamics in an attempt to extract information from the action potential trains. Simulations in NEURON, using computer reconstructed neurons obtained in experiments, as well as simulations in which readout elements are trained to extract information from these "liquid neurons" will be presented.

Keywords: Dendritic processing; Liquid neuron; Simulation

Neuroprotective and pro apoptotic gene expression profile of dopamine, R-apomorphine and EGCG in SH-SY5Y cell culture using cDNA microarray

Weinreb O.1, Levine V.1, and Youdim M.B.H.1

Eve Topf and US National Parkinson’s Foundation Centers of Excellence for Neurodegenerative diseases, Bruce Rappaport Family Research Institute and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa

cDNA microarrays provide new prospects to study and identify various mechanisms of drug action. The purpose of this study was to establish the mechanism of neuroprotective and pro apoptotic actions of dopamine (DA), R-apo and EGCG. Da and green tea polyphenol (-)-epigallocatechine-3-gallate (EGCG), which are radical scavengers. We have shown that DA, R-apo and EGCG demonstrated a bell shaped survival curve of SH-SY5Y cells. Thus at low concentrations (1-10 μM) they are neuroprotective, but at high concentrations (50-500 μM) they are pro apoptotic. We have examined gene expression using cDNA microarray. Total RNA was extracted from human neuroblastoma SH-SY5Y cells exposed to low neuroprotective and high toxic concentrations for 6.5 hours, followed by synthesis of first strand cDNA and hybridization to a customized cDNA expression array membrane consisting of only 25 genes related to apoptosis, survival and cell cycle pathways and confirmed by quantitative real-time PCR. After hybridization, chemiluminescence’s detection was performed by ImageMaster VDS-CL. The cells treated with high toxic concentrations of 50 μM R-apo and 500 μM DA, exhibited increased expression of pro apoptotic genes bax, caspase-3 and the cell-cycle inhibitor gene p21, whereas the anti apoptotic gene bcl-2 was decreased. On the contrary, the lower neuroprotective concentrations did not affect the expression of most of the genes analyzed. We have demonstrated that these drugs induce similar patterns of gene expression at their neuroprotective or pro apoptotic concentrations.

Keywords: R-apomorphine, Dopamine, Green Tea Polyphenol (-)-epigallocatechine - 3-gallate, cDNA microarrays.

Effect of chronic oral administration of TV3326, a monoamine-oxidase-cholinesterase inhibitor on the pressor response to oral tyramine in conscious rabbits

Weinreb O.1, Gorodetsky E.1, Wang R-H2, Weinreb O.2 and Youdim M.B.H.1

1Dept. of Pharmacology, Hadassah Medical School, Hebrew University of Jerusalem; 2Dept. of Pharmacology, Faculty of Medicine, Bruce Rappaport Family Research Institute, Eve Topf and US National Parkinson’s Foundation Centers for Neurodegenerative Diseases, Technion, Haifa

TV3326 inhibits cholinesterase (ChE) and monoamine oxidase (MAO) A and B in the brain but not intestine after chronic oral administration. It acts like an antidepressant in the forced swim test and causes a 2-fold increase in brain 5HT. The present study determined the effect of TV3326 on the blood pressure (BP) response to oral tyramine. Tyramine and MAO inhibitors were administered 30 min after a meal containing non-nutritive sweetener. Tyramine (10-100 mg/kg) was given to each rat. From these, the dose needed to increase BP by 30 mmHg (ED30) was determined before and after treatment with TV3326 (26 mg/kg/day) for 2 weeks; tranylcypromine (10 mg/kg) once; clorgyline (1 mg/kg/day) for 1 week; moclobemide (20 mg/kg) 3 times. ED30 mmHg was determined before and after treatment with TV3326 (26 mg/kg/day) for 2 weeks; tranylcypromine (10 mg/kg) once; clorgyline (1 mg/kg/day) for 1 week; moclobemide (20 mg/kg) 3 times. ED30 mmHg for all rabbits before treatment was 76 ± 10. TV3326 treatment decreased BP by 12.8 ± 1.6 mg/kg and TV3326 to 35 ± 5 mg/kg (P<0.01 compared to other drugs). All 3 drugs inhibited MAO-A in the brain by more than 90%. Tranylcypromine and clorgyline also inhibited intestinal MAO by 90-95%, but TV3326, by less than 10%. The decrease in ED30 mmHg by TV3326 was similar to that obtained with moclobemide, a reversible MAO-A inhibitor in clinical use, (28 ± 6). In conclusion, we suggest that TV3326, may be possible to give TV3326 to patients without diet restriction. Together with its ChE-inhibitory and neuroprotective activity, this asset makes TV3326 a potentially useful drug for the treatment of Alzheimer’s disease with depression.

