
Research Article
Melatonin Prevents Osteoarthritis-Induced Cartilage Degradation
via Targeting MicroRNA-140

Yijian Zhang,1,2 Jun Lin ,1 Xinfeng Zhou,1,2 Xi Chen,2 Angela Carley Chen ,2,3 Bin Pi ,1

Guoqing Pan ,4 Ming Pei,5 Huilin Yang ,1,2 Tao Liu ,1 and Fan He 1,2

1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
2Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
3School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
4Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
5Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology,
West Virginia University, Morgantown, WV 26506, USA

Correspondence should be addressed to Bin Pi; bpi@suda.edu.cn, Tao Liu; liutao8250@suda.edu.cn,
and Fan He; hefanwvu@yahoo.com

Received 11 September 2019; Revised 17 November 2019; Accepted 28 November 2019; Published 14 December 2019

Academic Editor: Antonio Desmond McCarthy

Copyright © 2019 Yijian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Osteoarthritis (OA) is characterized by the progressive destruction of articular cartilage, which is involved in the imbalance between
extracellular matrix (ECM) synthesis and degradation. MicroRNA-140-5p (miR-140) is specifically expressed in cartilage and plays
an important role in OA-induced matrix degradation. The aim of this study was to investigate (1) whether intra-articular injection
of melatonin could ameliorate surgically induced OA in mice and (2) whether melatonin could regulate matrix-degrading enzymes
at the posttranscriptional level by targeting miR-140. In an in vitro OA environment induced by interleukin-1 beta (IL-1β),
melatonin treatment improved cell proliferation of human chondrocytes, promoted the expression of cartilage ECM proteins
(e.g., type II collagen and aggrecan), and inhibited the levels of IL-1β-induced proteinases, such as matrix metalloproteinase 9
(MMP9), MMP13, ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4), and ADAMTS5. Both the
microarray and polymerase chain reaction (PCR) experiments revealed that miR-140 was a melatonin-responsive microRNA
and melatonin upregulated miR-140 expression, which was suppressed by IL-1β stimulation. In vivo experiments demonstrated
that intra-articular injection of melatonin prevented disruptions of cartilage matrix homeostasis and successfully alleviated the
progression of surgery-induced OA in mice. Transfection of miR-140 antagomir completely counteracted the antiarthritic effects
of melatonin by promoting matrix destruction. Our findings demonstrate that melatonin protects the articular cartilage from
OA-induced degradation by targeting miR-140, and intra-articular administration of melatonin may benefit patients suffering
from OA.

1. Introduction

Osteoarthritis (OA) is a chronic degenerative joint disease,
which is primarily characterized by progressive destruction
of articular cartilage. In the late stages of this pathology,
OA-induced joint dysfunction is considered to be a leading
cause of disability in elderly people, which creates a huge
economic burden on society. Currently, no therapy has been
shown to effectively halt the progression of OA, and the only
clinical treatment for patients with late-stage OA is pros-

thetic implants [1]. Although the pathogenesis of OA is not
yet fully understood, a key factor is the imbalance between
extracellular matrix (ECM) synthesis and degradation in
cartilage [2]. Chondrocytes, the only cell type in articular
cartilage, produce the structural components of the cartilage
ECM, specifically, type II collagen (Collagen II) and the
proteoglycan aggrecan. However, during OA pathogenesis,
chondrocytes become metabolically active to produce
matrix-degrading enzymes; these enzymes include members
of the matrix metalloproteinase (MMP) and ADAMTS
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(a disintegrin metalloproteinase with thrombospondin
motifs) families, which are responsible for the degradation
of Collagen II and aggrecan, respectively [3]. Among these
enzymes, MMP13 (collagenase-3) can cleave collagen, aggre-
can, and fibronectin and has the highest activity toward Col-
lagen II [4]. ADAMTS4 (aggrecanase-1) and ADAMTS5
(aggrecanase-2) have also been shown to play important
roles in OA development [5].

Several recent studies have demonstrated that the gene
expression of matrix-degrading enzymes is tightly regulated
by microRNAs (miRNAs) at the posttranscriptional level
[6]. miRNAs are a class of small (19-24 nucleotides in
length), noncoding RNAs that can regulate gene expression
by binding to specific sequences in messenger RNAs
(mRNAs), resulting in either degradation of the target
mRNAs or repression of their translation [7]. The differential
expression of miRNAs between normal and OA cartilage has
been identified recently using miRNA microarrays [8].
Among them, microRNA-140-5p (miR-140), which is
expressed specifically in cartilage, has been considered a key
factor in chondrocyte differentiation and OA-induced matrix
degradation. Deficiency of miR-140 in mice resulted in
age-related OA-like changes in cartilage, such as the loss
of proteoglycan and fibrillation of articular cartilage [9].
Additionally, miR-140 is dysregulated by increased levels
of proinflammatory cytokines in OA cartilage, such as
interleukin-1 beta (IL-1β) and tumor necrosis factor alpha
(TNF-α). The expression of miR-140 rapidly decreased in
IL-1β-stimulated chondrocytes, suggesting that miR-140
might be implicated in OA cartilage dyshomeostasis [10].
Therefore, miRNA therapeutics, especially regarding strate-
gies targeting miR-140, is a promising treatment option for
OA patients.

