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Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal
functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as
the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone
IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective
effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-
glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and
neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1μM, 3μM, and 10μM) for 24h with or
without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were
evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor
(vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and
reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1),
inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model.
Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that
STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.

1. Introduction

Spinal cord injury (SCI) is a major medical issue that can lead
to permanent paraplegia [1]. Only 14% of nurses and 37% of
physicians take effective resuscitative measures following SCI
cases [2]. SCI not only influences both the mental and phys-
ical health of the patient but also influences treatment [3–5].
Although various therapies including surgery and drugs are
used for SCI, there is currently no cure for this injury [6–8].

Spinal cord microcirculation plays an important role in
maintaining normal function of spinal cord neurons, axons,
and glial cells [9, 10]. At the primary mechanical injury stage,
compression damages pericytes and endothelial cells, fractures

blood vessels, and disturbs the blood spinal cord barrier (BSCB),
which results in vascular imbalances and leads to severe second-
ary injury and functional disability [11, 12]. BSCB functions
similarly to the blood-brain barrier (BBB), which is based on
the integrity of endothelial cells and their accessory structures.
After SCI, BSCB breaks down and neurotoxic products and
immune cells infiltrate into the injured parenchyma, which
contributes to secondary damage [13–15]. These secondary
injuries result in the death of neurons and glia and permanent
neurological disability [15, 16]. Therefore, protecting the func-
tion and integrity of endothelial cells and preventing BSCB
disruption are necessary to decrease severe secondary injury,
which may serve as a potential therapeutic strategy for SCI.
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Danshen derived from rhizome of Salviae miltiorrhizae
Bge or dried root is a major component of traditional Chi-
nese medicinal herbs [17]. Tanshinone IIA is the most active
diterpenoid quinine pigment in Danshen. Many studies have
shown that Tanshinone IIA has a medicinal effect on cardio-
vascular, cerebrovascular, endocrine, and nervous system
diseases [18–21]. Sodium Tanshinone IIA silate (STS, struc-
ture shown in Figure 1(a)) is a water-soluble derivative of
Tanshinone IIA [22]. STS is used to treat coronary heart
diseases in China. Some research also indicated that STS pro-
tects against inflammation, oxidative stress, and cell death
[23–26]. However, the mechanisms behind Tanshinone IIA
influencing STS-mediated protective effects after SCI micro-
circulation are still unclear.

In this study, we investigated the protective effects of STS
on oxygen-glucose deprivation- (OGD-) induced injury of
spinal cord endothelial cells in vitro and explored improve-
ments of the BSCB and neurovascular protection in vivo.

2. Materials and Methods

2.1. Materials. Healthy adult male C57BL/6 mice were pur-
chased from the Guangzhou University of Chinese Medicine
(Guangzhou, China). All studies were performed according
to the guidelines provided by Guangzhou University of

Chinese Medicine. Research was approved by the ethics
committee of Guangzhou University of Chinese Medicine.
Endothelial growth medium 2 (EGM-2) was obtained from
LONZA, (California, USA). DMEM, fetal bovine serum
(FBS), trypsin, and penicillin/streptomycin were obtained
from Gibco (NY, USA). The WST-1 cell viability detection
kit was obtained from Nanjing KeyGEN Biotech Co., Ltd.
(Nanjing, China). STS (purity > 99% using HPLC) was
purchased from Chengdu Herbpurify Co., Ltd. (Chengdu,
China), dissolved in sterile water (St. Louis, MO, USA), and
diluted in medium.

2.2. Endothelial Cell Isolation. Spinal cord microvascular
endothelial cells (SCMECs) were isolated as previously
described by collecting microvessels from 10 spinal cords of
4-5-week-old mice [27, 28]. Endothelial cells were plated into
culture dishes containing EGM-2 supplemented with 5%
fetal bovine serum, 1% penicillin, and 1% streptomycin.
Plates were incubated at 37°C (5% CO2). Medium was
replaced once every two days. Endothelial cells with lower
passages (3 to 5) were used in all experiments.

