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Nuclear factor, erythroid 2 like 2 (NFE2L2, NRF2) is a transcription factor that regulates various antioxidant enzymes. It plays a
vital physiological role in regulating oxidative stress and inflammatory response. However, the roles of NFE2L2 in human
cancers are still unclear. Our study is aimed at analyzing the prognostic value of NFE2L2 in pan-cancer and at revealing the
relationship between NFE2L2 expression and tumor immunity. The present study revealed that NFE2L2 was abnormally
expressed and significantly correlated with mismatch repair (MMR) gene mutation levels and DNA methyltransferase
expression in human pan-cancer. In particular, pan-cancer survival analysis indicated that NFE2L2 expression was associated
with adverse outcomes—overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI)—in
adrenocortical carcinoma (ACC), brain lower grade glioma (LGG), and pancreatic adenocarcinoma (PAAD) patients. A positive
relationship was also found between NFE2L2 expression and immune infiltration, including B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells, especially in breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD),
kidney renal clear cell carcinoma (KIRC), LGG, liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD).
Additionally, NFE2L2 expression was positively correlated with the immune score and the expression of immune checkpoint
markers in LGG. In conclusion, these results indicate that transcription factor NFE2L2 is a potential prognostic biomarker and
is correlated with immune infiltration in LGG.

1. Introduction

Nuclear factor, erythroid 2 like 2 (NFE2L2) is a redox-
sensitive transcription factor localized mainly in the cyto-
plasm. It is ubiquitously expressed in the esophagus, thyroid,
and other tissues [1, 2]. NFE2L2-mediated oxidative stress is
a prominent feature of cervical cancer [3], promoting the
proliferation, inhibiting the apoptosis, and enhancing the
migration and invasion of cervical cancer cells [4, 5], as well
as increasing the tumor chemoresistance [6, 7], suggesting
that NFE2L2 may be a marker of poor prognosis in cervical
cancer patients [8]. In addition, the redox subtype of lung
squamous cell carcinoma (LUSC) is driven by genomic
mutations in the NFE2L2/KEAP1 complex [9]. Although

cervical cancer and LUSC have been studied, many research
gaps remain across the cancer spectrum.

The tumor microenvironment (TME) is very complex
and contains both the cellular and noncellular components.
On the one hand, inflammatory cells, including neutrophils
and myeloid-derived suppressor cells (MDSCs), suppress
beneficial immune functions in the TME, preventing normal
immune cells from attacking tumor cells and promoting
tumor growth [10, 11]. On the other hand, immune cell infil-
tration of the TME constitutes a strategy used by tumor cells
to evade immune-mediated killing [12–14]. Tumor-
associated macrophages (TAMs) mediate immune escape
and then play important roles in tumorigenesis and develop-
ment [15–18]. Currently, immunotherapy is a trending topic
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in tumor therapy. For example, programmed death-1 (PD-1)
and programmed death-ligand-1 (PD-L1) inhibitors have
been found to induce tumor cell apoptosis by blocking the
PD-1/PD-L1 signaling pathway, thus playing an effective
antitumor role in lung cancer and melanoma [13, 19–21].
However, the role and underlying mechanisms of NFE2L2
in tumor immunity are unknown.

In the current study, we comprehensively analyzed the
association between NFE2L2 expression and patients’ prog-
nosis in 33 cancer types. In addition, we explored the corre-
lation between NFE2L2 expression and tumor immunity.
Our findings revealed the possible role of NFE2L2 across
cancers, suggesting that NFE2L2 is a potential prognostic
biomarker and is correlated with immune infiltration in
many cancers, especially in LGG.