Melatonin, a hormone secreted mainly from the pineal
gland, has been shown to exert beneficial effects on bone
diseases, such as osteoporosis, osteopenia, and periodontal
disease [11]. Previous studies from our laboratory and other
groups have demonstrated that melatonin can enhance the
chondrogenic differentiation of mesenchymal stem cells
(MSCs), even in a proinflammatory cytokine-induced
environment [12, 13]. Recently, a study suggested that the
underlying mechanisms involved in melatonin-improved
chondrogenesis was through the upregulation of miRNAs,
such as miR-526b-3p and miR-590-5p, which activated the
Smad signaling pathway by targeting SMAD7, a negative reg-
ulator [14]. However, it is unknown whether melatonin can
protect articular cartilage from OA-induced matrix degrada-
tion, and few investigations have revealed the role of melato-
nin in regulating miR-140 during OA pathogenesis.

In this study, we investigated the protective effects of mel-
atonin on OA-impaired articular cartilage. To establish an
in vitro OA environment, IL-1β was supplemented during
the cell culture of human articular chondrocytes, and the
effects of melatonin on ECM synthesis and degradation were
evaluated. In in vivo experiments, destabilization of the
medial meniscus (DMM) surgery was performed to establish
an OA mouse model, followed by intra-articular injection of
melatonin for up to four weeks. To further investigate the
underlying mechanisms, globe miRNA expression analysis

was performed and the role of miR-140 in melatonin-
mediated antiosteoarthritic effects was investigated.

2. Materials and Methods

2.1. Human Cartilage Sampling and Chondrocyte
Preparation. The study protocol for using discarded human
cartilage samples was reviewed and approved by the Ethics
Committee of the First Affiliated Hospital of Soochow
University. Cartilage samples were obtained from six OA
patients (3 males and 3 females, age 60:4 ± 11:6) who under-
went total joint replacement.

Articular cartilages from the femoral condyle and tibial
plateau were minced into pieces and sequentially digested
with 2mg/mL type II collagenase (Thermo Fisher Scientific,
Waltham, MA, USA) at 37°C overnight. Undigested tissue
remnants were removed using a 100μm nylon mesh (BD
Biosciences, San Jose, CA, USA). The isolated chondrocytes
were seeded into 175 cm2 culture flasks (Costar, Tewksbury,
MA, USA) and cultured in Dulbecco’s modified Eagle’s
medium: nutrient mixture F-12 (DMEM/F-12) containing
10% fetal bovine serum (FBS, Thermo Fisher Scientific),
penicillin (100U/mL), and streptomycin (100μg/mL) at
37°C in an atmosphere of 5% CO2. Primary chondrocytes
were trypsinized by 0.25% trypsin-EDTA (trypsin-ethylene-
diaminetetraacetic acid; Thermo Fisher Scientific) and
replated. Chondrocytes at passage one were used for subse-
quent experiments.

2.2. In Vitro Culture of Human Chondrocytes and
Treatments with IL-1β and Melatonin

2.2.1. Chondrocyte Treatment. Cultured chondrocytes were
maintained as a monolayer in DMEM/F12 with 10% FBS at
37°C. To establish an in vitro arthritic microenvironment,
recombinant IL-1β at 5 ng/mL (Peprotech, Rocky Hill, NJ,
USA) was supplemented in the medium for the indicated
periods of time. Melatonin (Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in absolute ethanol (EtOH) at a stock
concentration of 250mM and then diluted in a complete
medium at a concentration of 1μM or 100μM. Cells in the
vehicle group were treated with an equal volume of EtOH
(0.4μL per mL medium).

2.2.2. Transfection of miR-140 Antagomir. miRNA-140
antagomir (antago miR-140) and negative control (antago
miR-NC) oligonucleotides were obtained from GenePharma
Co., Ltd. (Shanghai, China). The sequence of antago miR-140
is 5′-CUCCCUUCUCUUCUCCCGUCUU-3′ and NC is
5′-CUCCCUUCUCUUCUCCCGUCUU-3′. Chondrocytes
were seeded in 6-well plates and transfected with miR-
140 antagomir (100 nM) or NC miRNA using Lipofecta-
mine 2000 (Thermo Fisher Scientific) according to the
manufacturer’s protocol. Forty-eight hours after transfec-
tion, the cells were treated with 5ng/mL of IL-1β in the
presence or absence of melatonin.