2.3. Immunofluorescence Analysis. SCMECs were fixed in 4%
paraformaldehyde, permeabilized with 0.3% Triton X-100,
and blocked in 5% normal goat serum diluted in PBS. After
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Figure 1: STS improves SCMEC survival under OGD conditions. (a) The chemical structure of STS. (b) SCMECs were treated with STS at
various concentrations (1 μM, 3 μM, and 10 μM) for 24 h. (c) SCMECs were cultured with STS (3 μM) after OGD for 24 h. Data are presented
as the mean ± S:D. ∗P < 0:05 vs. the control group. #P < 0:05 vs. the OGD group.
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an overnight incubation with primary antibodies against
vWF (1: 200, Santa Cruz Biotechnology), CD31 (1: 200,
Abcam), NG2 (1: 200, Abcam), and GFAP (1: 200, Abcam)
at 4°C, cells were washed three times in PBS for 5min and
subsequently incubated with fluorescein-conjugated second-
ary antibodies. Nuclei were stained with DAPI. Fluorescence
microscopy (Olympus, Japan) was used to analyze results.

2.4. In Vitro OGD Model. To mimic SCI conditions in vitro,
the OGD model was used [29, 30]. SCMECs were washed
in PBS and replaced by glucose-free medium (RPMI-1640
without FBS). SCMECs were then transferred to a hypoxia
chamber (BioSpherix, Lacona, NY), which contained 94%
N2, 5% CO2, and 1% O2 for 7 hours. To terminate OGD,
SCMECs were placed in medium (EGM-2 with 5% FBS, 1%
streptomycin and 1% penicillin) including STS at the differ-
ent concentrations (1μM, 3μM, and 10μM) and incubated
in a 37°C, 5% CO2 incubator. SCMECs without exposure to
OGD were used as controls. RO4929097 (1μM) was used
as an inhibitor of the Notch signaling pathway.

2.5. Cell Viability. Cell viability was measured using the
WST-1 assay [31]. Briefly, SCMECs were added to 96-well
plates at a density of 1 × 104/well. SCMECs were treated with
different concentrations of STS (1μM, 3μM, and 10μM) for
24 h or treated with various concentrations of STS (1μM,
3μM, and 10μM) for 24 h after OGD. After incubation,
10μl of WST-1 solution was added to the plate for 2 h at
37°C. A microplate reader (Bio-Rad, USA) was used to
analyze the absorbance at a wavelength of 450 nm. All exper-
iments were performed in biological triplicate.

2.6. Tube Formation. SCMECs were seeded on a Matrigel
basement membrane matrix (BD, CA, USA) to examine tube
formation. Matrigel (50μl) was added to the center of each
well of a 96-well plate. The plate was then allowed to solidify
for 30min at 37°C. After exposure to OGD and incubation
with STS for 24 h, 1:5 × 104 cells/well were plated to form
tubes. Cells were allowed to incubate for an appropriate
period of time at 37°C (5% CO2). Photographs were acquired
using an inverted microscope (200x). The number of junc-
tions and the total length of tubes were counted using ImageJ.

2.7. Migration Assay. The migration of SCMECs was evalu-
ated using transwell insert chambers (BD, USA) containing
a polycarbonate filter membrane with an 8μm pore size.
After exposure to OGD and incubation with STS for 24 h, cell
density was adjusted to 5 × 105 cells/ml in EGM-2 supple-
mented with 1% FBS. For the transwell assay, 200μl of cells
was seeded into the upper chamber, where EGM-2 supple-
mented with 5% FBS was added to the lower chamber. After
a 24 h incubation period, migrated cells were fixed in para-
formaldehyde for 30min and stained with crystal violet for
4 h. Cells in the upper chamber were removed using a
cotton-tipped swab. Photographs were acquired using opti-
cal microscopy (100x), and migrated cells were counted
and averaged in five random visual fields.

2.8. ScratchWound Healing. SCMECs were added into 6-well
plates at a density of 5 × 105 cells per well. After exposure to

OGD and incubation with STS for 24 h, a scratch wound was
gently created using a 200μl sterile pipette tip on a uniform
layer of cells. Cells were also rinsed with PBS to remove
debris and floating cells. Wound healing was photographed
at 0, 12, and 24 h in the same area using an inverted
microscope. All experiments were performed in biological
triplicate.

