Corrigendum

Corrigendum to “Efficacy and Interindividual Variability in Motor-Cortex Plasticity following Anodal tDCS and Paired-Associative Stimulation”

Wolfgang Strube, Tilmann Bunse, Berend Malchow, and Alkomiet Hasan

Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, 80336 Munich, Germany

Correspondence should be addressed to Wolfgang Strube; wolfgang.strube@med.uni-muenchen.de

Received 17 July 2015; Accepted 19 August 2015

The authors wish to note that they discovered an error in the database of their paper “Efficacy and Interindividual Variability in Motor-Cortex Plasticity following Anodal tDCS and Paired-Associative Stimulation” [1] after publication in Neural Plasticity. Due to a data export error, one subject was included twice in the database resulting in the situation that one dataset was completely overwritten. The dataset of the other subject is unfortunately lost. They are glad to report that the subsequent necessary reduction of the sample size from 29 to 30 resulted in only subtle changes in all reported statistical values without any impact on the main significances reported. One analysis showed a significant result instead of the previously reported trend: “For PAS these analyses revealed a positive correlation between age and relative mean poststimulation MEPs ($r = 0.369$, $p = 0.049$).”

The complete (1) corrected results section (Section 4 in “Efficacy and Interindividual Variability in Motor-Cortex Plasticity following Anodal tDCS and Paired-Associative Stimulation”) and (2) the slight corrections in the tables and figures are as follows.

Descriptive Statistics. Subjects were aged between 19 and 42 years (mean 27.4 ± 4.9), 14 were female (48%), with one exception that all were right handed ($n = 28$, 97%), the average body-height was 176.0 ± 9 cm, and 13 were smokers (45%) with a mean Fagerstrom score of 3 (see Table 1).

Baseline Differences. To compare baseline values in both experiments, paired-samples t-tests were computed for all depending variables: RMT, S1mV (both single- and double-pulse), 1mV MEP, SICI (2 ms, 3 ms, mean 2-3 ms) and ICF (7 ms, 9 ms, and 12 ms, mean 9–12 ms), and recruitment curve (90%, 110%, and 130% RMT). None of the tested variables showed significant differences between the first and the second experimental session (all $p > 0.212$; see Table 2).

Excitability Changes over Time. A repeated-measures analysis of variance (RM-ANOVA) was conducted with the factors “time course” (baseline, 0 min, 5 min, 10 min, 20 min, and 30 min) and “stimulation” (anodal tDCS, PAS). This analysis revealed a significant main effect on “time course” ($F_{5,140} = 4.162$, $p = 0.001$) but neither an effect on “stimulation” ($F_{1,28} = 1.632$, $p = 0.212$) nor on the “time course \times stimulation” interaction ($F_{5,140} = 0.621$, $p = 0.684$). In addition, the overall RM-ANOVA with the factors “time” (baseline, mean post-MEPs averaged) and again “stimulation” (anodal tDCS, PAS) showed also a significant main effect on “time” ($F_{1,28} = 11.016$, $p = 0.003$) and no effect on “stimulation” ($F_{1,28} = 1.036$, $p = 0.318$) or a “time \times stimulation” interaction ($F_{1,28} = 1.485$, $p = 0.233$).

RM-ANOVA separately computed for both stimulation protocols showed a significant main effect on “time course” in the PAS-group ($F_{5,140} = 3.760$, $p = 0.003$) but not in the tDCS-group ($F_{5,140} = 1.412$, $p = 0.224$). To analyse the general excitability changes following both stimulation types, a mean value of all poststimulation time points was included into an additional RM-ANOVA analysis, which showed a significant main effect on “time” for both anodal...
Figure 2: MEP values at baseline and all time points following anodal tDCS and PAS. MEP values are shown as untransformed values and scaled in mV and error bars representing the standard error of the mean.

Table 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Gender</th>
<th>Age (years)</th>
<th>Handedness</th>
<th>Body-height (cm)</th>
<th>Smoking state</th>
<th>Fagerstroem (score points)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f = 14 (48%); m = 15 (52%)</td>
<td>27.4 ± 4.9 (range 19–42)</td>
<td>Right = 29 (97%); left = 1 (3%)</td>
<td>176.0 ± 9.0</td>
<td>Nonsmoker = 16 (55%); smoker = 13 (45%)</td>
<td>3.0 ± 1.8</td>
</tr>
</tbody>
</table>

For anodal tDCS, paired-samples t-tests showed significant differences comparing baseline to the mean of all time points following stimulation (t_{28} = 2.07, p = 0.048). In the case of PAS, a significant increase in MEP size was found comparing baseline to the mean of all time points following stimulation (t_{28} = 3.75, p = 0.001) and at single time points after stimulation (all t_{28} > 2.45, all p < 0.019) with the exception of 0 minutes (t_{28} = 1.64, p = 0.112) and 5 minutes after stimulation (t_{28} = 1.87, p = 0.072). Baseline MEPs did not differ between the anodal and the PAS condition (t_{28} = 0.03, p = 0.974) and also mean post-MEPs did not differ between the anodal and the PAS condition (t_{28} = 1.35, p = 0.187) (Figure 2).