Keywords: MAO-A inhibitors, Antidepressants; Tyramine; Blood pressure.

A corn-oil preload does not reduce intake in preweaning Otsuka Long Evans Tokushima Fatty (OLETF) rats, a strain lacking CCK, receptor

Weller A.,1 Hurwitz I.1 and Tishelovska L.1

1Dept. of Psychology and Interdisciplinary Program in the Brain Sciences, Bar Ilan University, Ramat-Gan, Israel.

We have reported in 15-18-day old Sprague-Dawley rats, that preloads of corn oil decreased intake significantly compared to preloads of mineral oil and that pretreatment with the selective CCK-Receptor antagonist devazepide significantly attenuates this effect (Weller et al., Physiol Behav, 62:871-874 [1997]). In the current study we tested the effect of TV3326, a potent and selective CCK-A receptor agonist, on the intake of OLETF rats, which lack functional CCK receptors due to a genetic abnormality, with intake of control (Long Evans Tokushima [LETO]) rats. Gastric preloads (5% BW) of 25% mineral oil or 25% corn oil were administered to 24-hr deprived 19-20-day-old rats, 5 minutes before a 30-minute intake test in which pups licked sweet, high-fat milk from the floor of a test chamber. Sham control rats did not receive a preload. Intake was assessed by percent body-weight gained. The pattern of previous results was replicated: LETO rats ingested significantly less after corn oil preload compared to after gastric oil preload. This effect of corn oil was not evident in OLETF rats. In addition, after the mineral oil preload OLETF rats ingested significantly less milk than LETO controls. The results provide convergent support for the role of CCK receptors in mediating fat-induced intake-reduction early in ontogeny. The increased responsiveness of OLETF rats to the non-nutritive yet volumetric and tactile stimulus of mineral oil requires further examination. (Supported by the US-Israel Binational Science Foundation).

Keywords: Independent ingestion, Fats, Satiety, CCK.

The role of interleukin-1 (IL-1) in tonic modulation of pain

Wolf G.,1 Yirmiya R.,1 Iverfeldt K.2 and Shavit Y.2

1Dept. of Psychology, Hebrew University, Jerusalem 91905, Israel; 2Dept. of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden

In this study we assessed the hypothesis that IL-1 signaling pathways are involved in tonic modulation of pain sensitivity, using two models of impaired IL-1 signaling; Mice with targeted deletion of the IL-1 receptor type 1 (IL-1r KO) and mice with targeted deletion of the IL-1 receptor type 1 (IL-1ra KO) and mice with transgenic overexpression of IL-1 receptor antagonist (IL-1ra) within the brain (IL-1ra TG). Pain sensitivity was tested using the paw-flick test and hotplate paradigms. In the paw-flick method, the latency to withdrawal of the hind-paw from a laser beam source is measured. In the hotplate test, the latency to either hind-paw licking or four-paw jump from a 55°C hotplate is measured. Each mutant strain displayed lower pain sensitivity compared with its wild type control. Paw-flick latency was 3.91 and 3.97 s in IL-1r KO and IL-1ra TG mice, respectively, compared with 3.26 and 2.66 s in their respective controls (p<.01). Hotplate latency was 23.21 and 23.58 s in IL-1r KO and IL-1ra TG mice, respectively, compared with 18.85 and 22.37 s in their respective controls (p<.01). Mice with targeted deletion of the p55 TNF receptor (TNFR1 KO) and mice with targeted deletion of interleukin-18 (IL-18KO) showed higher pain sensitivity compared to their respective controls. These findings may also be related to the pain modulatory effects of IL-1, because TNF-R1 KO mice may be more sensitive to IL-1 and IL-18KO mice may have higher TNF-a levels (TNF-a is known to induce IL-1 mediated hyperalgesia). These findings suggest that IL-1 signaling may be involved in tonic modulation of pain sensitivity.

