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SUMMARY

Animal models are useful for characterizing
neural substrates of neuropsychiatric disorders.
Several models have been proposed for the
study of Attention Deficit Hyperactivity Disorder
(ADHD). The models can be divided into various
groups: (i) genetically derived hyperactivity/
inattention, (ii) animal models showing symptoms
after pharmacological intervention, and (iii)
those based on spontaneous variations in a
random population. Spontaneously hypertensive
(SHR) and Naples High Excitability (NHE) rats
show behavioral traits featuring the main
aspects of ADHD in humans but show different
changes in dopamine (DA) systems. In fact, the
enzyme tyrosine hydroxylase is hyperexpressed
in NHE rats and hypoexpressed in SHR. The DA
transporter is hyperexpressed in both lines,
although in the SHR, DAT activity is low
(reduced DA uptake). The DA levels in the
striatum and prefrontal cortex are increased in
the juvenile SHR, but are decreased in handled
young and non-handled older animals. The
mRNA of the D1 DA receptor is upregulated
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in the prefrontal cortex of SHR and down-
regulated in NHE. The D2 DA receptors are
likely to be hypofunctioning in SHR, although
the experimental evidence is not univocal,
whereas their mRNA is hyperexpressed in
NHE. Thus, in SHR both the mesocortical and
mesolimbic DA pathways appear to be
involved, whereas in NHE only the mesocortical
system. To understand the effects of
methylphenidate, the elective ADHD drug
treatment in humans, in a dysfunctioning DA
system, we realized a simple mathematical
model of DA regulation based on experimental
data  from electrophysiological, cyclic
voltammetry, and microdialysis studies. This
model allows the estimation of a higher firing
frequency of DA neurons in SHR rats and
suggests that methylphenidate increases
attentive processes by regulating the firing rate
of DA neurons.
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INTRODUCTION

The use of animal models in the study of
neuropsychiatric disorders is useful in the
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characterization of neurological substrates of the
main features of a given disorder. Moreover,
animal models can be necessary for testing new
pharmacological treatments and for studying the
mechanisms of action of already used drugs. To
this aim, an animal model should generally
reproduce symptomatic expression of the disease,
its treatment responses, and pathophysiology.

According to Davids et al. (2003), a model should

have (a) face validity, that is display fundamental

behavioral deficits found in the neuropsychiatric

disease, (b) construct validity, that is to conform a

theoretical rationale and (c) predictive validity or

an ability to predict unknown aspects of the disease.
Attention Deficit Hyperactivity Disorder

(ADHD) has been modeled using different

strategies. Several reasons argue for the use of

animal models in the study of ADHD.

1. First, the midbrain dopamine (DA) system,
which includes the ventral tegmental area
(A10, VTA) and the substantia nigra (A9, SN),
thought to play a central role in the
pathogenesis of ADHD, is relatively similar in
different mammals.

2. Second, the molecular targets of methyl-
phenidate, the main pharmacological treatment
of ADHD, are highly conserved in rats and
humans.

3. Finally, hyperactivity and inattention can be
measured in small laboratory animals like
rodents. Moreover, ADHD morphofunctional
substrates are likely to be the same in rats and
humans.

In particular, two main strategies have been
adopted: (i) selection of animals based on the
similarity of some of their behaviors to the human
symptoms, and (ii) lesions thought to reproduce
the pathogenesis of the human disease. Solanto
(2000) proposed that valid models of clinical
ADHD should include the following:

e a deficit in measures of attention and not only
hyperactivity;

e an improvement of both cognitive and motor
deficits by stimulants and other clinically
effective treatments in clinically plausible
doses,

e an immediate onset of action and lack of
tolerance or sensitization with repeated
administration of drugs used to treat ADHD,
and

e an effect of therapeutic agents on both DA and
norepinephrine (NE) systems.

The various animal models proposed for the
study of ADHD can be divided into those displaying
genetically derived hyperactivity/inattention, those
acquiring these changes after pharmacological
intervention, and those based on spontaneous
variations in a random population. The models
comprise mice, rats, and monkeys (see also
Comings, 2001; Davies et al., 2001; Davids et al.,
2003).

Most studies on animal models of ADHD
focus on changes in the catecholamine (DA, NE)
systems, but these may represent only part of the
neurobiological changes. As a matter of fact,
changes in other systems such as the hippocampus
(Sadile, 1993), the hypothalamic-hypophyseal axis
(Sadile, 1993; King et al., 2000), the NE system
(Russell et al., 2000; see also companion paper by
Viggiano et al., 2004 - this issue), cholinergic
(Russell et al., 2000; Viggiano et al., 2003b), and
serotonin systems (Gainetdinov et al., 1999;
Adriani et al., 2003) have been reported in some
animal models. In particular, many toxins that give
rise to a hyperDArgic behavioral profile (see also
Masuo et al., 2004 - this issue) are correlated to
peculiar changes in the cerebellar vermis
(Ferguson & Cada, 2003), which have been
reported to be present also in human ADHD
(Castellanos et al., 1996). In fact these models are
grouped overall as models with ‘cerebellar
stunting’ (Ferguson & Cada, 2003).