2.9. Determination of Inflammatory Mediators. According to
instructions provided by the manufacturer, the concentra-
tions of IL-6, TNF-α, and IL-1β in culture media were mea-
sured using commercially available ELISA kits (Nanjing
KeyGEN Biotech Co., Ltd., Nanjing, China).

2.10. Animal Care and Establishment of SCI Model and
Experiment Groups. Healthy adult male C57BL/6 mice were
obtained from the GuangdongMedical Experimental Animal
Center (Foshan, China, Certificate No.44007200047868) and
housed in strictly controlled environmental conditions with
12 : 12 light/dark cycles at 25 ± 1°C and 55 ± 5% relative
humidity and free access to food and water. All animal exper-
iments were approved by the Institutional Animal Care and
Use Committee of Guangzhou University of Chinese Medi-
cine and performed according to the “NIH Guide for the
Care and Use of Laboratory Animals”.

A total of 30 adult male C57BL/6 mice (20-25 g) were
randomly divided into 3 groups (n = 10 per group) including
the sham-operated, SCI model, and STS-treated groups.
Allen’s method was used to establish the SCI model with a
moderate contusion, based on previous methods [32]. Mice
were anesthetized using pentobarbital sodium (30mg/kg,
i.p.). Spinal cords were exposed through T9-T10 laminect-
omy under sterile conditions followed by a contusion with
an impact velocity of 0.5m/s, depth of 0.6mm, and duration
of 80ms. Successful establishment of the SCI model was
observed by spinal cord congestion, leg swaying, tail swing
reflexes, and slow paralysis. Next, the bladder was manually
pressed twice a day. STS (dissolve in saline, 20mg/kg) was
administered through intraperitoneal injection at 2 h after
SCI once a day for a week. Similar methodology was applied
to the vehicle groups. After treatment, mice were sacrificed
using pentobarbital sodium (80mg/kg, i.p.), and spinal cords
(5mm sections of the spinal cord centered at the lesion site)
were extracted and stored at -80°C for immunofluorescence
and western blotting experiments or were perfused with
paraformaldehyde for histopathological evaluation (H&E)
and Nissl staining. The detailed experimental design for this
study is shown in supplementary materials (Figure 1S).

2.11. Functional Scale. The Basso, Beattie, and Bresnahan
(BBB) scale, which measures locomotor ability for 4min
according to the 21 different criteria for movement of the
hindlimb, was used to evaluate the functional recovery at 1,
3, 5, 7, 14, 21, and 28 days post-SCI [33, 34]. Two trained
investigators blinded to the experimental conditions ana-
lyzed the scale, and final scores were averaged for each group.

2.12. H&E and Nissl Staining. Paraffin sections (5μm thick-
ness) were deparaffinized using xylene and underwent H&E
and Nissl staining based on instructions provided by the
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manufacturer [35]. Photographs were taken using a light
microscope (Leica, Germany). Injured neurons were counted,
and the histopathological alteration of gray matter was scored
on a 6-point scale for H&E staining where 0 = no observable
lesions, 1 = graymatter containing 5-10 eosinophilic neurons,
3 = graymatter containing >10 eosinophilic neurons, 4 ≤ 1/3
of gray matter area infarction, 5 = 1/3-1/2 of gray matter area
infarction, and 6 ≥ 1/2 of gray matter area infarction [36]. All
histological examinations were performed blindly.

Rexed’s lamina system of gray matter was used to classify
and count neurons for Nissl staining [37]. The pathological
score was calculated as the average of all sections from a sin-
gle spinal cord for each animal. All histological examinations
were performed blindly.

2.13. BSCB Permeability. Evans Blue dye (Aladdin, China)
leakage was evaluated to analyze the permeability of the
BSCB [38, 39]. A total of 2ml of 2% Evans Blue dye mixed
in saline was administered by intravenous injection at 7 days
after SCI. Three hours later, mice were anesthetized and

perfused with PBS and 4% paraformaldehyde intracardia-
cally until Evans Blue dye did not run out of the right atrium.
To qualitatively examine Evans Blue extravasation, photo-
graphs of gross view changes were taken to observe whole
spinal cords. Moreover, paraformaldehyde-fixed spinal cords
were sectioned at a thickness of 20μm. The relative fluores-
cence intensity of Evans Blue was measured using fluorescent
microscopy (Olympus, Japan). The relative fluorescence
intensity was quantified using ImageJ.

