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Second language learning has been shown to impact and reshape the central nervous system, anatomically and functionally. Most of
the studies on second language learning and neuroplasticity have been focused on cortical areas, whereas the subcortical neural
encoding mechanism and its relationship with L2 learning have not been examined extensively. The purpose of this study was
to utilize frequency-following response (FFR) to examine if and how learning a tonal language in adulthood changes the
subcortical neural encoding in hearing adults. Three groups of subjects were recruited: native speakers of Mandarin Chinese
(native speakers (NS)), learners of the language (L2 learners), and those with no experience (native speakers of foreign languages
(NSFL)). It is hypothesized that differences would exist in FFRs obtained from the three language experience groups. Results
revealed that FFRs obtained from L2 learners were found to be more robust than the NSFL group, yet not on a par with the NS
group. Such results may suggest that in human adulthood, subcortical neural encoding ability may be trainable with the
acquisition of a new language and that neuroplasticity at the brainstem level can indeed be influenced by L2 learning.

1. Introduction

There is ample literature on neuroplasticity as it relates to
bilingualism and second language (L2) learning [1–5]. Learn-
ing two languages simultaneously is typically defined as
simultaneous bilingualism. This often occurs at a younger
age when spoken language learning occurs with relative ease
(e.g., children growing up in bilingual households) [6, 7].
Bilingualism can also be achieved by learning L2 after form-
ing his or her native language, which is typically defined as
sequential bilingualism [7, 8]. Both simultaneous bilingual-
ism and sequential bilingualism have been shown to impact
the central and peripheral nervous system, indicating its
adaptive and plastic nature. For example, in the simultaneous
bilingual population, it has been found that at the cortical
level, grey matter density, cortical thickness, and white mat-
ter integrity differ from those in the monolingual groups

[7]. At the subcortical level, researchers have examined pitch
coding capacity in children and adult bilingual subjects who
learned an L2 at younger ages (before age 3) and found that
subcortical neural activity was also experience-dependent:
their brainstem responses were higher in amplitude than
their monolingual counterparts [9, 10].

Sequential bilingualism and L2 learning and their rela-
tionship to neuroplasticity, especially for those learning a sec-
ond language in their adulthood, have garnished attention in
more recent years [10, 11]. With the help of rapidly advanc-
ing technology in neuroimaging and other techniques,
researchers have been able to better understand the neuro-
plasticity of L2 learning in adulthood. For example, it has
been found that adults who were immersed in Chinese learn-
ing courses demonstrated increased white matter density
compared to their monolingual control counterparts [11].
At the subcortical level, however, little research exists

Hindawi
Neural Plasticity
Volume 2020, Article ID 8836161, 9 pages
https://doi.org/10.1155/2020/8836161

https://orcid.org/0000-0002-7751-2149
https://orcid.org/0000-0001-9630-7928
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8836161


regarding how the brainstem changes its encoding of infor-
mation during or after the L2 learning experience, especially
in adulthood.

One of the more recently utilized tools in subcortical neu-
roplasticity investigations is the scalp-recorded frequency-
following response (FFR) [12]. FFR reflects synchronized
neural activities at the level of the brainstem, typically elicited
by speech stimulus [13]. As a noninvasive far-field potential
response, it reflects the synchrony of neural activity gener-
ated by the lateral and inferior colliculus in the brainstem
[14]. It is believed to reflect the phase-locking activity of mul-
tiple generators in the auditory brainstem [15].

FFR has been shown to be an effective tool in assessing
the processing of complex sounds along the auditory path-
way, especially at the subcortical brainstem level [16–19]. It
has been widely utilized in previous studies to evaluate the
effects of auditory and music training [20, 21], speech per-
ception in noise [22], and how aging affects the auditory
functions [23–26]. Furthermore, the influences of language
background on subcortical pitch processing in different
groups of people have been studied using FFR. For example,
FFRs recorded from Mandarin Chinese (tonal language)
speakers and English (nontonal language) speakers have
shown that the pitch tracking accuracy and strength, which
both reflect subcortical neural coding capacity, were stronger
in speakers of Mandarin Chinese than those of English
speakers, indicating that the phase-locking ability in the
auditory brainstem could be strengthened by long-term lan-
guage experience [27–29].

Neural coding of the auditory brainstem could be shaped
and reshaped by short-term auditory training and long-term
musical training, indicating that both auditory training and
musical training have effects on the speech processing of
the auditory brainstem [19, 21, 31]. Speech-evoked FFRs in
newborn infants from different language background fami-
lies, Mandarin Chinese and American English, have been
shown to be very similar to each other, suggesting that the
aforementioned difference in adulthood may indeed be the
result of long-term language exposure [31]. In other words,
neuroplasticity as a product of long-term auditory influence
is evident at the subcortical level. However, to date, there
have been few studies aimed at how L2 learning in adulthood
could change one’s subcortical neural encoding, reflected by
measurements such as FFR.