2.2.3. Cell Proliferation. The detailed procedures are provided
in the Supplementary data (available here).
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2.2.4. Quantitative Real-Time Polymerase Chain Reaction
(PCR) Analysis. Total RNA was extracted using the TRIzol®
reagent (Thermo Fisher Scientific) according to the manufac-
turer’s protocol. Complementary DNA (cDNA) was synthe-
sized from 1μg of total RNA using the RevertAid First Strand
cDNA Synthesis Kit (Thermo Fisher Scientific), and real-
time PCR was performed with the iTap™ Universal SYBR®
Green Supermix kit (Bio-Rad, Hercules, CA, USA) on a
CFX96™ Real-Time PCR System (Bio-Rad). Transcript levels
of COL2A1 (type II collagen), ACAN (aggrecan), SOX9
(SRY-box-containing gene 9), ADAMTS4, ADAMTS5,
MMP9, and MMP13 were evaluated with GAPDH (glyceral-
dehyde-3-phosphate dehydrogenase) as an internal standard.
Relative transcript levels of target genes were calculated using
the comparative Ct (2−ΔΔCt) method. The primer sequences
used in this study are listed in Supplementary Table 1.

2.2.5. Immunofluorescence. The detailed procedures are pro-
vided in the Supplementary data.

2.2.6. Western Blotting. The detailed procedures are provided
in the Supplementary data.

2.3. In Vivo Experiments

2.3.1. Mouse Model of Surgically Induced OA. Animal exper-
iments were performed according to the Guidelines for Ani-
mal Experimentation of Soochow University and with the
approval of the Ethics Committee of the First Affiliated Hos-
pital of Soochow University. Male, nine-week-old C57BL/6J
mice were purchased from the Animal Center of Soochow
University. To establish the mouse model of OA, DMM sur-
gery was performed to induce mild instability of the knee
according to a previous study [15]. Briefly, mice were anes-
thetized using an inhalation anesthesia system (chamber
filled with 2.0% isoflurane plus 30% oxygen, RWD Life Sci-
ence, Shenzhen, China). The medial meniscotibial ligaments
(MML) in the right knees were transected using microsurgi-
cal scissors to cause the instability of the medial meniscus. As
controls, sham surgery was performed in the left knees, in
which the capsular incision was made but the MML was left
intact. All surgeries were performed by the same person (ZY).

2.3.2. Intra-Articular Injection of Melatonin and the miRNA-
140 Antagomir. Melatonin was dissolved in absolute ethanol
and diluted in saline (0.9% NaCl) to yield a final concentra-
tion of 10mg/mL. After surgery, the sham-op and DMM-op
mice were treated with equal amounts (10μL) of melatonin
or saline via intra-articular injection through the patellar
tendon. The mice were injected twice a week for four weeks,
then euthanized to collect samples of their medial femoral
condyle cartilage. For miR-140 inhibition experiments,
DMM-op mice were treated with equal amounts (10μL) of
miRNA control (NC) or miR-140 antagomir (250 nM) via
intra-articular injection on days 3 and 7 postsurgery along
with melatonin administration.

2.3.3. Histology and Immunohistochemistry. Dissected mouse
knees were fixed in 10% formalin and decalcified in 10%
EDTA (pH = 7:4, Sigma-Aldrich) for 2 weeks. After decalci-

fication, each specimen was embedded in paraffin and sagit-
tally sectioned at a thickness of 6μm. For histological
analysis, the sections were stained with hematoxylin and
eosin (H&E) and Safranin O (S.O.)/Fast Green (Sigma-
Aldrich). Histological images were taken with a bright-field
microscope (Zeiss Axiovert 200, Oberkochen, Germany).
The slides stained with Safranin O/Fast Green were scored
by three independent investigators (ZY, LT, and HF) blinded
to group assignment, using the Osteoarthritis Research Soci-
ety International (OARSI) scoring system [16].

For immunohistochemistry, the paraffin-embedded sec-
tions were dewaxed using xylene and hydrated in decreasing
graded ethanol solutions. The slides were incubated with 1%
hydrogen peroxide (H2O2; Sigma-Aldrich) for 30min and
then treated with 2mg/mL testicular hyaluronidase (Sigma-
Aldrich) for 30min at 37°C. The slides were blocked in
1.5% goat serum, followed by incubation with specific anti-
Collagen II (COL II; ab34712) or anti-Collagen I (COL I;
ab34710, Abcam) primary antibodies overnight at 4°C. A
secondary antibody of biotinylated goat anti-rabbit (Vector
Laboratories, Burlingame, CA, USA) was applied for 30min,
after which avidin-biotin complex amplification (Vectastain
ABC kit, Vector Laboratories) was used. Finally, immuno-
histochemistry was detected using 3,3′-diaminobenzidine
(DAB; Vector Laboratories) as a substrate, and counterstain-
ing was performed with hematoxylin. The percentage of
COL II- or COL I-positive cells was counted (per 100μm2

area in each section) for quantitative evaluation.

2.4. Microarray. The detailed procedures are provided in the
Supplementary data.

2.5. miRNA Expression Analysis. The detailed procedures are
provided in the Supplementary data.