The correlation with such changes and the
changes in the DA system is unclear and has never
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been studied in detail. These changes, in fact, may
arise as independent alterations, or are the result of
a common cause or could be directly connected.

Here we review the neurophysiologic and
biochemical evidence for an alteration of the DA
system in two rat models of ADHD, spontaneously
hypertensive rats (SHR) and Naples High
Excitability (NHE) rats. Moreover, a unitary view
of the effects of methylphenidate in a hypothesized
dysfunction of DA system is addressed using a
simple mathematical model of the regulation of
DA at the synaptic cleft.

SPONTANEOUSLY HYPERTENSIVE AND
NAPLES HIGH EXCITABILITY RATS

The SHR strain was selected for familial
hypertension in Japan by Okamoto (1969) in the
early 1960s. Interestingly, the selection process
also resulted in behavioral hyperactivity, which
was subsequently disentangled from hypertension
by Hendley and Ohlsson (1991), producing the
Wistar-Kyoto (WKY) hypertensive (WKY-HT)
and WKY hyperactive (WK-HA) strains.

The SHR rat strain shows increased locomotor
activity compared with WKY rats during forced
exploration, that is in open field conditions (Tilson
et al., 1977; Hendley et al., 1985; Sagvolden et al.,
1993) in their own home cage and in simple mazes
(Lat maze) (Aspide et al., 1996). This hyper-
activity appears to be modulated by environmental
factors, as continuous handling can reduce the
locomotor activity in SHR below the level of
WKY controls (Ferguson & Cada, 2003). This
behavior has received a number of different
explanations, such as a loss of habituation in a novel
environment, altered emotional reactivity, and
delayed aversion, but its relevance has been
recently challenged. Recent longitudinal studies by
Ferguson et al. al. (2003) show normal locomotor
activity in an open field. Nevertheless, the
longitudinal design may impair the significance of

these findings as perinatal manipulation and
behavioral experience normally lead to reduced
hyperactivity in novelty situations. Multiple
evidence of the alteration of DA and NE (see
accompanying paper) systems in SHR has
emerged, although many reports show contrasting
results (see below).

On the other hand, NHE rats have been
selected for their higher exploration in the Lat
maze. They do not display hyperactivity in their
home cage (Sadile, 1993), whereas novelty induced
hyperactivity increases as a function of the
complexity of the environment (Sadile et al., 1988,
1993; Viggiano et al., 2002b, 2003b).

SYNTHESIS, CLEARANCE, CONCENTRATION,
AND EFFECTS OF DA IN ANIMAL MODELS

The expression of the tyrosine hydroxylase
(TH) gene encoding the rate-limiting enzyme in
the synthesis of catecholamines, including DA, is
normal in NHE and SHR rats (Fig. 1); the protein,

WKY  SHR

Fig. 1: Distribution of mRNA for tyrosine hydroxylase
(TH) in the ventral mesencephalon (mes), and
D1/D2 receptor mRNA in prefrontal cortex (PFc)
and striatum (Str) of NHE, NRB, SHR and WKY
rats as assessed by RNAase protection assay
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however, is upregulated in NHE and down-
regulated in SHR in the prefrontal cortex (PFc)
(King et al., 2000; Leo et al., 2003), whereas in the
striatum it is similar to their respective controls
(King et al, 2000), under basal conditions. This
difference was detected in young adult NHE rats
(Viggiano & Sadile, 2000, Viggiano et al,,
2002a,b; 2003a,b). Interestingly, TH mRNA is
down-regulated in the striatum in a bounded
postnatal period from P7 through P14 in SHR (Leo
et al, 2003). In the ventral mesencephalon, the
expression of TH mRNA is normal in both NHE
and SHR rats (Fig 1) when compared with their
respective controls.

The integral plasmalemmal protein dopamine
transporter (DAT) responsible for DA clearance is
hyperexpressed in both NHE (Viggiano et al,
2002b, 2003b) and SHR rats (Watanabe et al.,
1997), in the PFc, and, at least for SHR animals, in
the striatum. In synaptosomal preparations from
the striatum, however, the reuptake of DA by the
DAT is reduced in SHR compared with controls
(Leo et al., 2003). This would suggest that the
DAT is hypofunctioning in the SHR. Therefore, in
studies involving DA release from slices, the lower
reuptake leads to reduced DA release, thus
mimicking hypofunctioning DA  terminals
(Russell, 2003).