2.14. Immunofluorescence. Ten-micrometer-thick transverse
frozen slices were heated at room temperature for 30min,
permeabilized using 0.3% Triton X-100, and blocked in 5%
normal goat serum diluted in PBS for 1 hour. Next, slices were
incubated overnight at 4°C in primary antibodies targeting
vWF (1 : 200, Santa Cruz Biotechnology) or NeuN (1 : 300,
Abcam). Spinal cords were subsequently incubated in
fluorescein-conjugated secondary antibodies for 1h at room
temperature. Nuclei were stained using DAPI, and fluorescence
microscopy (Olympus, Japan) was used to analyzed results.

Primary culture (4×) Passage 1 (10×) Passage 3 (20×)

(a)

DAPI

VWF(+)
(20×)

CD31
(20×)

GFAP
(20×)

NG2
(20×)

Merge

(b)

Figure 2: Morphological characterization and immunofluorescence analysis of SCMECs. (a) Representative fields of SCMECmorphologies at
the primary, first, and third passages (scale bar = 200 μm, 100 μm, and 50 μm). (b) Representative immunofluorescent labeling images for
CD31, vWF, NG-2, and GFAP (scale bar = 50μm).
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2.15. Western Blotting. Western blotting experiments were
performed according to previous studies [40]. Briefly, pro-
teins (50μg) were loaded into a 10% SDS-PAGE gel and
electrotransferred to a polyvinylidene difluoride membrane
(Millipore, USA). Membranes were incubated overnight at
4°C in primary antibodies recognizing Jagged-1 (1 : 1000, Cell
Signaling Technology), Notch-1 (1 : 1000, Cell Signaling
Technology), Hes-1 (1 : 1000, Cell Signaling Technology),
CD31 (1 : 1000 dilution, Abcam), zonula occludens-1 (ZO-1)
(1 : 1000 dilution, Abcam), and vWF (1 : 500, Santa Cruz Bio-
technology). Membranes were washed in TBS and incubated
in secondary antibodies conjugated to horseradish peroxidase
(HRP) (1 : 1000, Cell Signaling Technology) for 2h at room
temperature. GAPDH (1 : 1000 dilution, Abcam) was used as
an endogenous loading control. The ImageQuant LAS 4000
mini detection system (GE Healthcare, Buckinghamshire,
UK) was used for quantified densitometric analysis, and
ImageJ software (National Institutes of Health, Bethesda,
MD) was used to analyze results.

2.16. Statistical Analysis. All data were presented as the
mean ± standard deviation. Statistical analyses were per-
formed using SPSS 24.0 software (SPSS Inc., USA). Student’s
t-test (normal distribution) or Mann–Whitney U test (non-
normal distribution) was used to identify differences between
two groups, and one-way analysis of variance (normal distri-
bution) or Kruskal–Wallis (non-normal distribution) test
followed by Bonferroni or Dunn post hoc test was performed
to compare three or more groups. P values less than 0.05 were
considered statistically significant.

3. Results

3.1. Characterization of SCMECs. Proliferation of SCMECs
isolated from vessels is depicted in Figure 2(a). Immuno-
fluorescence analysis revealed that SCMEC markers CD31
and vWF were expressed. However, the pericyte marker
NG-2 and the astrocyte maker GFAP were not expressed
(Figure 2(b)). These results indicated that there were no
pericytes or astrocytes mixed in SCMEC cultures.

3.2. STS Improves the Survival of SCMECs under OGD. First,
the cytotoxicity of SCMECs treated with STS at various con-
centrations (1μM, 3μM, and 10μM) for 24 h was measured
using the WST-1 assay. As shown in Figure 1(b), there was
no significant increase in cytotoxicity for SCMECs treated
with STS compared to the control group. We then examined
the protective effects of STS on SCMECs exposed to OGD.
STS (3μM) significantly improved SCMEC survival rate
(Figure 1(c)) compared to the OGD group.