To further explore the observed differences between the MEP increase in tDCS and PAS, we further conducted a RM-ANOVA of the standard deviations. This analysis revealed no significant effects on "time course" (F_{1,28} = 1.61, p = 0.161), on "stimulation" (F_{1,28} = 0.262, p = 0.613), and on "time course × stimulation" interaction (F_{1,28} = 1.02, p = 0.407). This finding can be explained by higher standard deviations after stimulation in both conditions.

A RM-ANOVA for the IO-curves with the factors "time" (baseline, after stimulation) and "intensity" (90%, 110%, and 130% RMT) revealed a significant main effect on "intensity" for both anodal tDCS (F_{1,28} = 165.95, p < 0.001) and PAS (F_{1,28} = 163.95, p < 0.001) but no effect on "time" (tDCS: F_{2,56} = 2.31, p = 0.140; PAS: F_{2,56} = 2.89, p = 0.100) and no "time × intensity" interaction (tDCS: F_{2,56} = 0.459, p = 0.634; PAS: F_{2,56} = 2.19, p = 0.121).

Response Analysis. To obtain an overview over the individual response patterns of all subjects three different response cut-offs were defined. These cut-offs defined response as an MEP size increase following the respective stimulation types over.
a cut-off of >100%, >110%, and 150% relative to the individual baseline (Figures 3 and 4).

Chi-Square (χ^2) tests were computed to compare the stimulation protocol and the respective individual response pattern. These analyses revealed a significant difference between anodal tDCS and PAS responders at >110% ($p = 0.050$) and a trend-level difference between both protocols at >150% ($p = 0.097$) but not at >100% ($p = 0.240$) in favour of the PAS stimulation.

Defining a decrease of SICI and an increase in ICF following LTP-protocols as response, we again defined three different cut-off ranges: >100%, >110%, and >150% increase of the respective relative mean values (post/pre: SICI\(_{(2-3\text{ ms})}\); ICF\(_{(9-12\text{ ms})}\)). Chi\(^2\) tests were used to compare the distribution of responders between both experiments. For SICI decrease no significant association was found for all of the three defined ranges (>100%: $p = 0.788$; >110%: $p = 0.792$; >150%: $p = 1.000$). In comparison, the analysis for ICF...
increase revealed a significant difference in the distribution of responders in all of the three ranges (>100%: \(p = 0.009 \); >110%: \(p = 0.001 \); >150%: \(p = 0.005 \)) in favour of anodal tDCS.

In order to explore whether gender affected the MEP increase following stimulation, Chi\(^2\) tests were obtained from both experiments comparing distribution of response and gender. For all cut-off ranges, this analysis did not reveal any significant differences between gender and anodal tDCS (100%: \(p = 0.600 \); 110%: \(p = 0.434 \); 150%: \(p = 0.224 \)) or PAS (100%: \(p = 0.639 \); 110%: \(p = 0.639 \); 150%: \(p = 0.239 \)).

Correlational Analyses. Pearson correlation coefficients were used to examine the relationship between relative baseline values (age; standard deviation of MEPs; SICI 2 ms, SICI 3 ms, ICF 7 ms, ICF 9 ms, and ICF 12 ms) and the relative mean MEP values following stimulation in both experiments.

For PAS these analyses revealed a positive correlation between age and relative mean poststimulation MEPs (\(r = 0.369, p = 0.049 \)), which was not observed after anodal tDCS (\(r = 0.010, p = 0.958 \)). In addition, we observed for anodal tDCS a positive correlation between the relative ICF values at baseline (12 ms ISI) and the relative mean poststimulation MEP values (\(r = 0.492, p = 0.007 \)). Concerning all other variables no significant correlations were observed (all \(r < 0.051 \), all \(p > 0.074 \)).

To further investigate the impact of the observed ICF-correlation in the anodal experiments, we compared the relative baseline ICF values (12 ms) between responders and nonresponders in the anodal condition. These analyses revealed a trend-level difference in the case of the >100% cut-off range (\(t_{27} = 1.85, p = 0.076 \)) but significantly higher relative baseline ICF values for both >110% (\(t_{27} = 2.13, p = 0.042 \)) and >150% (\(t_{27} = 3.52, p = 0.002 \)) in responders compared to nonresponders.

References