2. Materials and Methods

2.1. Sample Information and NFE2L2 Expression Analysis in
Human Pan-Cancer. NFE2L2 gene expression data in 31
normal tissues and 21 tumor cell lines were obtained from
the Genotype-Tissue Expression (GTEx) portal (https://
gtexport.org/home/) and Cancer Cell Line Encyclopedia
(CCLE) database (https://portals.broadinstitute.org/ccle/
about). The difference in NFE2L2 expression between cancer
and normal tissues was analyzed by combining the data for
normal tissues from the GTEx database with the data from
The Cancer Genome Atlas (TCGA). Level 3 RNA sequencing
data and clinical follow-up information for patients with 33
types of cancers (ACC: adrenocortical carcinoma; BLCA:
bladder urothelial carcinoma; BRCA: breast invasive carci-
noma; CESC: cervical squamous cell carcinoma; CHOL:
cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC:
lymphoid neoplasm diffuse large B cell lymphoma; ESCA:
esophageal carcinoma; GBM: glioblastoma multiforme;
LGG: brain lower grade glioma; HNSC: head and neck squa-
mous cell carcinoma; KICH: kidney chromophobe; KIRC:
kidney renal clear cell carcinoma; KIRP: kidney renal papil-
lary cell carcinoma; LAML: acute myeloid leukemia; LIHC:
liver hepatocellular carcinoma; LUAD: lung adenocarci-
noma; LUSC: lung squamous cell carcinoma; MESO: meso-
thelioma; OV: ovarian serous cystadenocarcinoma; PAAD:
pancreatic adenocarcinoma; PCPG: pheochromocytoma
and paraganglioma; PRAD: prostate adenocarcinoma;
READ: rectum adenocarcinoma; SARC: sarcoma; SKCM:
skin cutaneous melanoma; STAD: stomach adenocarcinoma;
TGCT: testicular germ cell tumors; THCA: thyroid carci-
noma; THYM: thymoma; UCEC: uterine corpus endometrial
carcinoma; UCS: uterine carcinosarcoma; and UVM: uveal
melanoma) were obtained from TCGA database. All expres-
sion data were normalized through log2 conversion.

2.2. MMR Gene Mutation and DNA Methyltransferase
Analysis. Abnormalities in the DNA mismatch repair system
(MMRs) can lead to tumorigenesis [22]. The mutation levels
of 5 MMR genes (MLH1, MSH2, MSH6, PMS2, and
EPCAM) were obtained from TCGA database. Pearson cor-
relation analysis was used to evaluate the relationship
between NFE2L2 expression and MMR gene mutation levels.

In addition, DNA methyltransferases play an important role
in altering chromatin structure and gene expression [23]. The
relationship between the expression level of NFE2L2 and that
of 4 methyltransferases (DNMT1, DNMT2, DNMT3A, and
DNMT3B) was evaluated by Pearson correlation analysis.

2.3. Survival and Prognosis Analysis. The relationship
between NFE2L2 gene expression and patients’ prognosis
(OS: overall survival; DSS: disease-specific survival; DFI:
disease-free interval; and PFI: progression-free interval) in
33 cancers was visualized with forest plots and Kaplan-
Meier curves. The hazard ratio (HR) and 95% confidence
intervals were calculated via univariate survival analysis.

2.4. Correlations between NFE2L2 Expression and Immune
Characteristics in the TIMER Database. The Tumor Immune
Estimation Resource (TIMER) database contains 10,897
samples from TCGA (https://cistrome.shinyapps.io/timer/).
RNA-seq expression profile data were used to evaluate the
infiltration of 6 immune cells (B cells, CD4+ T cells, CD8+
T cells, neutrophils, macrophages, and dendritic cells) in
tumor tissues. The scores of these 6 infiltrating immune cells
in 33 cancers were downloaded from the TIMER database.
Spearman correlation analysis was used to evaluate the
correlation between NFE2L2 expression and immune infil-
tration. In addition, we evaluated the relationship between
NFE2L2 expression and the immune/stromal scores
(ImmuneScore and StromalScore) and immune checkpoint
marker expression levels by Spearman and Pearson corre-
lation analyses, respectively. Gene expression levels are
shown as log2 RSEM values.

2.5. Statistical Analysis. The Kruskal-Wallis test was adopted
to analyze NFE2L2 expression levels in different tissues
and cancer cell lines. Differences in NFE2L2 expression
levels in tumor tissues and normal tissues were evaluated
by a t-test. In survival analysis, the HRs and P value were
calculated by univariate Cox regression analysis. Kaplan-
Meier curves were used to compare the survival of patients
stratified according to different levels of NFE2L2 expres-
sion. P < 0:05 was set as the significance threshold for all
statistical analyses.