3.3. STS Promotes Tube Formation in SCMECs after OGD. A
Matrigel angiogenesis (tube formation capacity) assay was
used to illustrate whether STS promotes tube formation in
SCMECs after OGD. There was a reduction in the number
of tube-like structures after OGD, where STS treatment
effectively promoted tube formation. RO4929097, a notch
signaling inhibitor, significantly blocked the protective effects
of STS on tube formation (Figure 3(a)).

3.4. STS Enhances the Migration of SCMECs Exposed to OGD.
Migration is an important step for the angiogenesis of
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Figure 3: STS promotes tube formation in SCMECs after OGD. SCMECs were cultured with STS (3 μM) after OGD for 24 h. (a) A tube
formation assay was used to evaluate tube formation. (b) Bar graphs show the count of total tube length. Data are presented as the
mean ± S:D. ∗P < 0:05 vs. the control group, #P < 0:05 vs. the OGD group, and &P < 0:05 vs. the OGD+STS group. Scale bar = 200μm.
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endothelial cells. Wound healing scratch and transwell assays
were used to evaluate the migration of SCMECs treated with
STS after OGD. In the transwell assay, the number of migrat-
ing SCMECs significantly decreased after OGD, where treat-
ment with STS increased migration compared to the OGD
group (Figure 3(b)). Similar results were also observed for
wound healing scratch assays. As shown in Figure 4,
SCMECs treated with STS quickly migrated into the injured
area after 12 h and 24h following the scratch compared to
the OGD group. Furthermore, RO4929097 partially blocked
the migration of SCMECs treated with STS as observed in
both the wound healing scratch and transwell assays.

3.5. STS Reduces Inflammatory Mediators of SCMECs after
OGD. To explore the anti-inflammatory effects of STS

against OGD in SCMECs, the concentrations of IL-6, TNF-
α, and IL-1β in culture media were measured. As shown in
Figure 5, compared to the OGD group, the expression levels
of IL-6, TNF-α, and IL-1β were significantly decreased after
treatment with STS, and RO4929097 blocked these effects.
These results indicate that STS exerts anti-inflammatory
functions against OGD in SCMECs.

3.6. STS Exerts Protective Effects on SCMECs after OGD
through Notch Signaling. To investigate whether the Notch
signaling pathway is involved in the protective effects of
STS against OGD in SCMECs, the expression levels of
Jagged-1, Notch-1, and Hes-1 proteins were analyzed.
Expression levels of Jagged-1, Hes-1, and Notch-1 were sig-
nificantly decreased in the OGD group. However, this effect
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Figure 4: STS enhances migration of SCMECs exposed to OGD. SCMECs were cultured with STS (3 μM) after OGD for 24 h. (a) The
influence of STS on migration after OGD was analyzed by a transwell assay (scale bar = 100μm). (b) Wound healing scratch assay
revealing the influence of STS on migration at 0, 12, and 24 h (scale bar = 100 μm). (c) Quantitative analysis of the migration rate. (d) Bar
graphs depicted the migration rate of wound closure. Data are presented as the mean ± S:D. ∗P < 0:05 vs. the control group, #P < 0:05 vs.
the OGD group, and &P < 0:05 vs. the OGD+STS group.
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was significantly reversed when treated with STS (Figure 6).
Moreover, RO4929097 blocked protective effects observed
against OGD when SCMECs were treated with STS.

3.7. STS Relieves Histopathological Damage and Improves
Functional Recovery after SCI. To explore the protective
effects of STS on histopathological injury, H&E staining
was used to evaluate histopathological alterations. Staining
(Figure 7(b)) revealed significant histopathological changes
after SCI (4:31 ± 0:63) compared to the sham group. These
histopathological changes included diffuse hemorrhage,
widespread edema, congestion, neutrophil infiltration, and
neuronal disruption. However, after STS treatment, these
effects were attenuated (2:23 ± 0:49). To evaluate functional
recovery, the BBB score was used. As shown in Figure 7(d),
compared to the SCI group, BBB scores were significantly
increased in the SCI+STS groups at 14, 21, and 28 days.
These results indicate that STS relieves histopathological
damage and improves functional recovery after SCI.