The aim of the current study was to investigate the
impact of L2 learning and exposure on an adult’s subcortical
pitch coding ability, measured by speech-evoked FFR. It was
hypothesized that adult L2 learners of a tonal language would
have more robust speech-evoked FFRs than those who do not
have any exposure to the specific language, yet weaker than
those obtained from native speakers.

2. Material and Methods

2.1. Participants. Three groups of subjects were recruited in
this study: native speakers (NS), second language learners
(L2 learners), and native speakers of foreign languages
(NSFL). For the NS group, 15 native speakers of Mandarin
Chinese (seven males and eight females, 24:10 ± 3:3 years

of age) were recruited from the local community in Beijing,
China.

Another 15 participants who were learning Mandarin
Chinese were recruited for the L2 learner group (five males
and ten females, 23:35 ± 1:27 years of age). These partici-
pants were native speakers of Indonesian, which is not a tonal
language. Participants in the L2 learner group had no prior
exposure to Mandarin Chinese until they started learning
(7:39 ± 2:56 years in experience) Mandarin Chinese in Bei-
jing, China. All L2 learners had achieved at least a level five
on the Hanyu Shuiping Kaoshi (HSK). HSK is a standardized
test of Mandarin Chinese as a foreign language. It focuses on
nonnative speakers’ ability to use Mandarin Chinese for
communication in daily life, study, and work [32]. HSK,
which has six levels with level six being the highest, is consid-
ered to be one of the most influential language examinations
for Mandarin Chinese [32]. A level five HSK is frequently
considered the benchmark of effective verbal communication
skills in Mandarin Chinese for nonnative speakers.

Another 15 participants (ten males and five females,
22:07 ± 2:21 years of age) were recruited for the NSFL group.
None of them had any experience in learning Mandarin Chi-
nese. Of these 15 participants, eight were native speakers of
Bengali, five were native speakers of Dutch, and two were
native speakers of Hindi, none of which are tonal languages.

None of the 45 participants had any prior history of oto-
logical, audiological, neurological, or psychological issues.
They also reported no prior training or involvement in
music. This was determined by the participants completing
a modified version of the MunichMusic (MUMU) Question-
naire [33]. The modified MUMU Questionnaire included
four questions on whether they had ever trained to play any
musical instruments and whether they had received profes-
sional musical or vocal training.

All participants provided written consent for this study,
which was approved by the Intuitional Review Board at the
Beijing Institute of Otolaryngology and Beijing Tongren
Hospital.

2.2. Audiometry. Pure tone audiometry, using the cornea
two-channel audiometer and insert earphones in a sound
treated room, with octave frequencies between 250Hz and
8000Hz, revealed hearing thresholds below 15 dB HL in all
participants (Figure 1). Click-evoked auditory brainstem
responses (ABR) were measured (Intelligent Hearing System,
Miami, USA) in all participants with 100μs rarefaction clicks
at 80 dB SPL. Descriptive data of waves I, III, and V of click-
evoked ABR is shown in Table 1. No statistically significant
group differences were found between any two groups in
latencies of wave I, III, or V (Table 2).

2.3. FFR Stimuli and Procedures. FFR stimuli used in this
study were Chinese syllables /yi/ with rising tone and falling
tone, marked as /yi2/ and /yi4/, respectively. They were
recorded from a male native speaker of Mandarin Chinese,
with an overall duration of 250ms, including 5ms each of ris-
ing time and falling time. The fundamental frequency (F0)
trajectory of the /yi2/ stimulus changed from 120Hz to
155Hz and from 180Hz to 130Hz for /yi4/. The formant
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frequencies of the two stimuli were F1 = 400Hz, F2 = 2100
Hz, F3 = 3000Hz, and F4 = 3500Hz. Each stimulus was pre-
sented via an electromagnetic shielded ER-3 insert earphone
at 70 dB SPL at a rate of 3.2 times per second to the right ear
2000 times.

Participants rested in a supine position with their eyes
closed. A typical one-channel electroencephalogram (EEG)
recording montage was utilized: gold-plated recording elec-
trodes were placed at the high forehead for the noninverting,
right mastoid for the inverting, and low forehead for the
ground (all impedances were kept ≤3 kΩ). EEG was recorded
using the SmartEP system by Intelligent Hearing Systems
(Miami, FL, USA) with an internal recording sampling rate
of 13,333Hz (sampling interval of 75μs). The online band-
pass filter was set between 100Hz and 3000Hz. Any record-
ing sweep that yielded background EEG amplitudes larger
than 25μV was rejected. Measurements started with click-
evoked ABR, followed by FFR stimuli /yi2/ and /yi4/.
Another click-evoked ABR was performed at the end of each
session to ensure the quality of the EEG recordings.

