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Autophagy is a self-digestive process that degrades intracellular components, including damaged organelles, to maintain energy
homeostasis and to cope with cellular stress. Autophagy plays a key role during development and adult tissue homeostasis, and
growing evidence indicates that this catalytic process also has a direct role in modulating aging. Although autophagy is
essentially protective, depending on the cellular context and stimuli, autophagy outcome can lead to either abnormal cell growth
or cell death. The autophagic process requires a tight regulation, with cellular events following distinct stages and governed by a
wide molecular machinery. Reactive oxygen species (ROS) have been involved in autophagy regulation through multiple
signaling pathways, and mitochondria, the main source of endogenous ROS, have emerged as essential signal transducers that
mediate autophagy. In the present review, we aim to summarize the regulatory function of mitochondria in the autophagic
process, particularly regarding the mitochondrial role as the coordination node in the autophagy signaling pathway, involving
mitochondrial oxidative stress, and their participation as membrane donors in the initial steps of autophagosome assembly.

1. Introduction

Autophagy (literally “self-eating” in Greek) is a cellular cata-
bolic process that delivers cytoplasm constituents including
macromolecules and damaged organelles to lysosomes for
degradation [1, 2]. Three types of autophagy have been
described, namely, macroautophagy, microautophagy, and
chaperone-mediated autophagy that differ in their way of
cargo transportation and regulation. Macroautophagy (here
after referred to as autophagy) is the best characterized and,
unlike microautophagy and chaperone-mediated autophagy,
involves the formation of a double membrane vesicle called
autophagosome.

Autophagy occurs at basal levels to preserve cellular
homeostasis by recycling proteins and organelles [1, 2]. This
catabolic process can also act in response to cellular insults

such as nutrient or growth factor deprivation, hypoxia, and
oxidative stress. During periods of starvation, autophagy
degrades cytoplasmic materials to produce amino acids and
fatty acids that can be used to synthesize new proteins or to
produce ATP for cell survival. However, when autophagy is
excessively induced, it can result in cell death [3]. The
autophagic pathway has to be tightly regulated. Too little or
too much autophagy can be deleterious, and in fact, dysregu-
lation of autophagy is underlying in a wide range of diseases
including neurodegenerative disorders most typically involv-
ing the accumulation of pathogenic proteins, inflammatory
disorders such as Crohn disease, and cancer [4, 5]. The regu-
lation of autophagy has been extensively studied in the past
few years, and several reviews have thoroughly summarized
the progress in this area [6–9]. In this review, we will focus
on the recent studies that highlight the role of mitochondria
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and mitochondrial oxidative stress in autophagy regulation.
For a better understanding of the mechanisms involved in
this process, we will first outline the key elements that govern
the autophagy pathway.

2. Cell Signaling Pathways of Autophagy

Autophagy follows a sequential course that starts with the
formation of an isolation membrane, the phagophore, that
elongates and seals on itself [4, 10]. The nascent double
membrane vacuole, known as autophagosome, fuses with a
lysosome and the enclosed cargo is degraded by the lyso-
somal proteases. The entire pathway is coordinated by
autophagy-related protein (ATG) in a highly regulated
manner. A major player in this process is the unc-51-like
kinase 1 (ULK1) complex composed by ULK1, ATG13,
ATG101, and the RB1-inducible coiled-coil protein 1
(RB1CC1/FIP200). The ULK1 complex is regulated by the
nutrient-sensing mechanistic target of rapamycin complex
1 (mTORC1) and by the AMP-activated protein kinase
(AMPK), whose activation depends on the cellular energy
status [9, 11]. The complex integrates the upstream nutrient
and energy signals to coordinate the initiation of autophagy
(Figure 1). Under nutrient-replete conditions, mTORC1
phosphorylates ULK1 and ATG13, which prevents the
activation of the ULK1 complex, likely through a specific
conformational change [8, 12]. Instead, an intracellular
increase of AMP, concomitant to decreased availability of
ATP, activates AMPK, which in turn catalyzes the activat-
ing phosphorylation of ULK1. AMPK can also act inhi-
biting the mTORC1 signaling pathway through direct
phosphorylation of the regulatory-associated protein of
mTOR (RPTOR/raptor) or via the activating phosphory-
lation of the mTORC1 inhibitor tuberous sclerosis com-
plex subunit 2 (TSC2) [13, 14].

Nucleation of the preautophagosomal structures requires
the participation of the phosphatidylinositol 3-kinase cata-
lytic subunit type 3 (PI3KC3/VPS34) complex (Figure 1),
integrated by the catalytic subunit, PI3KC3/VPS34 kinase,
the scaffold protein phosphoinositide-3-kinase regulatory
subunit 4 (PI3KR4/VPS15) kinase, and beclin 1 (BECN1)
[11]. AMPK phosphorylates BECN1 and PI3KC3/VPS34
subunits stimulating the autophagic functions of the PI3KC3
complexes [15]. Activated ULK1 can also phosphorylate
BECN1 on Ser 14, thereby enhancing the lipid kinase activity
of the PI3KC3 complex and producing phosphatidylinositol-
3-phosphate (PI3P) [16]. The local PI3P increase at the endo-
plasmic reticulum (ER) membranes is concomitant with an
ATG9-dependent membrane acquisition from endosomal
vesicles [17] and triggers the recruitment of PI3P-binding
effectors, including zinc finger FYVE-type containing pro-
tein 1 (ZFYVE1/DFCP1) and the WD repeat domain,
phosphoinositide interacting (WIPI) proteins [18, 19].
ZFYVE1/DFCP1 binds to PI3P giving rise to an ER struc-
ture called the omegasome that serves as a scaffold for the
phagophore formation [19]. The elongation step of the
phagophore in turn depends on the interaction of PI3P
with WIPI2 [20].