As a consequence, less DA is cleared from the
synaptic cleft and the tonic level of DA is higher,
as showed by microdialysis studies in juvenile
SHR animals (Howes et al., 1984; Carboni et al.,
2003). In contrast, the levels of DA in the striatum
are normal in NHE rats (Carboni et al. personal
communication), whereas no data are available
about the PFc.

Consistently, depletion of DA by 6-hydroxy-
dopamine lesion of the substantia nigra of SHR
decreases the magnitude of adult hypertension (van
den Buuse et al., 1985, 1986; Linthorst et al., 1994;
de Jong et al., 1995). Interestingly, intensive
postnatal handling can reduce the difference
between SHR and WKY in terms of the basal levels

of DA and locomotor activity (Ferguson & Cada,
2003; Ferguson et al., 2003), possibly due to a
reshaping of the neural networks (Sadile, 1999).
Unfortunately, the electrophysiological response of
DA neurons in the phasic and tonic mode has not
yet been explored in hyperactive models.

The DA receptors also show peculiar changes
in these hyperactive animals. The D1 DA receptor
is postsynaptic; therefore, its expression level can
be related to the effects of DA (Jackson et al.,
1994; Missale et al., 1998). D2 DA receptors are
both post and presynaptic, therefore related to
inhibitory and feedback effects. Strikingly, the
pattern of expression of the D1-D2 receptors is
very different in SHR and NHE rats. The D1
receptor protein and mRNA are hyperexpressed in
SHR (striatum and PFc) (Lim et al, 1989;
Kirouac & Ganguly, 1993; Watanabe et al., 1997;
Sadile, 1999), whereas in NHE rats D1 mRNA is
hypoexpressed in the PFc (Fig. 1) (Viggiano et al.,
2002b). The D2 receptors have been reported to be
hyper- (see also Fig. 1), hypo-, or normoexpressed
(Lim et al., 1989; Watanabe et al., 1989; Kirouac
& Ganguly, 1993; Linthorst et al.,, 1993; Sadile,
1999; Vaughan et al., 1999; Russell et al., 2000) in
the striatum of SHR, whereas their mRNA is
hyperexpressed in the striatum of NHE rats,
without changes in the PFc (Fig. 1). Some of the
conflicting results on the SHR (see also Table 1)
may be explainable by different experimental
setups or the age of the animals. The high genetic
heterogeneity of the WKY strain among different
commercial suppliers should also be considered
(Samani et al., 1989).

Therefore, the higher DA release in SHR is
accompanied by enhanced effects on a postsynaptic
site (D1), although whether D1 receptors are
normofunctioning in SHR is still being debated.
Conversely, in NHE rats, a higher DA release is
accompanied by lower postsynaptic effects (D1)
and enhanced feedback inhibition (D2).

Finally, the DA branches appear to be
differentially involved in SHR and NHE rats. In the
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TABLE I
SHR
| Target Change Brain region

Locomotor activity >(Hellstrand, 1980; Fuller, 1983; Ueno et al., 2002 2002; Fujita, 2003)

-(Ferguson, 2003; Yang et al., 2003)

<(Ferguson, 2003)
Attention <(Ueno et al., 2002)
TH <(King et al., 2000; Leo et al., 2003) PFc

-(King et al., 2000) Striatum
DAT >(Watanabe et al., 1997) Striatum
DAT function (reuptake) | <(Leo et al., 2003; Russell, 2003) Striatum
DA Juvenile animals, basal conditions: Striatum

>(Howes et al., 2002b, 2003b 1984; Carboni et al., 2003)

older animals or after handling:

<(Linthorst et al., 1991; Sutoo, 1993; Nakamura, 2001; Fujita, 2003)

-(Fuller, 1983; Yu, 1990; Inada, 1992; Ferguson, 2003)

>(Carboni et al., 2003) PFc
DA stimulated release <(van den Buuse et al., 1991; Yousfi-Alaoui, 2001; Russell, 2003) PFc, striatum
DIR >(Lim et al., 1989; Kirouac & Ganguly, 1993; Watanabe et al., 1997; Sadile, Striatum

1999)

-(Hellstrand, 1980; Watanabe et al., 1989; Linthorst et al., 1993)
D2 R (presynaptic) >(Lim et al., 1989; Kirouac & Ganguly, 1993; Vaughan et al., 1999; Striatum

Russell et al., 2000)

<(Sadile, 1999)