3. Results

3.1. The mRNA Expression Level of NFE2L2 in Human Pan-
Cancer. First, we analyzed NFE2L2 expression in 31 types
of tissues using the GTEx dataset. As shown in Figure 1(a),
NFE2L2 was generally highly expressed in the bladder, ovary,
vagina, and thyroid tissues. Furthermore, we downloaded the
data of tumor cell lines from the CCLE database and analyzed
NFE2L2 expression in these tumor cell lines. Results showed
that NFE2L2 was expressed in all 21 kinds of tumor cell lines
(Figure 1(b)). To further determine the differences in
NFE2L2 expression between the tumor and normal tissues,
we obtained NFE2L2 expression data from TCGA database.
As shown in Figure 1(c), NFE2L2 expression was signifi-
cantly higher in CHOL and LUSC tissues than in normal tis-
sues. However, it was significantly lower in BLCA, BRCA,
COAD, KICH, KIRC, KIRP, LIHC, LUAD, PRAD, READ,
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Figure 1: Continued.
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Figure 1: NFE2L2 is abnormally expressed in pan-cancer. (a) NFE2L2 expression in 31 normal tissues from the GTEx database. (b) NFE2L2
expression in 21 tumor cells from the CCLE database. (c) Differential expression of NFE2L2 in cancers and normal tissues from TCGA
database. (d) NFE2L2 expression in 27 cancer types from the GTEx database and TCGA database (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001).
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THCA, and UCEC compared with normal tissues. Due to the
small number of normal tissue samples in TCGA database,
we further integrated the normal tissue data from the GTEx
database and the tumor tissue data from TCGA database to
analyze the differences in NFE2L2 expression in 27 cancer
types. Results revealed that NFE2L2 was abnormally
expressed in 22 of these cancers. Specifically, NFE2L2 expres-

sion was higher in tissues from 7 cancers (CHOL, ESCA,
GBM, LGG, LUSC, PAAD, and STAD) and lower in tissues
from 15 cancers (ACC, BLCA, BRCA, KIRC, KIRP, LAML,
LUAD, OV, PRAD, READ, SKCM, TGCT, THCA, UCEC,
and UCS) than in the normal tissues (Figure 1(d)). Taken
together, these results reveal that NFE2L2 is abnormally
expressed in different cancers.
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Figure 2: NFE2L2 expression is correlated with MMR gene mutation levels and DNA methyltransferase expression in pan-cancer. (a)
Pearson correlation analysis of NFE2L2 expression with the mutation levels of 5 MMR genes (MLH1, MSH2, MSH6, PMS2, and EPCAM)
in pan-cancer (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). (b) Pearson correlation analysis of NFE2L2 expression with that of 4 DNA
methyltransferases (DNMT1, DNMT2, DNMT3A, and DNMT3B) in pan-cancer.
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Figure 3: Relationship of NFE2L2 expression with patients’ OS. (a) Forest plots showing the HRs related to NFE2L2 expression in 33 cancer
types. (b–h) Kaplan-Meier OS curves for patients stratified by different expression levels of NFE2L2 in 7 cancer types.
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3.2. NFE2L2 Is Correlated with MMR Gene Mutation Levels
and DNA Methyltransferase Gene Expression in Human
Pan-Cancer. MMRs is a DNA damage repair mechanism.
Functional loss of key genes in this mechanism leads to
DNA replication errors [24], higher somatic mutations, and
tumorigenesis [22, 25]. To evaluate the role of NFE2L2 in
tumorigenesis, we analyzed the correlation between NFE2L2
expression and MMR gene mutation levels. Results showed
that NFE2L2 expression was positively related to the muta-
tion levels of 5 MMR genes (MLH1, MSH2, MSH6, PMS2,
and EPCAM) in human cancers (Figure 2(a)).

DNA methylation is an epigenetic modification that can
alter gene expression [26]. Alteration of the DNAmethylation
status is an important factor in tumorigenesis [27]. Next, we
further evaluated the correlation between NFE2L2 expression
and that of 4 DNA methyltransferases. Evidently, NFE2L2
expression is closely related to the expression of DNMT1,
DNMT2, DNMT3A, and DNMT3B across human cancers,
especially in COAD, KIRP, LGG, and UVM (Figure 2(b)). In
summary, these results indicate that NFE2L2 may mediate
tumorigenesis by regulating DNA damage or methylation.