Different molecules have been reported to bind BECN1
and determine its specific role in autophagy [21]. The bind-
ing of BECN1 to ATG14 and the activating molecule in
BECN1-regulated autophagy protein 1 (AMBRA1) targets
the PI3KC3 complex to the sites of phagophore biogenesis,
whereas the recruitment of endophilin B1, which associates
indirectly with BECN1 via UV radiation resistance-
associated protein (UVRAG) seems to be involved in the
endocytic trafficking and the autophagosomal maturation.
The positive regulatory effect of UVRAG is counteracted
by the Run domain Beclin-1-interacting and cysteine-rich
domain-containing protein (RUBCN/rubicon). Different
reports show that mTORC1 inhibits the PI3KC3 complex
through phosphorylation of the regulatory subunits
ATG14, AMBRA1, or UVRAG [22–24]. It is also well
established that the antiapoptotic Bcl-2 family members
can suppress PI3KC3 complex activity by direct binding
to BECN1. Phosphorylation of Bcl-2 and BECN1 disrupts
their interaction and releases BECN1 for autophagy [25].

The recruitment of the cargo and the expansion and
closure of the phagophore membranes are mediated by two
ubiquitin-like molecules, ATG12 and the Atg8 family pro-
teins (mammalian homologs of yeast Atg8), which in turn
are split into two subfamilies: the microtubule-associated
proteins 1A/1B light chain 3 (MAP1LC3/LC3) family and
the GABA type A receptor-associated protein (GABARAP)
family [10, 11] (Figure 1). In both cases, the protein
undergoes an ubiquitin-like conjugation reaction that
requires first its activation by the E1-like enzyme ATG7.
Then, ATG12 is covalently linked to ATG5 by ATG10, an
E2-like ubiquitin carrier protein, while the Atg8 family pro-
teins are transferred to the E2-like enzyme ATG3 and conju-
gated to the phosphatidylethanolamine (PE) present in the
phagosome membranes. This final conjugation step is cata-
lyzed by the ATG12eATG5-ATG16L1 complex and requires
the previous processing of the Atg8 family protein
(MAP1LC3/LC3 or GABARAP) by ATG4, which cleaves its
C-terminal region, exposing a key glycine residue that forms
a covalent bond with the amine of the PE headgroup
(Figure 2). The lipidated form of MAP1LC3/LC3, referred
to as LC3-II, has been reported to recruit proteins containing
an LC3-interacting region (LIR). Some of these LIR-
containing proteins facilitate the phagophore expansion
and closure, while others act as receptors, conveying cargo
specificity to the growing phagophore. ATG4 can also delipi-
date the conjugated protein, releasing MAP1LC3/LC3 or
other Atg8 family proteins from the autophagosome mem-
branes (Figure 2) and, at least in yeast, allowing the elonga-
tion of the autophagosome [26].

Autophagosomes can either engulf intracellular material
in a nonselective manner or deliver specific organelles
and proteins, depending on the initiating stimulus [27].
Several receptors participate in the selective recognition
and recruitment of autophagosomal cargo. The best char-
acterized autophagy adaptor is the sequestosome 1
(SQSTM1/p62), which interacts noncovalently with ubiqui-
tin or polyubiquitin chains via the ubiquitin-associated
domain and delivers the polyubiquitinated cargoes to
autophagy via its LIR region [28]. The lysosome-mediated
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Figure 1: Schematic process of the canonical autophagy pathway. Upon deprivation of nutrients or growth signals, the activation of AMPK
and/or the inhibition of mTORC1 fosters the initiation of autophagy via regulation of ULK1 and PI3KC3 complexes. ULK1 needs ATG13,
RB1CC1, and ATG101 to phosphorylate BECN1, which disrupts the inhibitory association with the antiapoptotic protein Bcl-2 and allows
for PI3KC3 complex assembly. The PI3KC3 complex, in the newly formed membranes, known as omegasomes, phosphorylates
phosphatidylinositol to form PI3P. During the elongation phase, MAP1LC3/LC3 incorporation to the preautophagosomal membranes
requires the involvement of different ubiquitin-related enzymes: the ubiquitin-activating and conjugating enzymes ATG7 (E1), and
ATG10 (E2) catalyze the association between the ubiquitin-like protein ATG12 and ATG5; at the same time, the protease ATG4 cleaves
pro-MAP1LC3/LC3, allowing ATG7 (E1 ubiquitin-activating enzyme) and ATG3 (E2 ubiquitin-conjugating enzyme) catalyze
MAP1LC3/LC3-I conjugation with PE. Next, ATG16 (E3 ubiquitin-protein ligase) stabilizes the ATG12-ATG5 complex and facilitates the
lipidated MAP1LC3/LC3-II localization to membranes. Completion stage involves protein SQSTM1/p62, which acts as a bridge between
polyubiquitinated cargo and MAP1LC3/LC3-II-autophagosomes. Once autophagosome maturation is finished, ATG4 catalyzes the
deconjugation of MAP1LC3/LC3-II to MAP1LC3/LC3-I. Different proteins participate in the fusion events between autophagosomes and
lysosomes including the target-membrane-bound (t) SNARE proteins STX17 and SNAP29, the vesicle-localized (v) SNARE VTI1B, the
beclin1-associated regulator ATG14, and the lysosomal membrane proteins RAB7B, VAMP7, and STX7. Finally, the fusion results in the
autolysosome with the subsequent degradation and recycling of the cellular components. Magnified section in autophagosome depicts the
PINK1-PRKN pathway of mitophagy. Following a mitochondrial stress, PINK1 accumulates in the OMM of depolarized mitochondria.
Autophosphorylation stabilizes PINK1 and elicits the translocation of the E3 ubiquitin ligase PRKN from cytosol. Activated PRKN
elongates and conjugates ubiquitin chains on different OMM proteins. K63-linked ubiquitin chains serve as a signal for the recruitment of
mitophagy receptors such as SQSTM1, optineurin (OPTN), and NDP52, which interact with LC3-II and mediate autophagosome
initiation on the damaged mitochondrion. ΔΨm: mitochondrial membrane potential.
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turnover of SQSTM1/p62 has widely been used to monitor
the autophagic flux.