2.4. Data Analysis. EEGs obtained from participants were
analyzed to examine the magnitude of the FFR elicited from
the stimulus in all three groups. A MATLAB (MathWorks,
Natick, MA) pitch tracking script was used for the EEG anal-
ysis. An index called Pitch Strength was utilized to quantita-
tively represent the magnitude of the responses. To calculate
the Pitch Strength of each FFR recording, an autocorrelation

function was performed on the EEG data resulting in a series
of autocorrelation coefficients, which were normalized
between 0 and 1. Pitch Strength is defined as the difference
between the maximum and minimum autocorrelation coeffi-
cients of the EEG signal [28]. It represents the periodicity
preserved in the FFR recording, which was a physiological
response to the pitch information of the stimulus. Therefore,
Pitch Strength, ranging between 0 and 1, demonstrates the
preciseness and robustness of the auditory brainstem’s ability
in accurately following the frequency information in the
stimulus, in the case of this study, tonal information in the
Mandarin Chinese voice syllables.

To test the hypothesis, an analysis of variance (ANOVA)
was performed to compare the effect of language experience
(three groups: NS, L2 learners, and NSFL) and tone type con-
ditions (two groups: /yi2/ rising tone and /yi4/ falling tone)
on Pitch Strength. A Tukey HSD post hoc test was carried
out on the language experience group differences. Statistical
level of significance was set at p < 0:05.

3. Results

3.1. TemporalWaveforms and Spectrograms. Temporal wave-
forms of FFRs elicited by stimuli /yi2/ and /yi4/ were plotted,
as shown in Figure 2. Upon visual inspection, it could be
observed that the group averaged FFRs from the NS group
had clear periodicity from both stimuli, whereas those from
L2 learners and NSFL groups were less periodic and more
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Figure 1: Air conduction pure tone audiograms obtained from all three groups.

Table 1: ABR latencies of waves I, III, and V in three groups.

NS group L2 learner group NSFL group
Wave I Wave III Wave V Wave I Wave III Wave V Wave I Wave III Wave V

Latencies (ms) 1:56 ± 0:12 3:60 ± 0:10 5:68 ± 0:11 1:57 ± 0:11 3:65 ± 0:12 5:71 ± 0:13 1:56 ± 0:10 3:62 ± 0:13 5:68 ± 0:13
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“random.” Similarly, short-time spectrograms based on aver-
aged FFRs in the three groups were also calculated, as shown
in Figure 3. Clear, continuous, and robust spectral energy in
the FFR obtained from the NS group could be seen, and such
spectral energy follows the fundamental frequency (100-
200Hz) of the stimuli. In contrast, spectral energy in the
NSFL’ FFRs was not as concentrated nor as robust as the

NS for both /yi2/ and /yi4/ stimuli, whereas the L2 learners’
FFRs were in between.

3.2. Statistical Analysis. One-way ANOVA with repeated
measures tested the effects of language experience and tone
type on Pitch Strength. Results revealed a statistically signif-
icant difference in Pitch Strength among the three groups

0

–1

0

1

50 100 150 200 250

–1

0

1

yi4

yi2
Stimulus

Times (ms)

(a)

0

–0.1

–0.2

0.0

0.1

0.2

50 100 150 200 250

–0.1

–0.2

0.0

0.1

0.2

0 50 100
Time (ms)

A
m

pl
itu

de
 (u

V
)

A
m

pl
itu

de
 (u

V
)

NS L2 learners NSFL

150 200 250 0 50 100 150 200 250

(b)

Figure 2: Temporal waveforms of the stimuli (a) and FFR (b) elicited by /yi2/ (top panel) and /yi4/ (bottom panel) from all three participant
groups.
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with different language experiences (Fð2, 84Þ = 30:05, p <
0:001). Post hoc comparisons using the Tukey HSD test indi-
cated significantly stronger Pitch Strength in the NS group
than the L2 learner group (p < 0:001) and the NSFL group
(p < 0:001). Pitch Strength obtained from the L2 learner
group was also significantly stronger than that from the
NSFL group (p < 0:001) (Figure 4).

No statistically significant difference was found between
the two tone types (Fð1, 84Þ = 0:622, p = 0:433), nor the
interaction between language experience and tone type
(Fð2, 84Þ = 0:982, p = 0:379) on Pitch Strength.

4. Discussion

The current study compared speech-elicited FFRs obtained
from native Mandarin speakers (NS), second language
learners who were not native speakers of any tonal languages
(L2 Learners), and native speakers of foreign languages who
did not have any experience in tonal languages (NSFL).
Results showed significant group differences in Pitch
Strength, an index representing subcortical pitch processing
ability, in these three groups with different language experi-
ences. It suggests that at the brainstem level, neural encoding
capacity of certain language-specific acoustic features, in this
case, pitch information manifested as tones in Mandarin
Chinese, can be influenced by the amount of exposure to
and the active processes of learning that specific language,
even in adulthood. The difference in subcortical pitch encod-
ing ability between native speakers and native speakers of
foreign languages found in this study is consistent with some
of the previous studies [27, 28] where native speakers of tonal
languages showed more accurate and robust FFRs than those
who did not speak any tonal languages.