Keywords: Interleukin-1 (IL-1), TNF, Pain.
Morphological, physiological, molecular and synaptic properties of Martinotti cells in rat somatosensory cortex

Yosef I., Shohami E. 1

1 Dept. of Pharmacology, Hebrew University Hadassah Medical Center, Jerusalem

Affiliation information

Late-phase LTP in the amygdala of the anesthetized and the freely behaving rat induced by polymodal cortical input

Yadin D, Vouima R.M. 1, Diamond D 2 and Richter-Levin G. 1

1 Dept. of Psychology and Neuroscience Program, University of South Florida.

Methods: 9 non-PTSD veterans with combat experience and 9 PTSD veterans participated in an fMRI study. Stimuli consisted of backward masked pictures with or without combat content. Pictures were presented for either 20, 40, or 80 msec, immediately followed by their scrambled picture for a total duration of 500ms, at a rate of 2Hz. 17 slices were acquired on a 1.5T, GE scanner. Subjects underwent psychophysical test of recognition. Data were analyzed, separately for amygdala complex and Lateral Occipital Complex (LOC).

Results: PTSD differed from non-PTSD veterans in their LOC response only at near threshold presentations, shown as a trend for interaction between stimuli duration and group (p<0.09). At near threshold presentations (i.e. 40 and 20 msec), PTSD veterans showed a larger fMRI signal for combat content than non-PTSD veterans (p<0.06, 0.02, respectively). In contrast, the amygdala complex showed an overall increased fMRI signal in PTSD compared to non-PTSD veterans that was unrelated to duration or content (p<0.01).

Conclusion: Sensitivity of LOC to combat content points to an experience dependant modification of perception. Such modification could differentiates between PTSD and non-PTSD veterans. Hyper-activation of the amygdala may be linked to hyperarousal phenomena in PTSD.

Keywords: Post Traumatic Stress Disorder, fMRI, Lateral Occipital Complex, Amygdala Complex.

Endogenous cytokines binding proteins are protective after brain injury

Yatsiv J. 1,2 and Shohami E. 1

1 Pediatric Intensive Care, and 2 Dept. of Pharmacology, Hebrew University Hadassah Medical Center, Jerusalem

Affiliation information

GO2 G-protein mediates rapid desensitization of the response to lysophosphatic acid in Xenopus oocytes

Yitzhaki I., Peli S., Dahan S., and Oron Y.

Dept. of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 699978

Stimulation of G-protein coupled receptors in Xenopus oocytes lead to the activation of phosphatidylserine-phospholipase C pathway, mobilization of calcium and gating of calcium-sensitive chloride channels. We have previously described rapid desensitization of these responses by exposure to threshold concentration of agonist (50 nM). We have now found that optimal agonist concentration. Lysophosphatic acid (LPA) elicits rapidly desensitizing (by ~70%) chloride responses in oocytes via stimulation of native LPA receptor(s). Approximately 80% of the LPA response appeared to be mediated by pertussis
toxin-sensitive G-proteins. In order to study the mechanism of rapid desensitization, we selectively depleted native G-proteins by injection of the G-protein antagonist pertussis toxin. The ASONS-caused depletion of Goz2 or Goz1 proteins resulted in 20 and 30% inhibition of the LPA response, respectively. While depletion of Goz2 had no effect on rapid desensitization, depletion of Goz2 resulted in a major decrease in desensitization (to ~20%). Similar results were obtained with pertussis toxin.

Using the activation of expressed cardiac inward rectifier potassium channel as a reporter, we demonstrated that LPA indeed activated Goz proteins at very low LPA concentrations and within 1-2 sec of exposure to the agonist. We concluded that Goz2 mediates only ~30% of the chloride response, it’s early activation by threshold LPA concentrations is responsible for ~70% of rapid desensitization.

Regulation and mechanism of amyloid precursor protein processing by rasagline and the anti Alzheimer drug TV3326 and its optical isomer, TV3279

Youdim M.B.H., Weinstock M. and Zalkind V.I.

Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Research and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa, and Dept. of Pharmacology, Hebrew University, Jerusalem.