The selective engulfment of damaged or superfluous
mitochondria into autophagosomes, known as mitophagy, is
mainly driven by the parkin RBR E3 ubiquitin ligase (PRKN)
and the PTEN-induced kinase 1 (PINK1) [29] (Figure 1),
although different pathways of PRKN-independent mito-
phagy have also been described [30]. In particular, following
a stress, damaged mitochondria lose their transmembrane
potential (ΔΨ) and PINK1 accumulates in the outer mem-
brane ofmitochondria (OMM)where it phosphorylates ubiq-
uitin at Ser65 to activate PRKN activity (Figure 1). Once
activated, PRKN elongates and conjugates ubiquitin chains
on OMMproteins, which in turn recruit mitophagy receptors
such as SQSTM1/p62, optineurin (OPTN), and calcium
binding and coiled-coil domain 2 (CALCOCO2/NDP52), all

of them containing a LIR motif to interact with the
MAP1LC3/LC3 anchored in the autophagosome membrane.

Once autophagosomes are formed, they can fuse with
lysosomes or late endosomes to form amphisomes, which
ultimately fuses with lysosomes [31] (Figure 1). Notably,
autophagosomes are not able to fuse with lysosomes until
the ATG machinery at their surface has disassembled [32].
Furthermore, vesicles have to move closer together first to
become tethered afterwards [33]. Besides cytoskeleton com-
ponents and related motor proteins, the membrane fusion
process requires a conserved machinery that consists of
RAB GTPases, membrane-tethering effectors that mediate
the first contact, and specific soluble NSF attachment protein
receptors (SNAREs), such as syntaxin 7 (STX7), syntaxin 17
(STX17), synaptosome-associated protein 29 (SNAP29),
vesicle-associated membrane protein 7 (VAMP7), and
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Figure 2: Redox regulation of ATG4 activity. The cysteine protease ATG4 participates in autophagosome formation at the elongation and
completion steps. This enzyme facilitates the conjugation of MAP1LC3/LC3, through pro-MAP1LC3/LC3 cleavage in MAP1LC3/LC3-I,
and the posterior deconjugation and recycling of MAP1LC3/LC3. This process is carefully regulated by the ATG4 redox state. A transient
oxidation of ATG4 inhibits its proteolytic activity, thereby facilitating autophagosome maturation and the subsequent autophagy
resolution. In contrast, under pathological situations, such as excessive starvation, hypoxia, high energy stress, or Aβ toxicity, the
increased mitochondrial oxidative stress results in higher ATG4 oxidation that prevents a proper LC3 recycling and impairs
autophagosome maturation. Depletion of the mitochondrial GSH content, the main mitochondrial antioxidant defense, stimulates the
mitochondrial ROS generation resulting in an enhanced inhibitory effect of ATG4 proteolytic activity.
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vesicle transport through interaction with t-SNAREs 1B
(VTI1B) protein, which have been directly or indirectly
implicated in the autophagosome- and endosome-lysosome
fusion process [34]. Recent studies have also identified
ATG14 as a key player in autophagosome and lysosome
fusion, through its binding and subsequent stabilization of
the STX17-SNAP29 complex on the autophagosome mem-
branes [35]. The fusion process concludes after the elimina-
tion of the inner autophagosomal membrane by lysosomal
hydrolases. Degradation of the autophagosome content pro-
ceeds as the lysosomal lumen is acidified owing to the activity
of the V-type ATPase [36].

3. Regulation of Autophagy by Mitochondrial
Oxidative Stress

A growing body of work suggests that reactive oxygen species
(ROS) are important cellular signal transducers controlling
autophagy during nutrient starvation [37]. It is, however, still
a matter of debate which species are involved. While Chen
et al. [38] have reported superoxide (O2

•-) as the primary
ROS involved in autophagy induced by nutritional depriva-
tion, other works indicate that hydrogen peroxide (H2O2) is
the molecule produced immediately after starvation [39]. A
similar link has been described between reactive nitrogen
species (RNS) and autophagy under ischemic injury [40],
showing that peroxynitrite (ONOO-), induced by oxygen-
glucose deprivation, can trigger autophagy. Moreover, it has
been reported that, once deprived of nutrients, cells actively
extrude GSH in order to shift an intracellular redox environ-
ment toward more oxidizing conditions and prime redox-
sensitive proteins involved in both induction and execution
of autophagy [41]. Remarkably, these studies show that the
sole chemically induced oxidation of GSH is able to trigger
autophagy, even in the absence of any autophagic stimulus,
hence, underlying the importance of thiol redox homeostasis
in autophagy commitment. Similarly, stimuli like tumor
necrosis factor alpha (TNF-α) and lipopolysaccharides
(LPS) engage ROS/RNS generation signaling pathways that,
in turn, can induce autophagy [42, 43]. In most of these stud-
ies, mitochondria are the major source of ROS/RNS for
autophagy induction. It has been reported that under geno-
toxic stress the decidual protein induced by progesterone
(DEPP/C10orf10), a transcriptional target of forkhead box
O3 (FOXO3), localizes in mitochondria, promoting mito-
chondrial ROS/RNS accumulation and formation of autop-
hagosomes [44] (Figure 3). Autophagy is blocked after
incubation with N-acetyl cysteine and the superoxide
dismutase mimetic and ONOO- scavenger manganese (III)
tetrakis (4-benzoic acid)porphyrin (MnTBAP), which
localizes to the mitochondria and, therefore, further sup-
ports the notion that mitochondrial oxidative/nitrosative
stress contributes to DEPP-triggered autophagy. [44].
Interferon-γ has also been shown to promote autophagy-
associated apoptosis via inducing lysine acetyltransferase
5- (KAT5/cPLA2-) dependent mitochondrial ROS produc-
tion assessed by using the MitoSOX Red mitochondrial
superoxide indicator [45] (Figure 3). Additionally, under
stress conditions like ethanol exposure, cells respond by

activating the mitochondrial fission machinery in a manner
that stimulates protective autophagy through mitochondrial
ROS [46]. The ethanol-induced autophagic response
decreases after blocking free radical production using the
mitochondria-directed antioxidant agent MitoQ (mitoqui-
none), a compound known to scavenge lipid peroxyl radicals,
ONOO-, and O2