3.8. STS Inhibits BSCB Permeability and Increases Tight
Junction Proteins after SCI. Evans Blue assay was used to
determine how STS influences BSCB permeability 7 days
after injury. As shown in Figure 8(a), the permeated area

was higher in the SCI group compared to the sham group.
After treatment with STS, the permeated area was signifi-
cantly inhibited. Meanwhile, the fluorescence intensity of
Evans Blue dye extravasation was also evaluated to show that
STS treatment significantly reduced fluorescent intensity of
dye extravasation at 7 days after injury compared to the
SCI group (Figures 8(b) and 8(c)).

Tight junction proteins are vital structural proteins in the
BSCB. To further evaluate the protective effects of STS on
BSCB, the expression of ZO-1 was analyzed by western blot-
ting. As shown in Figure 8(d), compared to the SCI group,
the expression of ZO-1 was significantly increased in the
SCI+STS groups. These results illustrated that STS prevented
BSCB disruption and protected the integrity of BSCB
function after SCI.

3.9. STS Rescues Microvessels after SCI. The endothelial
marker proteins vWF and CD31 were analyzed by immuno-
fluorescence and western blotting. As shown in Figure 9(a),
the amount of fluorescence intensity labeled by a vWF anti-
body was lower in the SCI group compared to the sham
group. A significant increase in the proportion of vWF-
labeled blood vessels was observed after treatment with
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Figure 5: STS reduces inflammatory mediators on SCMECs after OGD. The culture medium of SCMECs was collected with STS (3 μM) after
OGD for 24 h. Levels of IL-6 (a), TNF-α (b), and IL-1β (c). Data are presented as themean ± S:D. ∗P < 0:05 vs. the control group, #P < 0:05 vs.
the OGD group, and &P < 0:05 vs. the OGD+STS group.
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STS. Moreover, STS treatment significantly increased the
expression of vWF and CD31 proteins 7 days after injury
compared to the SCI group (Figure 9(b)).

3.10. STS Protects Motor Neurons after SCI. To confirm
whether there was a neuroprotective effect of STS after SCI,
we evaluated the neuronal marker NeuN and Nissl staining
7 days after injury. As shown in Figure 10(a), a lower number
of motor neurons were observed in the SCI group compared
to the sham group. After treatment with STS, the number of
motor neurons was significantly increased. The expression of
Nissl bodies was reduced in the SCI group (sham (0:82 ± 0:08)
versus SCI (0:33 ± 0:10)), where results were reversed with
STS treatment (STS (0:59 ± 0:12) versus SCI (0:33 ± 0:10))
(Figure 10(b)).

3.11. STS ExertsMicrocirculation Protective andNeuroprotective
Effects after SCI through Notch Signaling. To confirm
whether the STS microcirculation protective and neuropro-
tective effects after SCI were activated through Notch
signaling, the expression levels of Jagged-1, Hes-1, and
Notch-1 in spinal tissues were analyzed 3 days after injury.
As shown in Figure 11, protein expression of Jagged-1,
Hes-1, and Notch-1 was significantly reduced in the SCI

group. After treatment with STS, this effect was significantly
reversed.

4. Discussion

SCI leads to irreversible neurological injury that affects
180,000 patients worldwide every year [41]. There is a greater
number of patients with SCI in China compared to other
countries [42]. An initial mechanical contusion is the main
cause of SCI, which results in hemorrhages, ischemia, and
disorders of microhemodynamics as well as destruction of
the BBB [43–46]. Moreover, spinal cord microcirculation
plays an important role in maintaining the normal func-
tion of spinal cord neurons, axons, and glial cells [9, 10].
Spinal cord microcirculation is also a key factor in pro-
gressive degeneration and subsequent functional injuries
after SCI [45, 47, 48].