-(Watanabe et al., 1989; Linthorst et al., 1993)
Mesolimbic projection | - (King et al., 2000)
Mesocortical projection | < (King et al., 2000)
Hyperactivity after MPH | -(Yang et al., 2003)

<(Ueno et al., 2002)

NHE rats
see (Viggiano & Sadile; 2000; Viggiano et al., 2002a,b, 2003a,b) and Fig 1

TH > PFc

- Striatum
DAT > PFc
DA - Striatum
Dl <(mRNA) PFc

- (mRNA) Striatum
D2 - (mRNA) PFc

> (mRNA) Striatum
Mesolimbic projection |-
Mesocortical projection |>

<: decreased; >: increased; -: unchanged
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former, the mesolimbic branch has received more
attention, showing an anterior segmental defect
(Sadile, 2000), although the mesocortical one might
be involved as well (King et al., 2000). In NHE rats,
only the mesocortical branch appears to be
involved, being hypertrophic (Viggiano & Sadile,
2000; Viggiano et al., 2002a,b; 2003a,b). Therefore,
different changes in the DA machinery can be
correlated to hyperactivity or to different types of
hyperactivity. A direct translation of neuro-
biological changes into behavioral correlates is
difficult, however, given our poor understanding
of the actual gears of this machinery.

The psychostimulant drug methylphenidate
used in the treatment of ADHD has been widely
studied in these animal models (Wultz et al., 1990;
Sadile, 1999; Aspide et al., 2000; Russell et al.,
2000; Andersen et al., 2002; Fox et al., 2002;
Carboni et al., 2003; Ferguson & Cada, 2003;
Yang et al, 2003). Som e investigators have
postulated that mesencephalic presynaptic D2
receptors in normal animals are more sensitive to
low doses of direct agonists (Skirboll et al., 1979;
Carlson et al., 1987; Piercey et al.,, 1996). As a
consequence, a biphasic response to methyl-
phenidate results as low doses of DA agonists
would reduce tonic spiking and decrease motor
behavior (Carlsson, 1975; Strombom, 1975; Doare
et al., 1986), whereas high doses are sufficient to
activate directly post-synaptic receptors, thereby
increasing motor activity. Therapeutic doses of
methylphenidate, which are very low, should act to
decrease DA-catecholamine transmission (Seeman
& Madras, 1998; Solanto, 1998). Nevertheless,
some authors reported that the indirect-acting
stimulants methylphenidate (Ruskin et al., 2001)
and amphetamine (Piercey et al., 1996) do not
have a preferential action on D2 auto-receptors. In
fact, the injection of methylphenidate leads to a
dose-dependent decrease in the firing rate of DA
neurons, which can be reversed by the inhibition of
D2 receptors (Ruskin et al., 2001). Moreover,
methyl-phenidate also increases the excitability of

post-synaptic neurons (Ruskin et al., 2001). In vivo
methyl-phenidate increases the release of DA in
target regions (Kuczenski & Segal, 1989; Pehek et
al., 1990; Carboni et al., 2003).

In the next session, we will address the effects
of methylphenidate using a modeling approach.

MODELING THE REGULATION OF DOPAMINE
AT SYNAPTIC SITES AND THE EFFECTS OF
METHYLPHENIDATE

Several models of the DA system have been
proposed. Higher level models are mainly based
on the experiments by Schultz and collaborators
(Schultz et al.,, 1992) showing that DA neurons
increase their firing rate during unexpected
rewards (Schultz et al., 1997). Besides, bio-
physical models of the regulation of DA release
have been proposed (Cragg et al., 2001; Schmitz et
al.,, 2001; Schonfuss et al., 2001; Venton et al.,
2003; Viggiano et al. 2004), but they do not
address the effects on the firing of DA neurons, as
discussed below. The latter regulation, in fact, is
important when considering changes in the brain
of hyper-active animals and the effects of
methylphenidate.

In the striatum, the resting levels of extra-
cellular DA are 2 to 6 nM (Huff & Davies, 2002).
This concentration results from the balance
between the opposing processes of release and
uptake (Wightman, 1988, 1990). The general
equation describing this relation is given by
(Garris et al., 1994; Wu et al., 2001):

d[DA)/dt = d[DAJelease/dt — d[DA]yprake/dt (4]

where d[DA)/dt is the rate of change of
extracellular DA,
d[DA]etease/dt is the release rate, and
d[DA]ypuie/dt is the uptake rate by the DA
transporter.

The release of DA can be treated as a discrete
process, every firing event being associated with
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the release of a constant amount of DA, resulting
in an instantaneous increase in [DA]. Therefore,
the rate of DA release is determined by the firing
rate ( /) of DA neurons. Each spike will release a
constant (quantum) amount of DA ([DA],). Thus:

d[DA]reIease/ dt= [DA]p *f (2)

[DA], represents the concentration of DA after
a single spike.