•- [47]. In turn, autophagy inhibition
increases mitochondrial fission and cell death [46]. Recently,
the redox-sensitive kinase p66Shc, a member of the Shc family
of adaptor proteins and critical regulator of longevity [48], has
been identified as a mediator of autophagy [49, 50]. Upon
phosphorylation, p66Shc translocates to the intermembrane
space of the mitochondria where it oxidizes cytochrome c
and catalyzes the partial reduction of O2 to H2O2 [48]
(Figure 3). The binding between p66Shc and cytochrome c
triggers AMPK-mediated autophagy andmitophagy, through
impairing the mitochondrial function and lowering the mito-
chondrial ATP production [50]. Conversely, silencing of
p66Shc has been shown to prevent nutrient starvation-
induced autophagy and increase apoptosis resistance [49].

The autophagic pathway is regulated by ROS/RNS at dif-
ferent levels and through multiple mechanisms. In retinal
pigmented epithelial cell, H2O2-mediated NF-κB phosphory-
lation has been shown to stimulate SQSTM1/p62 and ATG10
expression [51] (Figure 3). ATG genes can also be upregu-
lated by ROS-induced p38 mitogen-activated protein kinase
(p38 MAPK) and c-Jun N-terminal kinase 1 (JNK1)
[52, 53] (Figure 3). Further work in Drosophila has shown
that JNK-mediated autophagy is engaged after paraquat-
induced mitochondrial oxidative stress and requires the
interaction between ATG9 and tumor necrosis factor
receptor-associated factor 2 (dTRAF2) [54]. Notably, some
chemotherapeutic agents have been described to trigger
autophagic cell death in tumor cells through ROS-
dependent suppression of the mTORC1 signaling pathway
[55, 56], involving mitochondria and different MAPK path-
ways [57, 58] (Figure 3). mTORC1 activity can be directly
inhibited by oxidative stress [59] or through nitric oxide-
(NO-) and H2O2-induced activation of the ATM-AMPK
pathway [60–62] (Figure 3). Oxidative stress can also stimu-
late PI3KC3 complex assembly. In cancer cells, mitochon-
drial ROS produced after low-power laser irradiation have
been shown to upregulate BECN1 expression via the rise of
p65/RELA transcriptional activity [63] (Figure 3). Further-
more, it has been described that the inhibition of the mito-
chondrial electron transport chain—with the consequent
generation of ROS—promotes the translocation of high
mobility group box 1 (HMGB1) protein from the nucleus
to the cytosol, where it disrupts the inhibitory interaction of
Bcl-2 with BECN1 [64] (Figure 3). Release of BECN1 and
autophagy induction are also observed after phosphorylation
of Bcl-2 by JNK1 [65] (Figure 3), which becomes activated
following the oxidation of its upstream redox-sensitive regu-
lator mitogen-activated protein kinase kinase kinase 5
(MAP3K5/ASK1) [66]. Recent studies demonstrate that in
response to H2O2, phosphorylated caveolin 1 promotes the
translocation of BECN1 to mitochondria and facilitates
autophagosome formation by interacting with the PI3KC3
complex through its scaffolding domain [67] (Figure 3).
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Of note, there is also opposite evidence indicating that
ROS/RNS suppress autophagy instead of promoting its
activation. For instance, Venco et al. [68] have shown that
oxidative stress inhibits the autophagy observed after overex-
pression of the mitochondrial membrane protein C19orf12,
most likely by favoring its aggregation in cytosol (Figure 3).
NO-dependent inhibition of autophagy has also been
reported, by S-nitrosylation of Bcl-2 or via S-nitrosylation

and inactivation of JNK1, which leads to a reduction of
Bcl-2 phosphorylation and, in turn, increases Bcl-2-
BECN1 interaction [69, 70] (Figure 3).

It is increasingly evident that the relationship between
ROS and Ca2+ signaling likewise plays an important role in
regulating autophagy. ROS has been described to induce
the transport of the stromal interaction molecule 1 (STIM1)
to the plasma membrane, where it activates the store-
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Figure 3: Cross talk between induction of mitochondrial oxidative/nitrosative stress and autophagy. Oxidative insults, starvation, oxygen
deprivation, and genotoxic stress inducers, among others, activate different upstream signaling pathways and signaling effectors such as
DEPP, KAT5/c-PLA2, and the redox-sensitive kinase p66Shc that converge on mitochondria and trigger ROS and RNS production.
Downstream signaling of mitochondrial stress-mediated autophagy induction occurs at different steps of the autophagy pathway.
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operated Ca2+ release-activated Ca2+ (CRAC) channels,
resulting in increased Ca2+ influx and the activation of
calcium/calmodulin-dependent protein kinase kinase 2
(CAMKK2), which in turn activates AMPK and autophagy
[71, 72]. Besides, mitochondrial ROS can activate the lyso-
somal Ca2+ channel mucolipin-1 (MCOLN1), resulting in
Ca2+ release and calcineurin-dependent nuclear transloca-
tion of the transcription factor EB (TFEB), which promotes
autophagy by inducing Atg and lysosomal gene expression
[73] (Figure 3). By contrast, in apparent contradiction,
Vlahakis et al. [74] have shown in yeast that during amino
acid starvation TORC2-yeast protein kinase 1 (Ypk1) sig-
naling stimulates autophagy by blocking calcineurin activity.
Deficiencies in Ypk1 signaling result in mitochondrial respi-
ratory impairment and accumulation of mitochondria-
derived ROS that stimulates the Ca2+ channel regulatory
protein midline 1 (MID1) and activates calcineurin
(Figure 3), thereby inhibiting the general amino acid control
(GAAC) response and autophagy following amino acid
starvation [74].