Sodium Tanshinone IIA silate (STS) is a water-soluble
derivative of Tanshinone IIA that plays a role in microcircu-
lation. Many studies have shown that Tanshinone IIA
exhibits antiangiogenic effects in normal or overgrown
conditions, such as tumors. Lee et al. [49] reported that
Tanshinone IIA inhibited angiogenesis in VEGF-induced
tube formation in human EPCs. Tsai et al. [50] demonstrated
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Figure 6: STS exerts protective effects on SCMECs after OGD through the Notch signaling pathway. SCMECs were cultured with STS (3 μM)
after OGD for 24 h. Western blotting was used to measure protein expression of Jagged-1, Hes-1, and Notch-1. Data are presented as the
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that Tanshinone IIA inhibited cancer development and
tumor angiogenesis through antiangiogenic effects. However,
in response to ischemia-reperfusion injury, Tanshinone IIA
improves postischemic angiogenesis and microcirculation
and promotes recovery [51–53].

In this study, we found that STS treatment improves
SCMEC functions after OGD in vitro. Under OGD condi-
tions, treatment with STS significantly reduced inflammatory
mediators (IL-6, TNF-α, and IL-1β), improved survival, pro-
moted tube formation, and enhanced the migration ability of
SCMECs. Meanwhile, similar protective microcirculation
effects were demonstrated after treatment with STS in an
in vivo SCI model. After SCI and treatment with STS, histo-
pathological damage was relieved, BSCB permeability was
inhibited, microvessels were rescued, motor neurons were
protected, and functional recovery was improved. Moreover,
the Notch signaling pathway was found to be involved in
these processes both in vitro and in vivo. This is the first study
illustrating that STS has protective effects against SCI
through the Notch signaling pathway.

The OGD model mimics ischemia in vitro and is widely
applied for studying brain and spinal cord injuries [54–56].
Thus, the OGD model was used in this study to determine
whether STS could protect SCMEC functions critical for
SCI recovery. We showed that OGD significantly decreased
viability and functionality of SCMECs, which is consistent
with other findings [28, 57–59]. However, STS treatment
reverses these effects and indicates that STS protects SCMEC
functions. Meanwhile, many studies reported that inflamma-
tion was the second major component impacting SCMEC
functions and BSCB integrity [60, 61]. Inflammatory media-
tors including IL-6, TNF-α, and IL-1β can recruit inflamma-
tory cells to invade the central nervous system through a
damaged BSCB. Therefore, we measured inflammatory
mediators (IL-6, TNF-α, and IL-1β) in vitro, and the results
showed that the expression levels of IL-6, TNF-α, and
IL-1β were significantly decreased when exposed to STS.

The blood vessel-specific markers CD31 and vWF reflect
vascular structure and function [38, 39]. After SCI, spinal
cord repair and remodeling require blood vessels to supply
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Figure 8: STS inhibits BSCB permeability after SCI. (a) Photographs of whole spinal cords demonstrating Evans Blue dye extravasation into
the spinal cord 7 days after injury for sham, SCI, and STS groups. (b) Immunofluorescence labeling of Evans Blue dye extravasation was
analyzed in the sham, SCI, and STS groups. (c) Western blotting was used to measure protein expression of ZO-1. Data are presented as
the mean ± S:D. ∗P < 0:05 vs. the control group; #P < 0:05 vs. the SCI group (n = 6). Scale bar = 200μm.
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nutrition and oxygen [62–64]. Consistent with previous find-
ings [38, 39], a decrease in blood vessel area and lower levels
of CD31 and vWF were observed in SCI mice. STS treatment
significantly increased the blood vessel area as well as CD31
and vWF protein levels. These findings illustrated that STS
improves angiogenesis.