The uptake of DA can be treated as a
continuous process following Michaelis-Menten
kinetics. The reaction scheme can be represented
with

k1 k2
DA + DAT ->DA-DAT > DAT +DA;
k-1

where DA; represents the concentration of intra-
cellular DA. The above reaction can also follow
the opposite direction, with DAT acting by
extrusion of DA into the extracellular space
(Falkenburger et al., 2001). This might take place
on DA neuron dendrites, where a special dendro-
dendritic communication has been shown.

Using the Michaelis-Menten law in a quasi-
steady-state approximation, we get:

d[DAJ/dt = Vmax * [DA] / ([DA] + Km) (3)
where Km is equal to:
Km=(k.| +k2)/k|

and is related to the affinity of DA for the
transporter and to its turnover rate, whereas Vmax
is a constant equal to:

Vmax = k2 [DAT]TO‘]‘

reflecting the number of uptake or transporters
sites.

Here [DAT]ror represents the total amount of
enzyme and is equal to:

[DAT]ror = [DAT] + [DA-DAT].

Because the rate of formation of DA, is equal
to the rate of DA internalization, we can write:

d[DAY/dt = - d[DA}/dt = - Vmax * [DA] / ([DA] + Km) (4)

Recent data suggest that the DAT also elicits
ion-channel-like currents, increasing the firing rate
of DA neurons in vitro after blockade of D1, D2,
and adrenergic receptors (Ingram et al., 2002). The
relevance of such a system in vivo is still being
debated. Moreover, the DAT can be regulated by
D2 receptors (Wu et al., 2002). In fact, the
inhibition of D2 receptors decreases the rate of
clearance of DA, but this effect is not evident after
DAT blockade. It should be noted that the
clearance of DA also depends on diffusion, as
shown by voltammetry studies in vivo after DAT
blockade. This mechanism of clearance is
dependent on the initial concentration of DA/D2
receptors and the firing rate, and is important just
after the release of DA, when DA reaches
concentrations in the micromolar range in the
synapse for very short times. The diffusion of DA
has been previously modeled (see e.g. Garris et al.,
1997; Cragg et al., 2001; Schonfuss et al., 2001;
Venton et al.,, 2003) and must be taken into
account if considering DA at the single synapse on
a very short time scale (after 40 microseconds)
more than 96% of DA has diffused out of the
synaptic site (Garris et al., 1994). However, here
we will focus on a greater space and longer time-
scales. Finally, some authors (Mercuri et al., 1997)
suggested that another important mechanism of
DA clearance is represented by monoamine
oxidase (MAO-a and MAO-b).

As here we were mainly interested in the
effects of methylphenidate, we did not include
diffusion, MAO, or DAT-linked channels in the
present simulation. The rate of extracellular DA
change during activity can be described by
combining Egs. (2) and (4) (see also Garris et al.,
1994; Wu et al., 2001):

d[DAY/dt = ([DA], * /) - ( Vmax * [DA] / ([DA] + Km))
)
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Estimations for [DA],, Vmax, and Km have
been previously reported. The Km and Vmax for
DAT have been estimated using synaptosome
preparations from different brain regions.
Interestingly, the Km is about four times higher in
the striatum than in the median eminence
(Annunziato et al., 1980, 1981, 1984). Similarly,
the Vmax is about five times smaller in the
striatum than in the median eminence (Annunziato
et al.,, 1980). Here we will analyze the striatal
interface, where Km has been estimated in a range
from 0.03 micromolar up to 2.3 micromolar
(Coyle, 1969; Annunziato et al., 1980; Paton,
1980; Sarkar et al., 1983; Near et al., 1988; Horn,
1990; Jones et al., 1995; Zahniser et al., 1999; Wu
et al., 2001), although values up to 8 micromolar
have been reported (Stamford et al., 1984). Such a
wide range can be explained by different
experimental sets. For the actual simulation we
used a value Km = 0.22 micromolar, which is
within the range reported by most authors.
Similarly, the Vmax of the DAT has different
values according to the brain region (Wu et al,,
2001). We used a value of Vmax = 3.8
micromolar/s, as reported by Wu et al. (2001).

At the steady state d[DA}/dt = 0.