3.3. Prognostic Value of NFE2L2 in Human Pan-Cancer.Next,
we investigated the relationship between NFE2L2 expression
and the prognosis of patients in pan-cancer. Notably, NFE2L2

expression was significantly correlated with patients’ OS in 7
types of cancer (ACC, KIRC, LGG, MESO, PAAD, SARC,
and UCS) (Figure 3(a)). Specifically, NFE2L2 appeared to be
a risk factor in 4 cancer types: ACC (P = 0:0016, HR = 1:03),
LGG (P < 0:0001, HR = 1:03), PAAD (P = 0:0076, HR =
1:01), and UCS (P = 0:00019, HR = 1:02). In addition,
NFE2L2 was a protective factor in 3 other types of cancer:
KIRC (P < 0:0001, HR = 0:99), MESO (P = 0:0022, HR =
0:99), and SARC (P = 0:0033, HR = 0:99) (Figures 3(b)–
3(h)). Since non-tumor-related factors may cause death dur-
ing follow-up, we then analyzed the relationship between
NFE2L2 expression and DSS in 33 cancers. Results showed
NFE2L2 expression impacted patients’ DSS in 6 cancer types
(ACC, KIRC, LGG, PAAD, SARC, and UCS) (Figure 4(a)).
Specifically, Kaplan-Meier curves showed that high expression
of NFE2L2 was significantly correlated with poor prognosis of
patients in ACC (P = 0:015, HR = 1:02), LGG (P < 0:0001,
HR = 1:03), PAAD (P = 0:033, HR = 1:01), and UCS
(P = 0:00038, HR = 1:01) and reversely in KIRC (P < 0:0001,
HR = 0:99) and SARC (P = 0:014, HR = 0:99) (Figures 4(b)–
4(g)). Subsequently, we investigated the relationship between
NFE2L2 expression and DFI and found that increased
NFE2L2 expression was correlated with poor prognosis in
ACC (P = 0:0021, HR = 1:05) and PAAD (P = 0:026, HR =
1:03) but with favorable prognosis in OV (P = 0:0099, HR =
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Figure 4: Relationship of NFE2L2 expression with patients’DSS. (a) Forest plots showing the HRs related to NFE2L2 expression in 33 cancer
types. (b–g) Kaplan-Meier DSS curves for patients stratified by different expression levels of NFE2L2 in 6 cancer types.
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0:99) and PRAD (P = 0:00044, HR = 0:98) (Figure 5). More-
over, we assessed the relationship between NFE2L2 expression
and PFI. The results showed that high expression of NFE2L2
affected PFI unfavorably in ACC (P < 0:0001, HR = 1:03),
LGG (P < 0:0001, HR = 1:02), PAAD (P = 0:013, HR = 1:01),
and UVM (P = 0:0062, HR = 1:03) but favorably in KIRC
(P < 0:0001, HR = 0:99) and MESO (P = 8e − 04, HR = 0:99)
(Figure 6). In conclusion, these results suggest that NFE2L2
expression is significantly correlated with the prognosis of
patients, especially those with ACC, LGG, and PAAD.

3.4. NFE2L2 Expression Is Correlated with Immune Infiltration
Levels and Immune Checkpoint Marker Expression across
Cancers. Immune cells in the TME affect patients’ survival
[28]. Therefore, the correlation between NFE2L2 expression
and immune infiltration in human pan-cancer was further
studied. First, we downloaded the scores of 6 types of infil-
trating immune cells in 33 types of cancer from the TIMER
database and then analyzed the correlation between the
NFE2L2 expression level and immune infiltration levels.
Results showed that NFE2L2 expression was appreciably
positively correlated with the infiltration levels of 6 immune
cells, including B cells, CD4+ T cells, CD8+ T cells, neutro-
phils, macrophages, and dendritic cells in LGG, PRAD,
KIRC, COAD, and BRCA (Figure 7).

The immune score (i.e., ImmuneScore) and matrix score
(i.e., StromalScore) were used to quantify the immune and
matrix components in pan-cancer. NFE2L2 expression was pos-
itively correlated with the ImmuneScore in DLBC, LGG, PAAD,
PRAD, LAML, and negatively correlated with the Immune-
Score in ESCA, LUSC, THYM, THCA, and MESO
(Figure 8(a)). In addition, NFE2L2 expression was positively
correlated with the StromalScore in LAML, LGG, BRCA,
TGCT, DLBC, PAAD, PCPG, PRAD, and THYM and nega-
tively correlated with the StromalScore in LUSC (Figure 8(b)).

Immune checkpoint inhibitors (ICIs), as novel tumor
immunotherapy agents, play an important role in tumor
immunotherapy [29]. Subsequently, we analyzed the correla-
tion between NFE2L2 expression and that of 40 common
immune checkpoint genes. Interestingly, in LGG and PRAD,
NFE2L2 expression was correlated with more than 30
immune checkpoint markers, such as TNFSF4, CD48, and
CD28 (Figure 9). Collectively, these results strongly suggest
that NFE2L2 plays a vital role in tumor immunity.