The BSCB limits the entry of blood cells and plasma com-
ponents into the spinal cord to protect the central nervous
system [65, 66]. When the BSCB is disrupted, neurotoxic
products and immune cells infiltrate into the injured paren-
chyma contributing to secondary damage [13–15]. Hence,
we evaluated the BSCB in SCI mice treated with STS or
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Figure 9: STS rescues microvessels after SCI. Microvessels were evaluated for the expression of vWF and CD31 proteins.
(a) Immunofluorescence labeling of vWF was measured 7 days after injury in the sham, SCI, and STS groups. (b) Immunoblotting was
used to detect the expression levels of vWF and CD31 proteins. Data are presented as mean± S.D. ∗P < 0:05 vs. the control group;
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Figure 10: STS protects motor neurons after SCI. (a) Immunofluorescence labeling of NeuN was detected 7 days after SCI. (b) Representative
Nissl staining 7 days after SCI. (c) Quantitative analysis of fluorescence intensity. (d) Quantitative analysis of Nissl staining. Data are
presented as the mean ± S:D. ∗P < 0:05 compared to the control group; #P < 0:05 compared with the SCI group (n = 6). Scale bar = 50 μm.
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vehicle. The permeated Evans Blue area from the BSCB was
greater after SCI, as shown previously [38, 39, 67, 68]. More-
over, this was reversed with STS treatment. Similar results
were shown by fluorescence intensity of Evans Blue dye
extravasation. Tight junction proteins are located around
the interendothelial space, sealing the BSCB [69]. Disruption
of tight junction proteins may lead to BSCB permeability
during SCI [60]. ZO-1 is a cytoplasmic tight junction protein
that plays an important role in tight junction protein mainte-
nance and formation [70]. In this study, ZO-1 expression was
significantly increased after STS treatment. Altogether, this
indicated that STS protects BSCB integrity, which ultimately
protects the central nervous system after SCI.

Furthermore, neuroprotective effects of STS treatment in
SCI mice were measured by analyzing the expression of
NeuN proteins and Nissl bodies in spinal tissues. We found
that NeuN-positive neuronal cells and Nissl bodies were
increased after STS treatment, which was consistent with a
greater blood vessel area with STS treatment as shown previ-
ously. These findings provide evidence that an increase in
blood vessels has a beneficial effect on neuron survival.

The Notch signaling pathway is critical for cell differenti-
ation, proliferation, and apoptosis [71–73]. There are four
Notch receptors (Notch1-4) that can be activated by a
membrane-bound ligand (Jagged-1,2/delta-like-1,3,4). When
the pathway is activated, the Notch intracellular domain
(NICD) translocates into the nucleus and regulates gene
expression of Hairy and Enhancer of Split (Hes) and Hairy-

related (Hey) family members [74]. A great deal of research
showed that Notch activation regulates angiogenesis through
arterial/venous specification, angiogenic remodeling, and
endothelial tip cell differentiation [75, 76]. One group [77]
showed that the Notch ligand Jagged-1 (Jag1) present on
endothelial cells is essential for neighboring vascular smooth
muscle differentiation. Another group [78] demonstrated
that the expression of Notch1 was increased after SCI and
is upregulated when treated with drug. In this study, levels
of Notch-1, Hes-1, and Jagged-1 proteins were significantly
higher in the STS treated group compared to the SCI group
3 days after surgery. These findings indicated that the Notch
signaling pathway plays an important role in improving
angiogenesis. Moreover, the levels of Notch-1, Jagged-1,
and Hes-1 proteins decreased after OGD exposure, which is
reversed by STS, demonstrating that Notch signaling has
protective effects on SCMECs in vitro. To further understand
how the Notch pathway participated in this process,
RO4929097, an inhibitor of the Notch signaling pathway
used in human clinical trials [79], was studied to show that
the protective effects of STS were reversed.

In conclusion, this study found that STS improves
microcirculation both in vitro and in vivo through the
activation of the Notch signaling pathway. These effects
further exert neuroprotection in a SCI mouse model. This
is the first report demonstrating that STS protects micro-
circulation in cases of SCI, indicating that STS may be a
potential therapy.
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Figure 11: STS exerts microcirculation protective and neuroprotective effects after SCI through the Notch signaling pathway. Western
blotting was used to detect the expression levels of Jagged-1, Hes-1, and Notch-1 proteins in spinal tissues 3 days after SCI. Data are
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BBB: Blood-brain barrier
BSCB: Blood spinal cord barrier
CNS: Central nervous system
EGM-2: Endothelial growth medium 2
FBS: Fetal bovine serum
HE: Histopathological evaluation
Hes: Hairy and Enhancer of Split
Hey: Hairy-related
NICD: Notch intracellular domain
OGD: Oxygen-glucose deprivation
PBS: Phosphate-buffered saline
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SCI: Spinal cord injury
SCMECs: Spinal cord endothelial cells
STS: Sodium Tanshinone IIA silate
vWF: von Willebrand Factor
ZO-1: Zonula occludens-1.
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