As the concentration of DA in WKY rats has
been evaluated equal to [DA] =5.17nM (Carboni
et al., 2003) in the striatum, whereas the firing is
f=4.5Hz (Ruskin et al., 2001), it is possible to
calculate [DA], = 17nM. This value is below the
range of 89-250nM reported using cyclic
voltammetry. This technique is based on
microsensors of 15 micrometers diameter and
takes record of more than one axonal varicosity
that have a density of 10® synapses /mm’; (Pickel
et al.,, 1981; Garris et al., 1994). It allows the
determination of DA concentration released after
the artificial stimulation of DA fibers (thus setting
f to a fixed value), thus making possible to
evaluate [DA], However, on the one hand, the
artificial stimulation of neurons with an extensive
arborization, such as DA and NE, leads to a failure

of release at individual synapses 99% of the time
(Cunnane & Stjarne, 1984), thus preventing a
direct comparison between the frequency of
excitation and the natural firing frequency of DA
neurons. On the other hand, synapses fire more
asynchronously in the unstimulated animal than in
the stimulated one, causing a more rapid dilution
in the extrasynaptic space (Kawagoe et al., 1992;
Garris et al.,, 1994). Moreover, [DA], has been
suggested to change in relation to VMAT2
expression, D2 receptor stimulation, DAT activity,
and firing frequency (Garris et al., 1994; Pothos et
al., 2000; Ingram et al., 2002; Wu et al., 2002).
These effects might explain the difference in
[DA], calculated in our model or after artificial
stimulation (such as in voltammetry studies).

As a matter of fact, the firing rate of DA
neurons ( f') changes in vivo from pacemaker, to
random, to burst modes (Schultz, 2002). During
the burst mode, a transient rate exceeding 30 Hz
(Wightman & Robinson, 2002), a large, phasic
increase of DA is evident, whereas the tonic DA
release is due to random and pacemaker modes
(Paladini et al., 2003). The firing rate is also
regulated by the activation of D2 autoreceptors
(Schmitz et al.,, 2003). Dopamine binds to D2
autoreceptors forming the complex DA.D2, a
reaction that, at equilibrium, respects the Law of
mass:

[DA.D2],, = Bmax* [DA] / (K4 + [DA]) (6)

where Bmax = [DA]+[D2] represents the total
number of receptors, and Kd is the concentration
of DA required to occupy 50% of the receptors.
Estimates for Bmax and Kd in rat striatum are
Bmax = 0.5-2.3 pmol mg™' protein or 100 micro-
molar (Matres et al., 1985; Boyson et al., 1986;
Joyce & Marshall, 1987; Richfield et al., 1989;
Albert et al., 1990). Estimations for Kd are 7.4 to
43 nanomolar (Seeman et al., 1985; Richfield et
al., 1989; Albert et al., 1990) in the high-affinity
state, which comprises 74% of the binding sites
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(Richfield et al., 1989), and 4550 to 4300
nanomolar in the low affinity state (Seeman et al.,
1985; Richfield et al., 1989).

The DA.D2 receptor complex has multiple
effects, such as: (i) decreased amount of DA
released after a spike (Garris et al, 1994),
(ii) increased activity of the DAT (Cass & Gerhard,
1994; Schmitz et al., 2001, 2002; Wu et al., 2002),
(iii) regulation of potassium channels (Uchimura et
al., 1986; Lacey et al., 1988), and voltage-dependent
calcium channels (Cardozo & Bean, 1995), which in
turn  hyperpolarize the cell membrane, thus
decreasing the probability of DA release and the
firing rate of DA neurons (Einhorn et al., 1988;
Lacey et al., 1988; Mercuri et al., 1997; Ruskin et
al., 2001; Ingram et al., 2002; Paladini et al., 2003).
The first two effects are presynaptic and more
evident at target sites (e.g. the neostriatum,
accumbens, PFc). The third one takes place in the
nuclei of origin (VTA, SN) and is due to D2
autoreceptors on the soma and dendrites of DA cells
(Carlsson, 1975; Starke, 2001). In this case, DA
derives from axon collaterals, which form a
feedback, or from the same dendrites (Falkenburger
et al., 2001). Some have suggested that small doses
of D2 agonist would act primarily on these
autoreceptors, thus inhibiting the firing rate,
whereas D2 receptors on target sites would be
activated by higher doses of D2 agonists (Skirboll et
al., 1979; Ruskin et al., 2001).

We restricted the analysis to the effects on the
firing rate, as we were interested in low doses of
MPH:

dfldt = - A[DA.D2]) )

Experimental data (Skirboll et al, 1979;
Einhorn et al., 1988) would suggest, indeed, that
the spontaneous firing rate decays linearly with the
external concentration of DA. Therefore, the
above formula can be empirically simplified with:

dfldt = - k * [DA] 3)

The firing rate of DA neurons is also regulated
in vivo by a complex neuronal network comprising
GABA, glutamate, NE, acetylcholine, serotonin,
and nitric oxide influences (see e.g. (West &
Grace, 2000; Grillner, 2002)). For instance,
inactivation of the ventral pallidum enhances DA
release, resetting the steady state level to a new
point (Floresco et al., 2003). These influences are
not completely described from a quantitative
perspective. By blocking the D2 autoreceptors
(setting k=0), however, it is possible to study df/dt,
deriving empirically the sum of all these
influences. After blockade of D2 autoreceptor the
firing rate of DA neurons increases initially almost
linearly, until a new steady state is reached
(Einhorn et al., 1988; Ruskin et al., 2001).