2.6. Statistical Analysis. All statistical analyses were per-
formed using the SPSS 13.0 statistical software (SPSS Inc.,
Chicago, IL, USA). Data points are presented as means ±
standard error of mean (S.E.M.) for at least three indepen-
dent experiments. Statistical significance was determined
using the two-tailed Student’s t-test for comparisons between
two groups and one-way Analysis of Variance (ANOVA)
with Tukey’s post hoc test for multiple group comparisons.
p < 0:05 (∗) was considered statistically significant and
p < 0:01 (∗∗) was considered highly significant.

3. Results

3.1. The Effect of Melatonin on Human Chondrocytes under
Normal Culture Conditions. Human articular chondrocytes
were treated with melatonin at 1μM and 100μM concentra-
tions. The CCK-8 results showed that treatment with 100μM
melatonin improved cell proliferation by 11.4% on day 5 and
24.5% on day 7 (Figure 1(a)). Furthermore, melatonin treat-
ments significantly upregulated transcript levels of COL2A1
by 24.0% at 1μM and 34.2% at 100μM (Figure 1(b)). Simi-
larly, gene expressions of ACAN (Figure 1(c)) and SOX9
(Figure 1(d)) were both enhanced by melatonin treatments.
The immunofluorescence experiment confirmed the protein
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expression of Collagen II in the control and melatonin-
treated chondrocytes (Figure 1(e)).

3.2. The Effect of Melatonin on Matrix Synthesis in IL-1β-
Stimulated OA Chondrocytes. To investigate the protective

effect of melatonin on OA chondrocytes, we first established
an in vitroOA environment by adding 5ng/mL of IL-1β dur-
ing cell culturing. The CCK-8 assay showed that cell prolifer-
ation was reduced by 19.6% in the presence of IL-1β, whereas
melatonin treatment (100μM) significantly increased cell
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Figure 1: The effect of melatonin on cell proliferation and matrix synthesis in human articular chondrocytes. (a) Chondrocytes were treated
with melatonin (MT) at concentrations of 1 μM and 100μM, and cell proliferation was evaluated using the CCK-8 assay. Untreated cells
served as the control group (CTRL) and cells treated with ethanol (EtOH) served as the vehicle group. (b–d) The mRNA levels of
chondrogenic genes, including COL2A1 (b), ACAN (c), and SOX9 (d), were quantified with real-time PCR using GAPDH for
normalization. (e) The protein expression of type II collagen was confirmed through immunofluorescence. Scale bar = 50 μm. Values are
the mean ± S:E:M: of six independent experiments (n = 6) in cell proliferation assays and four independent experiments (n = 4) in PCR
experiments. Statistically significant differences are indicated by ∗ where p < 0:05 or ∗∗ where p < 0:01 between the indicated groups.
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proliferation by 15.4% compared with the IL-1β group
(Figure 2(a)). Real-time PCR data suggested that, in IL-1β-
stimulated chondrocytes, transcript levels of COL2A1 were
downregulated by 56.6%. Treatment with 100μM melatonin
significantly upregulated the gene expression of COL2A1 by
36.3% compared with the IL-1β group, but the level was still
40.8% lower than that of the control group (Figure 2(b)).
Consistently, the high concentration of melatonin increased
the transcript levels of ACAN by 51.4% (Figure 2(c)) and
SOX9 by 52.1% (Figure 2(d)) compared to the IL-1β-treated
chondrocytes. The immunofluorescence staining showed
that the synthesis of Collagen II in chondrocytes was sup-
pressed by IL-1β treatment but restored by melatonin sup-
plementation (Figure 2(e)). Western blot data confirmed
that protein levels of cartilage ECM, such as Collagen II
and aggrecan, were significantly increased by 100μM of mel-
atonin (Figure 2(f) and Supplementary Figures 1A and 1B).

3.3. Inhibition of IL-1β-Induced Matrix Degradation by
Melatonin in Chondrocytes.We further investigated the effect
of melatonin on IL-1β-induced matrix-degrading enzymes.
MMPs and ADAMTSs are important proteases that can
degrade a wide range of matrix components. Real-time
PCR data showed that IL-1β stimulation resulted in an
87.2% increase in the gene expression of ADAMTS4, whereas
melatonin treatment downregulated its expression in a dose-
dependent manner (by 24.9% at 1μM and by 47.8% at
100μM; Figure 3(a)). Similarly, treatment with 100μM mel-
atonin significantly decreased the transcript levels of
ADAMTS5 by 40.6% (Figure 3(b)), MMP9 by 50.5%
(Figure 3(c)), andMMP13 by 50.7% (Figure 3(d)). The inhib-
itory effects of melatonin on these matrix-degrading enzymes
at the protein levels were confirmed by Western blot assays
(Figure 3(e) and Supplementary Figures 1C–1F).