Cholinesterase (ChE)-monoamine oxidase (MAO)-inhibitor TV3326, [(N-propargyl-(3R)-aminoindan-5-yl)-ethyl methyl carbamate] has been developed as an anti Alzheimer drug from the antiparkinson drug rasagline TV3326. It crosses both ChE and MAO-A and B inhibitory activities. However, it’s s-isomer, TV3279, inhibits ChE only. All three drugs have neuroprotective activities against a variety of insults in cell cultures and in vivo. The role of these drugs in the regulation of APP processing has been examined using rat PC12 and human SH-SYSY neuroblastoma cells and in vivo (rats and mice). TV3279, TV3326, and rasagline significantly stimulated the release of the non-amyloidogenic α-secretase form of soluble APP (sAPP) from both cell lines in a dose-dependent manner (1-100 μM). This was blocked by the hydroxamic acid-based metalloprotease inhibitor, Ro31-9790, suggesting that the effect was mediated via α-secretase activity. Using several signal transduction inhibitors, we showed that protein kinase C (PKC), mitogen-activated protein (MAP) kinase and tyrosine kinase-dependent pathways may be involved in the effect of TV3326 and TV2279 on the enhancement of α-secretase activity. TV3326 and TV3229 induced the phosphorylation of p44 and p42 MAP kinase, which was abolished by the specific inhibitors of MAP kinase activation PD98059 and U0126. Since the generation of sAPP precludes the formation of amyloidogenic derivatives, the demonstration, that the novel neuroprotective drugs TV3326, TV3279 and rasagline can stimulate the non-amyloidogenic α-secretase pathway suggests that these drugs may influence the basic pathogenic mechanisms underlying AD and could be of clinical importance for the treatment of the disease.

Keywords: Amyloid precursor protein, PKC, α-secretase, Cholinesterase-monoamine oxidase inhibitors.

Mitochondrial permeability transition (PT) pore as the site of neuroprotective activity of the anti Parkinson drug, rasagline and TV3326.

1Eve Topf and NPF Centers of Excellence for Neurodegenerative Disease Research, and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa; 2 dept. of Pharmacology, Hebrew University of Jerusalem; 3Institute of Applied Biochemistry, Gifu, Japan; 4National Institute of Longevity Sciences, Iachi, Japan.

The role of mitochondrial permeability transition (PT) pore in apoptosis, as induced by the endogenous neurotoxin, N-methyl-D-aspartate (NMDA), has been studied using dopamineergic neuroblastoma SH-SYSY cells in response to the antiparkinotic-neuroprotective drugs rasagline and TV3326. Induction of apoptosis by NMR2 (100 μM) resulted in dopamine membrane permeability and a fall in mitochondrial membrane potential (ΔΨm) as shown by release of Rhodamin 123 from mitochondria. This was suppressed by cyclosporin A (1 μM), a regulator of PT pore complex. The PT pore is composed of several proteins including Bcl-2, hexokinase, peripheral benzodiazepine receptor and adenosine nucleotide translocator. To clarify the regulation of PT by antiparkinotic protein family, Bcl-2 was over-expressed in SH-SYSY cells. This procedure resulted in complete prevention of the opening of PT pore as induced by protease isolated NMDR (NSC 359854) and pentobarbital (100 μg/ml). Furthermore, it is known that the opening of PT pore is dependent upon the presence of calcium and brain, the opening of PT pore was examined by the measurement of reduction in Rhodamin123 fluorescence. NSC 359854 opened the PT pore in a dose dependent fashion (1-500 μM) and which was delayed by the antiParkinson drug rasagline (1-100 μM) and the antiAlzheimer drug TV3326 (1-1000 μM). Both drugs increased the expression and Bcl-2 protein in SH-SYSY and PC12 cells. The results indicate that mitochondria determines the survival and death of neurons and that PT pore may be the site of neuroprotection by the drugs rasagline and TV3326.

Keywords: Rasagline, TV3326, Bcl-2, Mitochondrial transition pore, Memitochondrial membrane potential.

GABA_A receptor mediates general anesthesia following intracerebral pentobarbital microinjection

Zalkind V.I. and Devor M.

Dept. of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem.

Bilateral microinjection of barbiturates into a restricted part of the mesopontine tegumentum (the MPTA) induces atonia, bilateral loss of weight support and righting reflex, non-responsiveness to noxious pinch, EEG delta waves and apparent loss of consciousness. At low concentrations these drugs act at a specific barbiturate modulatory site on the GABA_A receptor (R). However, at the higher concentrations required to evoke anesthesia they may act non-specifically. Here we present evidence for specific action at the GABA_A-R. Guide cannulae aimed at MPTA were implanted surgically in rats. After confirming that unilateral pentobarbital microinjection (100 μg in 0.5 μl) induced general anesthesia, muscimol (100 ng in 0.5 μl), a selective GABA_A receptor agonist, was microinjected unilaterally through the same cannula 4-5 days later. Like pentobarbital, muscimol induced deep anesthesia, at short latency (1-3 min), including bilateral loss of righting reflex, flaccid atonia and analgesia (5 experiments, 4 rats). Anesthesia was not obtained following muscimol microinjection outside of MPTA (11 experiments, 8 rats). In 5 additional experiments (4 rats) bicuculline (25 ng in 0.5 μl) was microinjected unilaterally into the MPTA, followed 2-10 min later by pentobarbital at the same site. Whereas pentobarbital alone induced anesthesia, pretreatment with bicuculline prevented this. A lower concentration of bicuculline (10 ng in 0.5 μl) had a partial blocking effect. Surprisingly, microinjection of lidocaine (2%, 0.5 μl) did not induce anesthesia (15 unilateral trials, 11 rats), and pretreatment with bicuculline blocked the induction of anesthesia by pentobarbital (2 trial, 2 rats). The data indicate that anesthesia induced by barbiturate microinjected into MPTA is mediated by GABA_A receptors.