We assumed that all these influences could be
described using a single parameter, DF (Driving
Force), which increases linearly the firing rate
when D2 autoreceptors are blocked:

dfidt = DF )
Combining equations (8) and (9) we get:
dfidt = DF - k * [DA] (10)

The appropriate value for DF can be
empirically derived by studying the rate of change
of DA neurons firing blocking D2 autoreceptors.
In our model we set DF= 1.5 spikes/s* (Ruskin et
al.,, 2001). Moreover, the basal firing rate of DA
neurons can be calculated from slice experiments,
in which all the connections are cut, in the presence
of a D2 inhibitor (DF=0, DA.D2=0, f~= const).
Under these conditions, f = 1.2+0.2Hz (Ingram et
al., 2002). Without D2 inhibition, in the presence
of DA, the firing rate rapidly drops to 0.1+0.1Hz,
as expected by Eq. (8). In vivo, where DAT, D2,
and DF are present at the same time, the typical
basal firing rate is about 5 Hz (Ruskin et al., 2001;
Xu & Shen , 2001).

The differential Eqs. (5) and (10) have been
solved inthe Matlab environment, based on an
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explicit Runge-Kutta (Forsythe et al., 1977)
formula. The system reaches a steady state very
rapidly. Because we were interested in the steady
state responses after blockade of the DAT by MPH,
we changed the parameter Km and calculated the
new steady state for f and [DA]. In, fact, to
simulate the effects of methylphenidate injection,
we considered the maximal concentration of
methylphenidate in the brain and in the blood after
i.p. injection using published data (Wargin et al.,
1983; Aoyama et al., 1997; Huff 7 Davies, 2002;
Swanson & Volkow et al., 2002, 2003). The blood
concentration of methylphenidate is approximately
linear to the injection dose (expressed in mg/kg
body weight), although the ratio between dose and
blood concentration is about 10 for an oral dose,
but 1 for i.p injections. The brain concentration of
methylphenidate has been considered here as
approximately equal to the blood concentration, as
suggested by data from Huff and Davies (2002).
The inhibition constant (Ki) of methylphenidate

has been reported to be 41.3+73.8 nM (Aoyama et.

al., 1997). Methylphenidate has chemical and
structural properties similar to those of cocaine

120

100}

9tbasal firing rate
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(Schweri et al., 2002), and, at least for its
methylated derivative, has been reported to bind to
the WIN site of DAT, increasing its Km but
leaving the Vmax unchanged, acting in this way as
a competitive inhibitor (Keener & Sneyd, 1998;
Schweri et al., 2002):

Km=0.22*(1+[MPH y100/Ki)) an

We simulated the steady state concentration of
DA following stepwise increases of methyl-
phenidate (0.1 to 40 mg/kg). The percent of firing
rate and DA level were calculated and reported on
semi log scale (Fig. 2). As shown in figure, the
model reproduces the experimental data reported
by (Ruskin et al., 2001). In fact, the blockade of
the re-uptake increases extracellular DA, which
acts on D2 autoreceptors, thus reducing DA
neuron firing. methylphenidate has been also
described to increase DA release in rats (Kalivas,
1989; Carboni et al., 2003) and humans as well
(Seeman, 2002). This effect suggests that
methylphenidate changes also the stimulation of
DA neurons (DF), since, at the steady state, the
level of DA is regulated by DF and k. In fact, DAT

0.02

0 0.5 1 1.5 2
B dose MPH (mg/kg)

Fig. 2: Model of dopamine regulation; relationship between dose of methylphenidate (MPH) and firing frequency of
dopamine neurons (A) or extracellular dopamine concentration (B). O, experimental data. X, simulated data for

control rats (WKY). +, simulated data for SHR.
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knockout mice, which lack the molecular target of
MPH, still respond to this psychostimulant
(Gainetdinov et al., 1999). It can be assumed that
methylphenidate also increases DF. Data from
literature (Carboni et al., 2003) allow to estimate
such effect. The normal resting level of
extracellular DA is approximately 4nM (Garris et
al., 1994; Seeman & Madras, 2002), and 5.7nM in
WKY rats (Carboni et al, 2003). This
concentration can transiently rise of at least 60-
fold to about 250 nM during a normal nerve
impulse (phasic activity). The transiently elevated
level of extracellular DA goes back to 4nM by
diffusion, DAT activity, enzymatic degradation
and autoxidation (Garris et al., 1994).