3.4. Prevention of DMM-Induced OA in Mice by Intra-
Articular Injection of Melatonin. To investigate the antiar-
thritic effects of melatonin, sham-op and DMM-op mice
were treated with melatonin via intra-articular injection. His-
tological and immunohistochemical analyses confirmed the
loss of proteoglycan and Collagen II in the DMM group,
whereas melatonin treatment prevented DMM-induced car-
tilage matrix destruction (Figure 4(a)). In particular, the pos-
itive staining of Collagen I was observed in the DMM-treated
mice, which is a typical marker for OA development. In con-
trast, melatonin treatment suppressed the expression of Col-
lagen I. In the melatonin-treated OA mice, the OARSI score
was significantly reduced compared to that of the DMM
group (Figure 4(b)). Consistently, the percentage of chondro-
cytes that stained positively for Collagen II was increased in
the DMM+melatonin group (Figure 4(c)), while the percent-
age of Collagen I-positive cells was decreased (Figure 4(d)).
These results indicate that intra-articular injection of melato-
nin successfully attenuated surgically induced OA progres-
sion in mice by modulating cartilage matrix homeostasis.

3.5. Melatonin-Mediated Differential miRNA Expression
Profiles in Human Chondrocytes. To identify the differentially
expressed miRNAs that were regulated by melatonin, micro-

array analysis was performed. As shown in Figure 5(a), after
72 h of stimulation of chondrocytes with 100μM melatonin,
the heat map of miRNA expression patterns revealed that a
total of 50 differentially expressed miRNAs (1.5-fold up- or
downregulated) were identified (Supplementary Table 2).
Among them, 29 miRNAs were upregulated by melatonin-
treated cells, including miR-193b-5p (3.00-fold), miR-26b-3p
(2.86-fold), miR-140-5p (2.37-fold), and miR-95-3p (2.27-
fold). On the other hand, 21 miRNAs were downregulated
by melatonin treatment, including miR-9-5p (5.87-fold),
miR-204-5p (4.05-fold), miR-145-5p (3.23-fold), and miR-
181a-3p (2.29-fold). Considering the important role of
miR-140 in the pathogenesis of OA, we performed real-
time PCR assays to validate the changes of miR-140
expression. IL-1β stimulation resulted in a marked reduction
in the level of miR-140 in human chondrocytes by 49.2%.
Melatonin treatment upregulated the expression of miR-140
by 1.2-fold and 1.5-fold, respectively, compared with the
CTRL and IL-1β groups (Figure 5(b)). To investigate specific
miRNA-regulated gene pathways involved in the pathology
of OA, pathway enrichment analysis was performed using
DAVID. As shown in Figure 5(c), 27 pathways were
significantly enriched, including protein processing in the
endoplasmic reticulum, PPAR signaling pathway, p53
signaling pathway, Notch signaling pathway, and Hedgehog
signaling pathway.

3.6. Reverse of Melatonin-Mediated Antiarthritic Effects by
Inhibition of miR-140. To investigate the role of miR-140 in
melatonin-mediated antiarthritic effects, chondrocytes were
transfected with miR-140 antagomir or an NC miRNA.
Real-time PCR experiments confirmed that miR-140 antago-
mir transfection resulted in an 87.7% reduction in the level of
miR-140, whereas miR-NC transfection barely affected miR-
140 expression (Figure 6(a)). Inhibition of miR-140 reversed
the inhibitory effects mediated by melatonin on matrix-
degrading enzymes in IL-1β-stimulated chondrocytes. Com-
pared to the IL-1β+MT group, miR-140 antagomir transfec-
tion increased the gene expression of ADAMTS4 by 64.0%
(Figure 6(b)), ADAMTS5 by 70.8% (Figure 6(c)), MMP9 by
93.1% (Figure 6(d)), and MMP13 by 1.4-fold (Figure 6(e)).
The protein levels of matrix-degrading enzymes were con-
firmed byWestern blot experiments (Figure 6(f) and Supple-
mentary Figure 2).

We further investigated the effect of intra-articular
injection of miR-140 antagomir on OA progression. After
the DMM surgery, OA mice were injected with miR-140
antagomir along with melatonin. Histology results showed
reduced levels of proteoglycan and Collagen II in the
antagomir-treated mice (Figure 7(a)). Importantly, immu-
nohistochemical analysis revealed strong positive staining
for Collagen I in the antagomir-treated mice. In the
miR-140 antagomir group, the OARSI score was signifi-
cantly increased (Figure 7(b)) and the percentage of Colla-
gen II-positive chondrocytes decreased (Figure 7(c)), in
contrast to the increased percentage of Collagen I-
positive cells (Figure 7(d)). These results suggest that inhi-
bition of miR-140 completely abrogated the antiarthritic
effect of melatonin.
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Figure 2: Continued.
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4. Discussion