Keywords: Anesthesia, Bicuculline, Consciousness, GABA_A-R., Intracerebral microinjection, Muscimol
were examined by measuring the time required for each mouse to find a hidden platform in the second of 2 daily trials. When observing only adult male and female offspring, it was found that from the fourth testing day, the NAP-treated group showed improved performance, significantly better than their first day performance. In contrast, control group did not exhibit learning behavior in the water maze. This study indicates long-term NAP effects and future possibilities of using NAP as a prophylactic drug.

Zilberstein Y. and Ayali A.
Dept. of Zoology, Tel Aviv University, Tel Aviv 69978

Keywords: Trauma, Neuroprotection, Peptide, ADNP.

Long term learning deficits follow minor Traumatic Brain Injury in mice
Zohar O. 1, Schreiber S. 1, Getslev V. 1, Schwartz J.P. 2, Mullins P.G. 3, and Pick CG. 4

1 Blanche Meric-Kaplan Institute of Cancer Research, The Hebrew University, Jerusalem, Israel. 2 Dept. of Neuroscience, Biomedical Research Institute, carvington, Israel. 3 Department of Physiology and Pharmacology, University of Minnesota, Minneapolis, MN. 4 The Maurice H. Rubenstein Institute, Tel Aviv University, Tel Aviv, Israel.

Keywords: Trauma, Neuroprotection, Peptide, ADNP.

Immune activation during pregnancy leads to a post-pubertal emergence of an attentional deficit and a dopaminergic hyperfunction in the offspring: A novel neurodevelopmental model of schizophrenia.
Zuckerman L. 1, Rehavi M. 2, Nachman R. 3, and Weiner I. 4
1 Dept. of Psychology, Tel Aviv University, Tel Aviv 69978, 2 Dept. of Neuroscience, BioMed Research Institute, Carvinston, Israel. 3 Dept. of Psychology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978.

Keywords: Trauma, Neuroprotection, Peptide, ADNP.

5 Victims of minor Traumatic Brain Injury (mTBI) show no clear morphological brain defects. However, those patients frequently suffer lasting cognitive and emotional difficulties including various degrees of amnesia, difficulty with concentration, depression, and apathy, an awareness known as post-concussive syndrome. We adopted the non-invasive closed-head weight drop model in mice, to closely mimic real life mTBI. Following, 20, 25, or 30 g weight drop onto the mice skull we observed no brain edema, no morphological changes to the brain as assessed by MRI and no damage to the blood brain barrier. None of the experimental animals showed post trauma neurological deficits. To examine the effect of mTBI on the dopaminergic system of the mice we used the Morris water maze for 5 days on 90 days post trauma. At each time point, the animals were tested twice a day, for 5 consecutive days. In the second trial of day five the platform was removed and the time spent in the missing platform quadrant was recorded for 45 sec. The escape latencies of all the injured mice were significantly slower than control mice (p<0.01) and they spent 30% less time in the missing platform quadrant (p<0.001). Moreover, the injured mice could not improve their performance beyond the second trial, regardless of the experimental parameters. This demonstrates that persistent cognitive deficits in mice, similar to the human post-concussive syndrome, can follow mTBI without any morphological damage to the brain and its surrounding tissue.

Keywords: Trauma, Neuroprotection, Peptide, ADNP.