An exacerbated ROS generation by dysfunctional mito-
chondria can ultimately shift its role from the bulk autophagy
inducer into a self-removal signal for mitochondria through
mitophagy [75] (Figure 1). RNS have also been reported to
trigger mitophagy. NO has been shown to induce a PINK1-
independent PRKN translocation to damaged mitochondria
and promote mitophagy associated with mitochondrial fis-
sion, via S-nitrosylation of the dynamin-related protein 1
(DRP1) [76, 77]. In this way, ROS/RNS become a fine
mechanism of negative feedback regulation by which
autophagy eliminates the source of oxidative stress and
protects the cell from oxidative damage; hence, it is not
surprising to find impaired mitophagy underlying many
pathological conditions, including neurodegenerative dis-
ease, cancer, and aging [78, 79].

4. Mitochondrial Redox Regulation of ATG4

Several core ATG proteins, including ATG3, ATG7, or
ATG10, have cysteine residues in their catalytic sites that
may be susceptible to oxidative modifications [80]; however,
to date, only ATG4 has been reported regulated by ROS. Four
ATG4 orthologues (also termed autophagins) have been
identified in mammals, namely, ATG4A, ATG4B, ATG4C,
and ATG4D, of which the oxidant H2O2 directly targets
and inhibits ATG4A and ATG4B [39].

As stated previously, ATG4 plays a crucial role in the
lipid conjugation system of the Atg8 family proteins
(Figure 2). The lipidation of MAP1LC3/LC3 homologs is
indispensable to normal development of the isolation mem-
brane during the closing step, thereby when overexpression
of an ATG4 dominant-negative mutant is used (particularly
ATG4B), it results in the accumulation of unclosed isolation
membranes [81]. ATG4 is also able to release lipidated
MAP1LC3/LC3 from the membrane by catalyzing the decon-
jugation of MAP1LC3/LC3 [82] (Figure 2). Blocking the
deconjugation activity of ATG4 results in defective autopha-
gosome biogenesis [83]. In addition, ATG4 acts maintaining
a reservoir of unlipidated MAP1LC3/LC3 by recycling inap-

propriately lipidated MAP1LC3/LC3 [84]. The coordinated
sequence of these processes determines whether autophagy
subsequently occurs, and therefore, a precise control of
ATG4 activity is needed. Under starvation, a rise of H2O2
in mitochondria transiently inhibits the proteolytic activity
of ATG4, thereby inducing autophagosome formation, pre-
sumably by preventing ATG4-mediated deconjugation of
MAP1LC3/LC3 during phagophore elongation and closure
[39]. A redox control of ATG4 activity has also been reported
in yeast [85], in A549 lung carcinoma cells after cadmium
exposure [86] and in response to hypoxia and energy
stress via the induction of a prooxidant complex composed
by the DNA damage-inducible transcript 4 (DDIT4/REDD1)
protein, an mTORC1 inhibitor, and the prooxidant
thioredoxin-interacting protein (TXNIP) [87]. Suppressed
expression of TXNIP, the major endogenous inhibitor of
thioredoxins, results in both basal and hypoxia-induced
defective autophagy associated with abnormally depolarized
mitochondria. Similarly, redd1 knockout cells show dysregu-
lated ATG4, impaired autophagic flux, and accumulation of
defective mitochondria [87]. More recently, studies from
our laboratory using APP-PSEN1-SREBF2 mice—a mouse
model of Alzheimer’s disease that overexpress the sterol reg-
ulatory element-binding transcription factor 2 (SREBF2)―-
have demonstrated that amyloid beta (Aβ) inhibits ATG4
activity and high brain cholesterol levels potentiate this
inhibitory effect by reducing the mitochondrial GSH content
[88]. The enhanced loss of ATG4 activity shown by
cholesterol-enriched cells, which is further potentiated after
Aβ exposure, correlates with a greater presence of autopha-
gosomes. However, although autophagy is induced, high
cholesterol levels impair autophagosome-lysosome fusion
by affecting the proper recycling of key SNARE proteins in
the fusion process. Downregulation of the autophagy flux
by cholesterol leads to intracellular Aβ accumulation and
release, via an unconventional autophagy-mediated secretory
pathway [88]. Interestingly, autophagosome synthesis is sig-
nificantly blunted after treatment with GSH ethyl ester, a
cell-permeable form of GSH that recovers the cholesterol-
depleted pool of GSH and prevents the oxidative inhibition
of ATG4 induced by Aβ [88]. Similarly, resveratrol, a dietary
polyphenol with antioxidant and proautophagic properties,
has been shown to facilitate the degradation of polyQ hun-
tingtin protein aggregates, the hallmark of Huntington’s dis-
ease, by regulating ROS-mediated ATG4 activity changes
[89]. By recovering ATG4-mediated autophagosome forma-
tion, resveratrol protects neuronal-like cells expressing
mutant huntingtin from dopamine toxicity [89].

5. Mitochondrial Integrity and Dynamics
Governs Autophagy

Autophagy requires healthy mitochondria. In yeast, Graef
and Nunnari [90] have shown that defects in mitochondrial
respiration cause activation of the cAMP-dependent protein
kinase A (PKA), a nutrient-sensing regulator that inhibits
the induction of ATG8 expression by amino acid starvation
and suppresses the autophagic flux. Later studies further
prove the requirement of mitochondrial respiration in the
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initiation of autophagy in response of energy deprivation,
which in turn is regulated by the recruitment and clustering
of the mitosis entry checkpoint protein 1 (Mec1, yeast homo-
log of mammalian ATR serine/threonine kinase) with the
energy-sensing sucrose nonfermentating protein 1 (Snf1)
and the autophagy-related proteins Atg1 (yeast homolog of
mammalian ULK) and Atg13 on the mitochondrial surface
[91]. Additionally, a chronic mitochondrial respiration
chain deficiency has been reported to affect lysosomal
catabolism―with the subsequent accumulation of autop-
hagosomes―by deactivating AMPK and decreasing the
activity of the lysosomal Ca2+ channel MCOLN1 [92].
Thomas et al. [93] postulate that autophagy can be enhanced
by strategies directed to induce a metabolic shift toward oxi-
dative phosphorylation and to increase the mitochondrial
metabolism. Their data support a model in which complex
I activity, independently of its known contribution to mito-
chondrial O2