The imbalance between the anabolism and catabolism of the
cartilage matrix is the hallmark of OA, which is induced by
the increased number of proinflammatory cytokines. IL-1β
is an important mediator of joint inflammation; not only
does it blunt the synthesis of cartilage ECM, it also stimulates
the expression of matrix-degrading enzymes. It was reported
that IL-1β inhibited chondrogenesis of human MSCs
through activation of the nuclear factor κ-light-chain
enhancer of activated B cell (NF-κB) signaling pathway
[17]. In this study, we used IL-1β to mimic the OA inflam-
matory environment in vitro and showed that IL-1β stimula-
tion significantly suppressed the synthesis of cartilage-
specific ECM (e.g., Collagen II and aggrecan). However,
treatment with melatonin promoted the expression of carti-
lage ECM at both the mRNA and protein levels, even in the
presence of IL-1β. SOX9 plays an important role in chondro-
genesis by regulating matrix protein synthesis during neocar-
tilage formation [18]. Consistent with previous studies, we
found that melatonin significantly increased the level of tran-
scriptional factor SOX9 even in IL-1β-treated chondrocytes.
In addition, chondrocyte proliferation was improved by mel-
atonin treatments in a dose-dependent manner, in which
SOX9 may contribute to an increased number of proliferat-
ing chondrocytes [19].

On the other hand, melatonin was demonstrated to have
an inhibitory effect on cartilage ECM degradation. In this
study, we demonstrated that, in IL-1β-stimulated chondro-
cytes, melatonin treatments led to a significant reduction in
the expression of matrix-degrading enzymes such as
ADAMTS4 and ADAMTS5. These two proteinases are
responsible for aggrecan degradation during OA develop-
ment, which are found at increased mRNA expression and
protein levels in OA cartilage [20]. Knockout of ADAMTS4
and ADAMTS5 in mice protected the hyaline cartilage
against proteoglycan degradation and decreased the severity
of murine OA [21]. Inhibition of ADAMTS4 and ADAMTS5
by melatonin preserved the intact proteoglycan network in
cartilage ECM, which may further protect the cartilage colla-
gen network (especially Collagen II) from degradation

induced by MMPs during OA progression [22]. In addition,
we showed that melatonin significantly decreased MMP13
levels in IL-1β-induced chondrocytes, which may contribute
to the attenuation of matrix loss in OA cartilage. However,
the regulatory effect of melatonin on MMP13 is still disput-
able. Hong et al. suggested that melatonin promotes ECM
remodeling in OA cartilage through the upregulation of
MMP13 [23]. The different effects of melatonin on MMP13
may be due to the low dosage of melatonin and the complex
interventions involved, which combined treadmill exercise
with melatonin treatments of only up to 1μM.

In addition to the transcriptional regulations, the present
study is the first to demonstrate that melatonin prevents OA-
induced cartilage destruction by regulating the expression of
matrix-degrading enzymes at the posttranscriptional level.
Previous studies have reported that several miRNAs are
involved in the pathogenesis of OA, such as miR-9, miR-
27b, miR-34a, miR-140, and miR-146 [24]; however, the
effects of melatonin on modulating miRNAs in OA chondro-
cytes have not been reported. In this study, we first identified
miR-140 as a melatonin-responsive miRNA in chondrocytes,
characterized by a significant upregulation by melatonin with
or without IL-1β stimulation. miR-140, a cartilage-specific
miRNA, has been shown to inhibit the NF-κB signaling path-
way in IL-1β-treated articular chondrocytes and to reduce
cartilage ECM breakdown via downregulation of ADAMTS5
[25]. The negative effect of miR-140 on MMP9 has been
reported to inhibit breast cancer invasion [26], while estro-
gen has been shown to suppress MMP13 expression through
the upregulation of miR-140 in the development of meno-
pausal arthritis [27]. In addition, the microarray results in
this study demonstrated that melatonin modulated the
expression of several miRNAs involved in cartilage develop-
ment and OA progression. For example, we observed that
melatonin treatment upregulated the expression of miR-95
and downregulated the expression of miR-9 and miR-204.
miR-95 has been reported to promote cartilage matrix
expression by directly inhibiting histone deacetylase 2/8
(HDAC2/8) [28]. Previous studies have demonstrated that
miR-9 [29] and miR-204 [30] markedly increase in OA carti-
lage and contribute to the disrupted matrix homeostasis via

Aggrecan

Collagen II

𝛼-Tubulin

MT

IL-1𝛽

100 𝜇M1 𝜇M––

(f)