4. Discussion

Pan-cancer analysis can reveal similarities and differences in
tumors, providing insights into cancer prevention and the
design of therapeutic targets [30]. Recently, many studies
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Figure 5: Relationship of NFE2L2 expression with patients’DFI. (a) Forest plots showing the HRs related to NFE2L2 expression in 33 cancer
types. (b–e) Kaplan-Meier DFI curves for patients stratified by different expression levels of NFE2L2 in ACC, OV, PAAD, and PRAD.
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have focused on pan-cancer analysis of the whole genome,
revealing mutations, RNA alterations, and driver genes that
are related to the occurrence and development of cancer,
which is of importance for early diagnosis of cancer and
development of biomarkers [31–35]. NFE2L2 is a transcrip-
tion factor with alkaline lysine zipper structure, which plays
a role in resisting oxidative stress and maintaining the body’s
redox homeostasis [36]. However, the roles of NFE2L2 in
human pan-cancer have not been identified, and whether it
can be used as a biomarker is still unknown. In the current
study, we found that NFE2L2 is abnormally expressed in 22
cancer types and is significantly correlated with MMR gene
mutation levels and DNA methylation. In addition, NFE2L2
expression was associated with poor prognosis (OS, DSS, and
PFI) of patients, especially those with ACC, LGG, and PAAD.
Furthermore, we observed that NFE2L2 expression was pos-
itively correlated with immune infiltration levels and the
expression of immune checkpoint markers, especially in
LGG. The above results strongly suggested that NFE2L2
may be used as a potential biomarker of LGG and play an
indispensable role in tumor immunity.

Studies have shown that NFE2L2 could bind to KEAP1,
which acts as a redox sensor to dissociate NFE2L2 from its
cytoplasmic complex for translocation into the nucleus [37,
38]. In the nucleus, NFE2L2 binds to the antioxidant

response element (ARE) to activate the expression of detoxi-
fication, antioxidant, and anti-inflammatory genes, establish-
ing the NFE2L2/KEAP1/ARE signaling pathway [37].
Disrupting the balance of this pathway can lead to aging,
inflammation, and tumor chemoresistance [39, 40]. In addi-
tion, several studies have indicated that NFE2L2 is upregu-
lated in different types of cancers and correlates with tumor
progression, aggressiveness, and poor prognosis [41].
Another study showed that cytoplasmic NFE2L2 expression
was associated with patients’ poor prognosis, while the
nuclear NFE2L2 expression was associated with a more
favorable prognosis [42]. Moreover, NFE2L2 is abnormally
overexpressed in lung cancer cell line A549 [43]. These previ-
ous findings indicate NFE2L2 may be abnormally expressed
in various cancers and play important roles in cancer pro-
gression and patients’ prognosis. In this study, we found for
the first time that abnormal expression of NFE2L2 exists in
human pan-cancer including ACC, LGG, and PAAD. Sur-
vival analysis showed NFE2L2 expression was associated
with poor prognosis in multiple cancers, especially in ACC,
LGG, and PAAD. These results strongly indicate NFE2L2 is
a potential prognostic biomarker in ACC, LGG, and PAAD.

Under normal conditions, MMRs ensures the stability
of DNA replication. MMRs consists of multiple heterodi-
mers, including MLH1/PMS2, MSH2/MSH6, and EPCAM,
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Figure 6: Relationship of NFE2L2 expression with patients’ PFI. (a) Forest plots showing the HRs related to NFE2L2 expression in 33 cancer
types. (b–g) Kaplan-Meier PFI curves for patients stratified by different expression levels of NFE2L2 in 6 cancer types.
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which can identify and correct gene mutations including
base substitutions, insertions, deletions, or mismatches
during DNA replication [44]. Mutations or defects in the
MMR gene can lead to the accumulation of genetic errors,
resulting in genomic or microsatellite instability, which
contribute to the occurrence of tumors [45]. These indi-
cate MMR gene mutation is a predictor of tumorigenesis.
In this study, through correlation analysis, we found
NFE2L2 expression was closely associated with the muta-
tion levels of 5 MMR genes (MLH1, MSH2, MSH6,
PMS2, and EPCAM) in human pan-cancer. In addition,
alterations in DNA methylation status contribute to the
development of cancer [46]. Recent research has shown
that hypermethylation of the gene promoter is a common
epigenetic feature of cancer [47, 48]. In our study, we also
found that NFE2L2 expression was closely correlated with
that of 4 DNA methyltransferases (DNMT1, DNMT2,
DNMT3A, and DNMT3B) in human cancers, especially in

COAD, KIRP, LGG, and UVM. These results strongly sup-
port our conclusion that abnormal expression of NFE2L2
may play an important role in tumorigenesis by regulating
MMR gene mutation levels and DNA methylation.