In addition to confirming experience-dependent neural
plasticity at the subcortical level, the current study adds that
such subcortical plasticity exists not only in adults who have
had life-long language exposure but also in those who are
learning a second language in their adulthood. Pitch Strength
obtained from L2 learners was shown to be lower than that
from the native speakers, but higher than that from the native
speakers of foreign languages. This suggests that after several
years of learning a tonal language, the L2 learners’ auditory
brainstem may have “adapted” to better process pitch infor-
mation. To our knowledge, this is the first time that subcor-
tical neural changes following L2 learning in adulthood is
reported in literature.

The underlining mechanism in how auditory exposure or
learning experience influences the brainstem’s pitch coding
ability has been discussed in previous works. For example, a
brief auditory training scheme was shown to have elevated
pitch coding accuracy in children with learning disabilities,
reflected by their enhanced FFR posttraining [20]. One pos-
sible explanation provided by the authors was that auditory
training may have improved the neural synchronies in the
auditory brainstem, which in turn improved the preciseness
of neural processing of complex speech sounds. Similarly,
more accurate and robust subcortical neural representations
of F0 trajectories in lexical tones were obtained in the popu-
lation of musicians compared with nonmusicians [30]. It was

proposed that musician’s training has imposed higher
demand for precise and efficient subcortical pitch extraction,
which resulted in strengthened brainstem responses to the
voice pitch.

In the current study, it is proposed that the extensive
exposure to tonal information in Mandarin Chinese during
L2 learners’ learning experience served as a means of audi-
tory training that ultimately leads to the reshaping of their
subcortical neural coding ability. It has been proposed that
linguistically relevant auditory signals begin to be processed
before they reach the cortex. One possible theory discussed
in previous studies [27–29] is that the phase-locking activities
of neurons may be enhanced by both actively exciting pitch-
relevant intervals and/or inhibiting irrelevant intervals. Inter-
spike discharges of these neurons are possibly subject to cor-
ticofugal egocentric selection [34, 35]. Learning Mandarin
Chinese as a second language, as experienced by the L2
learners in the current study, may have introduced similar
corticofugal processes in enhancing neural sensitivity to spe-
cific linguistic and acoustic features such as tones. This may
result in an enhanced neural phase-locking representation
of those tones in Mandarin Chinese at the brainstem level
and in turn facilitate better speech and language perception
in the cortex.

Results from this study have also provided an interesting
observation where FFRs obtained from L2 learners not only
reflected a modification in their subcortical pitch coding abil-
ity after learning the language for years (7:39 ± 2:56 years);
their FFRs also seemed to “fit” right between the native
speakers of foreign languages who had no language exposure
whatsoever and had the weakest FFR and the native speakers,
who clearly had lifelong (24:10 ± 3:3 years) exposure and the
most robust responses. It begs the question of after they have
started learning a tonal language, at what point does the L2
learners’ auditory brainstem start to adapt and reshape to
better encode pitch information and to better facilitate tonal
information processing. This can only be answered by
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extending the current study into Mandarin Chinese learners
who are less proficient than the current participants and, ide-
ally, follow them through their language acquisition experi-
ence. The future direction could also potentially answer the
question of if, and when, the subcortical pitch coding capac-
ity of those L2 learners, who are learners of a different lan-
guage in their adulthood, could ever achieve the same
accuracy and robustness of those who are native speakers of
that language.

One aspect that we are aiming to improve in the ongoing
expansion of the current study is the relatively diverse lan-
guage backgrounds of the L2 learners and NSFL. Although
all L2 learners were native speakers of Indonesian, the NSFL
group had more variable language backgrounds: Dutch,
Hindi, Bengali, and Indonesian. None of these languages
are tonal or utilize pitch in a lexical context, and this variabil-
ity should not have significantly impacted the results of this
study since FFR focuses mainly on pitch coding ability.
Nonetheless, differences in acoustic and linguistic features
in these languages may have played a subtle role and future
studies will try to refine the recruiting process to minimize
such impact.

5. Conclusions

Results of this study demonstrated that the experience of
learning Mandarin Chinese as a second language can
enhance the subcortical pitch coding capacity of native
speakers of foreign languages, as reflected by the FFR. It is
proposed that second language learning experience could
potentially reshape the subcortical neural wiring to better
facilitate the processing of certain acoustic and linguistic fea-
tures in a specific language, even in adulthood.
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