The locust frontal ganglion: a central pattern generator controlling foregut motor patterns in feeding and molting related behaviors
Zilberstein Y. and Ayali A.
Dept. of Zoology, Tel Aviv University, Tel Aviv, 69978

In the desert locust, Schistocerca gregaria, the frontal ganglion (FG) plays a key role in control of foregut movements and controls the motor source of dilator muscles. This work studies the generation and characteristics of FG motor outputs in two distinct and fundamental behaviors: feeding and molting. In an in vitro preparation, isolated from all descending and sensory inputs, the FG was spontaneously active and generated rhythmic multi-unit bursts of action potentials, which could be recorded from all effector nerves. Intracellular recordings suggest that only a small fraction of the FG neurons demonstrate rhythmic activity. Known insect neuromodulators as well as mot-related peptides were able to modulate the FG pattern in vitro. The FG motor output in vivo was relatively complex, and strongly dependent on the locust's physiological and behavioral state. Rhythmic activity of the foregut was found to depend on the amount of food present in the crop; animals with full crop demonstrated higher FG burst frequency than those with empty crop. When no feeding-related foregut pattern was observed, the FG motor output was strongly correlated with the locust's ventilation pattern. This ventilation-related rhythm was dominant in pre-molting locusts. During the molt synchronization with the ventilation pattern can be transiently switched off revealing the endogenous (feeding related) FG pattern. This presumably happens during vigorous air swallowing. Our results indicate the presence of a central pattern generator network in the FG. The FG pattern is modulated by chemical factors as well as by interactions with other pattern generating circuits.

Keywords: Frontal ganglion; CPG; Feeding; Molting; Ventilation pattern

Retarding and psychomotor stimulant effects of endomorphin-1: Centrally and peripherally: is endomorphin-1 a beta-endorphin analog?
Zilberstein Y. 1, Rehavi M. 2, Nachman R. 3, and Weiner I. 4
1 Dept. of Psychology, Tel Aviv University, Tel Aviv 69978, 2 Dept. of Neuroscience, BioMed Research Institute, Carvinston, Israel. 3 Dept. of Psychology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978.

Keywords: Endomorphine-1, Dopamine, Reward, Ventral Tegmental Area.

Microinjections of endomorphin-1 (0.1 - 1.0 nmol) into the sham-lesioned VTA of the same rats. Microinjections of endomorphin-1 (0.1 - 1.0 nmol) into the sham-lesioned VTA produced a robust locomotor stimulating effect, while the same doses into the lesioned VTA had no locomotor stimulating effect. On the other hand, the rats killed at lever-press for endomorphin-1 (0.25 nmol / infusion) into both the lesioned and the sham-lesioned VTA, although the rate of endomorphin-1 self-infusions into the lesioned VTA was lower than the rate of self-infusion into the sham-lesioned VTA. These data suggest that dopaminergic cells in the posterior VTA play roles in both the rewarding and the psychostimulant effects of endomorphin-1. While its psychostimulant effect appears to be dopamine-dependent, EM-1 appears to be to have a rewarding action in the VTA that is dopamine-independent.

Keywords: Endomorphine-1, Dopamine, Reward, Ventral Tegmental Area.

In recent years, prenatal exposure to viral infection has gained centrality as one of the environmental factors etiologically related to schizophrenia. It has been suggested that maternal immune response to viral infection in particular, to the pro-inflammatory cytokines released by the maternal immune system, may interfere with normal fetal brain development and thus predispose to schizophrenia. To test this hypothesis in rats, we studied the effects of maternal immune activation on in vivo striatal dopamine release and on latent inhibition (LI) in juvenile and adult male and female offspring. LI refers to retarded conditioning to a stimulus as a consequence of its repeated inconsequential preexposure, and disrupted LI models an attentional deficit in schizophrenia. Poly IC which simulates an in vivo viral response by inducing the release of pro-inflammatory cytokines, was administered on gestation day 15. When tested at prepuberal age the offspring of saline and Poly IC-treated dams exhibited normal LI and there were no differences in basal and KCl-induced striatal dopamine release. In contrast, adult offspring of Poly IC dams failed to show LI and this was reversed by antipsychotic treatment. Likewise, KCl-induced dopamine release was increased in the adult offspring. Thus, immune activation during pregnancy in rats led to a post-pubertal emergence of phenomena reminiscent of schizophrenia in terms of a putative inducing factor, temporal course, neurotransmitter dysfunction, cognitive impairment and responsiveness to treatment, supporting the hypothesis that maternal immune response to infection may be responsible for the interaction between maternal infectious pregnancy, altered neurological development and adult schizophrenia.

Keywords: Maternal immune activation; Latent inhibition; In- viro striatal dopamine release, Neurodevelopment
Submit your manuscripts at http://www.hindawi.com