•- generation, facilitates the transport of phos-
phatidylserine (substrate for PE biosynthesis) from the ER
to mitochondria at mitochondria-associated ER membranes
(MAMs), thus favoring autophagosome formation. Autoph-
agy can be induced after mild uncoupling of oxidative phos-
phorylation by mitochondria-targeted penetrating cations
that significantly reduce the mitochondrial ΔΨ [94]. None-
theless, opposite outcomes have also been reported. Overex-
pression of protein kinase C beta (PRKCB) affects the
mitochondrial energy status, lowering the mitochondrial
ΔΨ, which in turn inhibits autophagy [95]. By contrast, the
pharmacological increase of mitochondrial ΔΨ counteracts
the downregulation induced by PRKCB overexpression and
rescues the normal rate of autophagy [95], most likely related
to a high proton motive force-induced ROS production [96].
Moreover, perturbations of mitochondrial energy metabo-
lism due to deficiencies of DNA polymerase gamma (Polγ)
have been shown to increase O2

•- and trigger prosurvival
autophagy responses via Rictor-mediated mTORC2 activa-
tion [97]. In apparent contradiction, cells lacking mitochon-
drial DNA (mtDNA) have been reported as autophagy-
deficient. Lack of mtDNA impairs the signaling pathways
mediated by ROS that controls chemical hypoxia-induced
autophagy [98]. mtDNA-depleted cells show decreased
ROS and impaired ROS-mediated AMPK-ULK1 signaling
pathway resulting in reduced autophagosome formation
[98, 99]. Also, erythroid cells from aged mtDNA-mutator
mice display mitochondrial dysfunction associated with the
activation of mTOR and suppression of autophagy, which
accelerate the onset of anemia in these mice [100].

Reduced expression levels of the translocase of outer
mitochondrial membrane 40 (TOMM40), a key subunit
of the translocase of the OMM complex, have been
described to stimulate the accumulation of ubiquitin-
positive protein aggregates, which are subsequently engulfed
by MAP1LC3/LC3-positive membranes [101]. Downregula-
tion of TOMM40 by RNA interference (RNAi) results in
reduced proteasome activity and low ATP levels, concomi-
tant with increased ROS levels that lead to the synthesis of
unsealed autophagosome-like structures unable to fuse with
lysosomes [101]. Noteworthy, these studies show how
Tom40 RNAi in Drosophila triggers a neurodegenerative

process, suggesting a causal link between the maintenance
of mitochondrial function, autophagy, and the onset of
neurodegeneration.

Regulated changes in mitochondrial dynamics can also
determine the cellular response to autophagy. When autoph-
agy is engaged during starvation, mitochondria can elongate
due to PKA-mediated inhibitory phosphorylation of DRP1
and the subsequent reduction of fission events [102]. Elon-
gated mitochondria are spared from autophagic degradation
and can sustain cellular ATP levels and protect cells from
death during starvation. Remarkably, in neurons, recent find-
ings suggest that mitochondrial remodeling associated with
early autophagy induction, in addition to prevent cell death,
is essential for neuronal differentiation [103].

6. Mitochondrial Surface Acts as a Signaling
Coordination Hub in Autophagy

Mitochondria are central nodes where autophagic and apo-
ptotic signaling pathways converge [104]. Different proteins
present on the mitochondrial surface, including apoptosis-
related proteins, are key regulators of autophagy induction
that additionally coordinate the cross talk between apoptosis
and autophagy. Under normal nutritional conditions, antia-
poptotic Bcl-2 suppresses autophagy by interacting with
AMBRA1 at the mitochondrial surface and with BECN1 at
the ER membranes [105]. Upon starvation, AMBRA1 disso-
ciates from Bcl-2 and binds to BECN1 at ER-mitochondria
contact sites to stimulate autophagy [105] (Figure 1). Instead,
in response to apoptotic stimuli, BECN1 and other
autophagy-related proteins like PI3KC3/VPS34 kinase and
ATG4D are cleaved by caspases, upon which they translocate
to mitochondria and promote mitochondria-mediated apo-
ptosis [106, 107]. Similarly, calpain-processed ATG5 has
been shown to interact with Bcl-xL in mitochondria and
induce apoptosis [108]. In cancer cells, the interplay between
apoptosis and autophagy induction can also be regulated by
the presence of the tumor suppressor p53 and the promye-
locytic leukemia (PML) protein in MAMs [109]. The inter-
action between p53 and PML in these ER-mitochondria
appositions regulates the transfer of Ca2+ from the ER to
the mitochondria, favoring Ca2+-dependent apoptosis. In
contrast, the absence of p53 or mislocalization of PML
out of MAMs activates autophagy in response to cellular
stress [109].

MAMs were historically linked to lipid metabolism and
Ca2+ signaling [110]. Further studies have identified new reg-
ulatory roles for ER-mitochondria signaling in different
physiological processes ranging from energy metabolism,
mitochondrial biogenesis and trafficking, and autophagy
[110]. Although the exact mechanisms by which the ER
regions come into contact with mitochondria are not
completely defined, recent analyses have identified different
proteins forming complexes that appear to tether the two
organelles. Interestingly, the tightening of ER-mitochondria
contacts, via overexpression of VAMP-associated protein B
and C (VAPB) or regulator of microtubule dynamics protein
3 (RMDN3/PTPIP51), has been shown to impair rapamycin-
and torin 1-induced autophagy [111]. Conversely, the small
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interfering RNA- (siRNA-) mediated loss of both proteins to
loosen ER-mitochondria contacts stimulates autophagosome
formation [111]. The mechanism by which VAPB-
RMDN3/PTPIP51 complex regulates autophagy likely
depends on its role in mediating delivery of Ca2+ to
mitochondria from ER stores [111]. Disruption of the
ER-mitochondria Ca2+ communication has also been linked
to the activation of the AMPK present at MAMs [112].
AMPK in MAMs can sense the changes of AMP :ATP ratio
induced by mitochondrial malfunction, hence becoming
activated and phosphorylates BECN1, thus initiating autoph-
agy in a mTORC1-independent fashion [113]. Apparently, at
odds with these results, decreased number of autophago-
somes has been described after knocking down Mfn2, which
encodes a mitochondrial outer membrane GTPase that
mediates mitochondrial fusion and ER-mitochondria tether-
ing [114]. Furthermore, in cardiomyocytes, MFN2 deficiency
has been shown to impair the fusion events between autop-
hagosomes and lysosomes [115]. Completion of autophagy
is also reportedly compromised after depletion of sigma non-
opioid intracellular receptor 1 (SIG-1R) [116], a MAM-
associated chaperone that regulates lipid transport and Ca2+