It should be noted that in SHR, the in vivo
basal level of DA in the striatum is increased to
6.35 nM versus 5.17 nM in WKY rats (Carboni et
al., 2003). This 20% difference can be modified by
environmental factors, as suggested by Ferguson
and Gough (2003). Moreover, aged, hypertensive
animals might show reduced striatal DA (Linthorst
et al., 1991). The enhanced DA outflow may result
from increased DA release or decreased uptake or
both. In fact, synaptosome preparations from SHR
rats suggested a reduction in the uptake by 28%
compared to WKY (Leo et al,, 2003), although the
number of DAT binding might be increased
(Watanabe et al., 1997).

Because at the steady state (df/dt=0) [DA] =
DF/k, the increase of [DA] might be due to a
decreased effect of D2 receptors on the firing rate
(k), as suggested by autoradiography studies
(Sadile, 1999) and by lower responsivity of SHR
to D2 blockers (van den Buuse et al., 1992).

Moreover, the induction of DA release by
depolarization with K or electrical stimulation
leads to a greater increase of DA in WKY rats than
in SHR (Russell et al., 2000; Carboni et al., 2003).
This can be modeled by a decrease in [DA], in
SHR, as suggested by the previously observed
reduction in TH levels (King et al., 2000; Leo et
al., 2003; Masuo et al., 2004 - this issue). Thus, at

the steady state (dDA/dt=0), the firing rate of DA
neurons is predicted to be higher in SHR than in
WKY rats. Methylphenidate (1 mg kg™") increases
the steady state DA level to a greater extent in
SHR than in WKY rats, suggesting a different
response to methylphenidate in these animals. In
fact, methylphenidate elevates the steady-state
level of DA up to 7.5nM in WKY (150%) and up
to 13.97 nM in SHR (220%) (Carboni et al., 2003)
(see also Fig 2). This tonic increase in DA
produced by methylphenidate is negligible with
respect to the concentrations during the burst
activity that reaches the micromolar range. Recent
evidence (see Wightman et al., 2002) demonstrated
that discrete, phasic DA signals accompany
rewarding or alerting stimuli. Therefore, the
effects of low doses of methylphenidate on alert
and attention are possibly due to a different
mechanism. In fact, simulated and experimental
data suggest that the firing rate is strongly
decreased during the tonic and phasic discharge
after methylphenidate treatment (Einhorn et al.,
1988; Ruskin et al., 2001). Low doses of
methylphenidate would decrease the firing rate in
SHR to the level of WKY, whereas higher doses
are predicted to decrease the firing rate well below
the 4Hz of WKY (Ueno et al., 2002 2002; Yang et
al., 2003). It is likely to hypothesize that the latter
effect eventually impairs the responsivity of the
system to salient novel stimuli.

Recently Volkow et al., 2002 (2002) suggested
that individual responses to methylphenidate are
due in part to individual differences in DA release,
so that for an equivalent level of DAT blockade,
methylphenidate would induce smaller DA changes
in subjects with low DA than in those with high
DA cell activity. Taken altogether, however, the
data suggest that in a hyperDArgic system small
doses of methylphenidate could actually have
positive effects by reducing the firing rate of DA
neurons, with small changes in the elevated
extracellular DA.

As a matter of fact, the firing of DA neurons
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has behavioral relevance, whereas the amount of
tonic DA release is of great importance for its
neurotoxicity and locomotor activity. Consistently,
high doses of methylphenidate increase locomotor
activity (Drolet et al., 2002). Moreover, elevated
resting levels of DA in SHR rats are associated to
a segmental defect consisting of a change in D1,
D3, and CAMK-II levels in a restricted segment of
the anterior forebrain (Sadile, 1999). This change
is likely to be due to the neurotoxic effects of DA
in the rostral striatum. This defect could be
reverted by subchronic treatment with methyl-
phenidate or postnatal stimulation during the 5™
and 6™ week of postnatal life. The effect of
methylphenidate was transient, however, as the
modification reversed following drug withdrawal.
Conversely, the effect of postnatal stimulation was
permanent. These beneficial effects are consistent
with decreased DA after postnatal handling
(Ferguson & Cada, 2003). Conversely, the long-
term effects of methylphenidate are likely to
involve changes in the DA machinery.(Porrino &
Lucignan, 1987; Andersen et al., 2002; Yang et al.,
2003) (which are not included in our model) and
await further investigation.
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