Figure 2: In vitro treatments with melatonin protected human articular chondrocytes from IL-1β-induced OA environment. (a)
Chondrocytes were exposed to IL-1β (5 ng/mL) and then treated with melatonin (MT) at concentrations of 1 μM and 100μM. Cell
proliferation was evaluated using the CCK-8 assay. (b–d) The mRNA levels of chondrogenic genes, including COL2A1 (b), ACAN (c), and
SOX9 (d), were quantified. (e) The protein expression of type II collagen was confirmed by an immunofluorescence experiment. Scale bar
= 50μm. (f) The protein levels of aggrecan and type II collagen in melatonin-treated cells were determined using Western blot assays.
Values are the mean ± S:E:M: of six independent experiments (n = 6) in cell proliferation assays, four independent experiments (n = 4) in
PCR experiments, and three independent experiments (n = 3) in Western blot assays. Statistically significant differences are indicated by #
where p < 0:05 or ## where p < 0:01 vs. the CTRL group and ∗ where p < 0:05 or ∗∗ where p < 0:01 between the indicated groups.
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upregulation of IL-6 expression and inhibition of the sulfated
proteoglycan biosynthesis pathway, respectively. Therefore,
further studies are necessary to investigate the effects of
melatonin on other OA-related miRNAs and to unravel the
regulation of melatonin-responsive miRNAs on cartilage
matrix homeostasis.

The underlying mechanisms by which melatonin regu-
lates miR-140 expression are not fully understood. The
miR-140 gene was reported to be located in an intronic
region of its host gene, the WW domain-containing E3 ubiq-
uitin protein ligase 2 (WWP2) [31]. Yang et al. confirmed
that miR-140 was cotranscribed with the C-terminal isoform
of WWP2 and was directly induced by SOX9 via binding to
the WWP2 gene. miR-140 was crucial for chondrocyte pro-
liferation through its targeting of Sp1, which is the activator

of p15INK4b. This was because the inhibition of miR-140
resulted in the arrest of proliferation in micromass cultures
[32]. In addition, Tardif et al. demonstrated that regulation
of miR-140 expression can be independent of WWP2. In
normal chondrocytes, mechanotransduction signals induced
the translocation of the nuclear factor of activated T-cells 3
(NFAT3) to the nucleus and subsequently activated the
expression of miR-140, whereas in OA chondrocytes, overex-
pression of transforming growth factor-β (TGF-β) resulted
in the phosphorylation of mothers against decapentaplegic
homolog 3 (SMAD3) that directly inhibited miR-140 [33].
Moreover, a previous study reported that in OA chondro-
cytes, the increased levels of miR-145 directly inhibited miR-
140 expression, resulting in a reduction in cartilage ECMgene
expression and an increase in the ECM-degrading enzyme
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Figure 3: In vitro treatments with melatonin inhibited the expression of matrix-degrading enzymes stimulated by IL-1β. (a–d) The mRNA
levels of matrix-degrading enzyme genes, including ADAMTS4 (a), ADAMTS5 (b), MMP9 (c), and MMP13 (d), were quantified with real-
time PCR using GAPDH for normalization. (e) The protein levels of matrix-degrading enzymes in melatonin-treated cells were
determined using Western blot assays. Values are the mean ± S:E:M: of four independent experiments (n = 4) in PCR experiments and
three independent experiments (n = 3) in Western blot assays. Statistically significant differences are indicated by # where p < 0:05 or ##
where p < 0:01 vs. the CTRL group and ∗ where p < 0:05 or ∗∗ where p < 0:01 between the indicated groups.
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Figure 4: Intra-articular injection of melatonin prevented the progression of surgically induced OA in mice. DMM surgery was performed to
induce OA, and after surgery, the sham-op and DMM-op mice were injected with equal amounts of melatonin or saline twice a week for four
weeks. (a) Representative images of histological and immunohistochemical staining of the medial femoral condyle in OA mice. Sagittal
sections of cartilage were stained by hematoxylin and eosin (H&E) and Safranin O (S.O.)/Fast Green. Immunohistochemical analyses were
conducted to target COL II and COL I. Scale bar = 100μm. (b) OARSI scores were calculated based on the Safranin O/Fast Green staining
results. (c, d) The percentages of COL II-positive (c) or COL I-positive (d) chondrocytes were counted. In each section, the quantitative
analyses were counted at three random regions and then averaged. Values are the mean ± S:E:M: of ten independent experiments (n = 10).
Statistically significant differences are indicated by ## where p < 0:01 vs. the CTRL group and ∗∗where p < 0:01 between the indicated groups.
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Figure 5: Continued.
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MMP13 [34]. In this study, we found that melatonin sup-
pressed the expression of miR-145 in human chondrocytes,
suggesting that the attenuation of OA progression by mela-
tonin may involve other miRNAs. Therefore, the
melatonin-mediated regulation of cartilage ECM synthesis
and degradation at the posttranscriptional level will be an
important area for future investigation. Furthermore, based
on the pathway enrichment analysis, we found that several
miRNA-regulated gene pathways were involved in the
melatonin-mediated antiarthritic effects, such as the PPAR,