exchange between ER and mitochondria. SIG-1R has been
shown to coimmunoprecipitate with key proteins that medi-
ate autophagosome-lysosome fusion, such as ATG14, STX17,
and VAMP8. Moreover, impaired autophagosome clearance
in SIG-1R knockout cells is recovered after protein reexpres-
sion. [116]. Besides these findings, SIG-1R ligands have been
found to stimulate ROS production through respiratory
complex I [117]. Intriguingly, the same agonists exert a pro-
tective effect against mitochondrial oxidative stress induced
by the toxic Aβ peptide [117].

7. Mitochondria Supply Membranes for
Autophagosome Synthesis

Growing evidence suggests that mitochondria are membrane
and lipid donor sources for the expansion and maturation of
the autophagosomes, most likely through MAMs. Originally,
the first organelle proposed as the source of autophagosomal
membranes was the ER, through different morphological
studies [118, 119]. After that, several membranes have
been proposed as sites for the nucleation of the phago-
phore, including plasma membrane-derived vesicles [120],
ER-plasma membrane contact sites [121], Golgi [122],
ER-Golgi intermediate compartments (ERGIC) [123], and
mitochondria. Based on the transfer of fluorescently
labeled lipids from mitochondria to the phagophore, Hailey
et al. [114] were the first to postulate the involvement of the
OMM in autophagosome biogenesis. Strikingly, their studies
showed that the disruption of mitochondria-ER connections
dramatically impairs starvation-induced autophagy, by
decreasing the lipid transfer from the ER to mitochondria,
from where they are ultimately trafficked to the expanding
phagophore. Subsequent studies have confirmed the involve-
ment of MAMs in autophagosome assembly [124], by show-
ing that upon starvation STX17 translocates to MAMs where
it recruits the preautophagosome proteins ATG14 and
ATG5. Then, ATG14 interacts with PI3KR4/VPS15 kinase

and BECN1, which are also relocated to MAMs upon starva-
tion, inducing the lipid kinase activity of the PI3KC3 com-
plex, the first step of phagophore formation (Figure 1).
Accordingly, knockdown of STX17 blocks the completion
of autophagosome formation [124]. The autophagic isolation
membrane is unique regarding its high content of unsatu-
rated fatty acids, and deficiencies in stearoyl-CoA desaturase
1 (SCD1), a MAM-enriched enzyme that regulates the ratios
of saturated/monounsaturated fatty acids in membranes,
have been shown to impair both autophagosome biogenesis
and autophagy resolution [125, 126]. More recently, studies
by Garofalo et al. [127] have identified the presence of lipid
microdomains in MAMs and demonstrate the functional
involvement of the lipid raft constituent ganglioside GD3
in the early phases of the autophagic process. The out-
comes from these studies show that under starvation-
induced autophagy the concentration of GD3 increases
within the microdomains, clustering together with the
MAM-resident chaperone calnexin, which in turn facili-
tates its binding with the core-initiator autophagy proteins
AMBRA1 and WIPI1. In contrast, knockdown of ST8
alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1
(ST8SIA1), which encodes a synthase involved in ganglio-
side formation, results in ER-mitochondria contact disrup-
tion, with the subsequent hindering of autophagosome
nucleation [127, 128].

In addition to sphingolipids, MAMs are enriched in cho-
lesterol. Cholesterol is produced at least in part in MAMs,
accounting for the activities of the cholesterol synthetic
enzymes being higher in the MAMs than in the ER or mito-
chondria, respectively [129]. The sterol O-acyltransferase 1
(SOAT1/ACAT1), an enzyme that catalyzes the esterification
of membrane-bound cholesterol, is also enriched in MAMs,
which leads to the synthesis of cholesterol esters and their
subsequent storage in lipid droplets [130]. In steroidogenic
cell, cholesterol is transferred from ER to mitochondria
for steroid hormone synthesis and the interaction of
MAM-resident SIG-1R with the voltage-dependent anion-
selective channel protein (VDAC) and the steroidogenic
acute regulatory protein (StAR) is reportedly a critical step
in this transport [131, 132]. Noteworthy, previous studies
from our group in APP-PSEN1 mice have linked increased
mitochondrial cholesterol levels to elevated presence of
VDAC and SIG-1R in MAMs [133]. Moreover, evidence
indicates that changes in the lipid content of MAMs can
have a direct impact on ER-mitochondria connection and
mitochondrial function, which ultimately may compromise
cell viability [133–135]. Indeed, enhanced accumulation of
cholesterol within MAMs, associated with an altered
MAM architecture and dysfunctional mitochondria, is sug-
gested to contribute to severe pathological conditions such
as Alzheimer’s disease and the development of obesity-
related metabolic syndrome [136–138]. Of note, in many
of these pathological settings where perturbations in the
ER-mitochondria communication are observed, autophagy
is also impaired, thus favoring the hypothesis that distur-
bances in the MAM action are transitioned into impaired
autophagy, given MAM function as operational platforms
in the early steps of the autophagosome synthesis.

9Oxidative Medicine and Cellular Longevity



8. Mitochondrial Dysfunction and Autophagy in
Human Diseases

Autophagy impairment linked to mitochondrial dysfunction
and oxidative stress has been reported in numerous human
pathologies. In particular, autophagy involvement in neuro-
degenerative, cardiovascular, chronic kidney, and liver dis-
eases is well described and extensive reviews can be found
elsewhere [139–142]. Although each disease exhibits tissue
specific differences, most of them share a loss of autophagy
capacities frequently related to aging or chronic exposure to
oxidative and inflammatory sources.