The TME has been a recent focus of tumor research. The
immune microenvironment composed of tumor-infiltrating
lymphocytes (TILs; B cells and T cells) and other immune
cells (dendritic cells, neutrophils, and macrophages) is an
important part of the TME [49, 50]. Studies have shown that
immune cells play an indispensable role as a double-edged
sword in tumors to promote or inhibit tumor progression
[51–53]. Under normal conditions, immune cells play an
antitumor role by monitoring and destroying cancer cells
[54]. On the other hand, studies have shown that cancer cells
can evade the surveillance of immune cells through a variety
of mechanisms [55–58]. TILs have been shown to be an
independent predictor of patients’ prognosis in cancers
[59]. CD4+ and CD8+ T cells are crucial members of the
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Figure 8: Correlation analysis between NFE2L2 expression and ImmuneScore/Stromal Score in cancers. (a) Correlation between NFE2L2
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NFE2L2 expression and StromalScore in LAML, LGG, BRCA, TGCT, DLBC, PAAD, PCPG, PRAD, THYM, and LUSC.

22 Oxidative Medicine and Cellular Longevity



TME that participate in specific antitumor immune
responses [60]. Neutrophils secrete MMP9 into the TME,
which contributes to angiogenesis, tumor progression, and
metastasis in mouse transplantation models [61]. Macro-
phages are the first line of defense against tumor immunity.
Instead of killing tumor cells, TAMs mediate tumor devel-
opment [62]. These observations indicate that TILs play a
crucial part in tumor progression. However, there are few
studies about the roles of NFE2L2 in the immune microen-
vironment. In this study, we found that NFE2L2 expression
was significantly correlated with the levels of 6 types of
infiltrating immune cells (B cells, CD4+ T cells, CD8+ T
cells, dendritic cells, macrophages, and neutrophils) in
BRCA, COAD, KIRC, LGG, and PRAD. These results indi-
cate that NFE2L2 may lead to tumorigenesis or inhibit
tumor progression by changing the TIL status. These novel
findings constitute substantial progress in identifying the
important role of NFE2L2 in immune infiltration.

Immune scoring is an approach to evaluate the infiltrat-
ing CD3+/CD45RO+, CD3+/CD8+, or CD8+/CD45RO+
lymphocyte population at the center and edges of a tumor
[63]. In the TME, a higher ImmuneScore or StromalScore
indicates a larger number of immune or matrix components
[64]. Our results revealed that NFE2L2 expression was posi-
tively correlated with the ImmuneScore in DLBC, LGG,
LAML, PAAD, and PRAD and negatively correlated with
the ImmuneScore in ESCA, LUSC, THYM, THCA, and
MESO. In addition, NFE2L2 expression was positively corre-
lated with the StromalScore in BRCA, DLBC, LAML, LGG,
PAAD, PCPG, PRAD, TGCT, and THYM and negatively
correlated with the StromalScore in LUSC. Moreover, the
correlation between NFE2L2 expression and immune check-
point markers implies the role of NFE2L2 in regulating
tumor immunology in cancers, especially in LGG. These
results further strongly indicate NFE2L2’s important roles
in tumor immunity.
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Figure 9: Correlation analysis of NFE2L2 expression levels with 40 common immune checkpoint gene levels in pan-cancer.
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5. Conclusions

In conclusion, the results of the present study indicated that
NFE2L2 overexpression correlates with poor prognosis of
patients and increases the infiltration levels of B cells,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils,
and dendritic cells in many cancers, especially in LGG. In
addition, NFE2L2 expression was found to be significantly
correlated with the expression of immune checkpoint markers
in LGG. Therefore, NFE2L2 may play a vital role in immune
infiltration and be a potential prognostic biomarker for LGG.
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