p53, and Notch signaling pathways. For example, the Notch
signaling pathway regulates cell differentiation and apopto-
sis through a single-pass transmembrane cell surface recep-
tor [35] and has been reported to play an important role in
articular cartilage degradation and OA development [36]. Li
et al. showed that treatment with melatonin activated the
Notch signaling pathway and increased the proliferation
and differentiation of neural stem cells via downregulation
of miR-363 [37]. However, the underlying mechanisms
of melatonin-mediated signaling pathways including the
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Figure 5: Identification of miRNAs that are differentially expressed in melatonin-treated human articular chondrocytes. (a) Differentially
expressed miRNAs in chondrocytes in response to melatonin were illustrated as a heat map. The color bars on the left of the heat map
indicate gene expression level; red denotes high expression and blue denotes low expression, relative to the median. (b) Real-time PCR
validation of miR-140 expression in IL-1β-treated and melatonin-treated chondrocytes. Values are the mean ± S:E:M: of four independent
experiments (n = 4) in PCR. (c) Pathway enrichment analysis for targets of miRNAs. The size of the dots (gene count) represents the
number of genes (predicted targets of differentially expressed miRNAs) involved in a given biological process. The color of the dots
represents p value. The terms are sorted alphabetically. Statistically significant differences are indicated by ## where p < 0:01 vs. the CTRL
group and ∗∗ where p < 0:01 between the indicated groups.
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Figure 6: Inhibition of miR-140 intensified IL-1β-induced matrix degradation in human chondrocytes. Chondrocytes were treated with
5 ng/mL IL-1β and 100 μM melatonin (MT). To inhibit miR-140 expression, chondrocytes were transfected with miRNA-140 antagomir
(antago miR-140), and cells that were transfected with negative control miRNA (antago miR-NC) served as a control. (a) The expression
of miR-140 was decreased in antagomir-treated chondrocytes. (b–e) The mRNA levels of matrix-degrading enzyme genes, including
ADAMTS4 (b), ADAMTS5 (c), MMP9 (d), and MMP13 (e), were quantified with real-time PCR using GAPDH for normalization.
(f) Protein levels of matrix-degrading enzymes in melatonin-treated cells were determined using Western blot assays. Values are the
mean ± S:E:M: of four independent experiments (n = 4) in PCR experiments and three independent experiments (n = 3) in Western blot
assays. Statistically significant differences are indicated by # where p < 0:05 or ## where p < 0:01 vs. the CTRL group and ∗ where p < 0:05
or ∗∗ where p < 0:01 between the indicated groups.
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Figure 7: Continued.
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Notch in OA chondrocytes will be investigated in our
future studies.

The delivery of melatonin in animal studies is tradition-
ally through oral administration or intraperitoneal injection.
Daily oral administration of melatonin (100mg/kg body
weight/day) has been reported to prevent ovariectomy-
induced bone degeneration by increasing bone formation in
mice [38], while intraperitoneal melatonin injections were
proven to effectively alleviate titanium particle-induced
inflammatory osteolysis in a murine calvarial model [39].
However, considering that chondrocytes uptake nutrients
mainly from the synovial fluid, intra-articular injection is an
effective way to administer melatonin into the articular cavity
in DMM-induced OAmice. Intra-articular injection of mela-
tonin successfully ameliorated OA progression by preserving
cartilage ECM homeostasis throughmiR-140. The preventive
effects of melatonin on OA were confirmed by suppressing
miR-140-mediated ECM destruction, since inhibition of
miR-140 by the antagomir transfection completely neutral-
ized the antiarthritic effects of melatonin in DMM-operated
mice. In agreement with our results, Si et al. showed that over-
expression of miR-140 by intra-articular injection inhibited
the expression of matrix-degrading enzymes and protected
cartilage from surgically induced OA in a rat model [40].

One limitation of this study is that we investigated the
therapeutic effects of melatonin on the early stage of OA; it
is unknown whether intra-articular injection of melatonin
will show the same protective effects on late-stage or other
types of OA. Lim et al. showed that intra-articular injection
of melatonin protected chondrocytes from oxidative stress-
induced cartilage degradation through activation of the silent
information regulator type 1 (SIRT1) signaling pathway [41].
Our future studies will seek to investigate the effects of
melatonin-mediated miR-140 expression on late-stage OA.

5. Conclusions

In summary, we demonstrated that intra-articular injection
of melatonin ameliorated the progression of OA by protect-
ing cartilage from matrix destruction in surgically induced
OAmice. In an in vitro IL-1β-induced arthritic environment,
melatonin treatment enhanced the synthesis of matrix pro-
teins and suppressed the expression of matrix-degrading
enzymes in human articular chondrocytes. Further molecular
experiments identified miR-140 as a melatonin-responsive
miRNA and revealed that melatonin regulated the expression
of proteinases at the posttranscriptional level by upregulating
miR-140; it was evidenced by the fact that inhibition of miR-
140 counteracts the antiarthritic effects of melatonin on OA-
induced cartilage loss. Future studies are necessary to unveil
the specific mechanisms by which melatonin modulates
miR-140 expression and to investigate the therapeutic effects
of melatonin on late-stage OA.
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