Multiple reports indicate that autophagy diminishes with
aging and can be a contributory factor to the aging pheno-
type. Indeed, the expression of ATG proteins and levels of
autophagy inducers such as sirtuin 1 are consistently found
low in aged tissues [143]. Moreover, mutations of Atg genes
prevent the gain of longevity while, conversely, antiaging
effects have consistently been observed after stimulation of
autophagy by rapamycin or sirtuin 1 [143]. Similarly, the
beneficial effect of caloric restriction, the most physiological
antiaging intervention that extends life span and delays met-
abolic and cardiovascular disease onset [144], has been
shown to rely in sirtuin 1-dependent activation of autophagy
[145]. Mitochondrial dysfunction is also a hallmark of aging
[146]. Furthermore, impaired mitochondria have been
shown to contribute to age-related pathologies by inducing
senescence [147]. Studies from Sun et al. [148], using
mt-Keima-expressing mice to measure mitophagy in vivo,
point to the enfeeblement of mitophagy response to mitochon-
drial damage as a key contributory factor in mitochondria-
driven age-related pathologies. The role of mitophagy in
aging and neurodegeneration has further been confirmed
by other works [78, 149].

Oxidative stress and mitochondrial dysfunction associ-
ated with an accumulation of misfolded protein aggregates
are underlying many neurodegenerative disorders such as
Alzheimer’s disease, Parkinson’s disease, amyotrophic lat-
eral sclerosis, Huntington’s disease, or frontotemporal
dementia [150]. The brain of individuals with these neuro-
degenerative proteinopathies also displays an accumulation
of autophagosome-like structures, suggesting an impaired
autophagic flux as the cause of the abnormal disease-
specific protein buildups [139]. In line with this notion,
in vivo studies using mouse models of neurodegeneration
showed that genetic inhibition of autophagy enhances
degeneration symptoms; conversely, pharmacologic inter-
ventions that target autophagic/mitophagic pathways and
facilitate the clearance of the neurotoxic aggregates and defec-
tive mitochondria display a neuroprotective effect [151].

Similarly to the brain, the myocardium is another highly
oxidative tissue where the removal of damaged organelle
and particularly of dysfunctional mitochondria through
mitophagy is highly relevant. In fact, the progression of
cardiovascular pathologies, including atherosclerosis, dia-
betic cardiomyopathy, or ischaemia-reperfusion-induced
damage, has been shown to be affected by autophagy dysreg-
ulation [140, 152]. In particular, in diabetic cardiomyopathy,
specific autophagic processes seem to operate in the cardio-

myocyte, where mitochondria and glycogen particles play
an important role [153]. In line with these findings, several
reports endorse a detrimental effect of autophagy blockage
in diabetes, jeopardizing β cells against ER stress in diabeto-
genic conditions, while suppressing adipocyte differentiation
in the adipose tissue [154].

Related to diabetes, but also to other chronic conditions,
renal and hepatic pathologies are affected by abnormal
authophagy [141, 142]. In the kidney, loss of podocytes, glo-
merulosclerosis, and damage proximal tubular cells are
detected, protecting activated autophagy against apoptosis
of tubular cells and enhancing cellular regeneration. More-
over, multiple nephrotoxic medications modify the autopha-
gic efflux [142]. In the liver, the role of autophagy is cell type
specific [155]. Nonparenchymal cells such as endothelial
cells, resident macrophages (Kupffer cells), or hepatic stellate
cells use autophagy for maintaining cellular homeostasis
(macrophages, endothelium) or for fueling activation
(stellate cells). In hepatocytes, besides homeostatic functions,
impaired autophagy is implicated in storage disorders, such
as Wilson’s disease, metabolic syndrome, or alcohol liver dis-
ease [156]. In contrast, in hepatocellular carcinoma (HCC),
autophagy contributes to tumor surveillance and, if the
tumor arises, in promoting its invasiveness, suggesting a
stage-dependent function in liver cancer [155].

Regarding other tumorigenic processes, autophagy has
been described to prevent cancer initiation by clearing
damaged protein, DNA, and organelles, limiting the oxida-
tive stress and the oncogenic signaling. In contrast, under
some circumstances, tumor cells can suffer from nutrient
deprivation and hypoxia due to their elevated metabolic
demand of growth and proliferation [157]. Therefore, even
while for numerous chronic and neurodegenerative disor-
ders autophagy induction seems an interesting approach
for treatment, in tumors, autophagy inhibition may be
beneficial for cancer therapy, although during a specific
therapeutic window [157].

9. Concluding Remarks

Autophagy is required for the survival of cells, and the dis-
ruption of this process can result in abnormal cell growth
or cell death, which may lead to different diseases and
pathological conditions. With the onset of aging, autophagy
gradually subsides; a similar decline linked to defective mito-
chondria is also observed in neurodegenerative processes and
lysosomal disorders. In contrast, in the context of cancer,
although during initial stages autophagy serves as a tumor
suppressor, in later stages, the catalytic process protects the
tumor cells from the immune system defense mechanisms.
Therefore, based on these data, it is clear that a better under-
standing of the mechanisms that regulate autophagy is
needed, which would permit to ameliorate the use of
autophagy-modulating therapies that have already been pro-
posed for a variety of disease conditions, as well as sustain
longevity. In this review, we have summarized the current
knowledge on the role of mitochondria in autophagy, posi-
tioning these organelles as central nodes in the signaling
pathway for autophagy regulation and highlighting the
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involvement of mitochondrial oxidative stress. The new
insights into the role of the mitochondrial surface as a dock-
ing site and a membrane supplier in the first steps of autop-
hagosome assembly have been also outlined. Overall,
evidence point out that mitochondria are key players in
autophagy regulation, a fact that has to be taken into consid-
eration when handling autophagy for therapeutic use.
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