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Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and
cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular
events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer
treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure
(HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular
mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex.
By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the
potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities.
Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those
regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity
induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of
cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even
prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of
pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.

1. Introduction

Cancer therapeutics have seen tremendous progress in recent
years [1, 2] and have revolutionized the treatment strategies
and outcomes of some types of cancer [3]. These novel ther-
apeutic strategies target specific molecular entities implicated
in disease pathogenesis. Advances in cancer treatment have
improved the survival rates of cancer patients, but they have
also increased morbidity and mortality due to side effects [4,

5], in particular, cardiovascular complications, including
hypertension, arrhythmias, left ventricular (LV) dysfunction,
and HF, which can manifest many years after the completion
of chemotherapy [6]. For example, regardless of the infusion
rate [7], maximum cumulative doses [8], and alternative
drugs [9] to reduce heart injury, the incidence of cardiotoxi-
city caused by anthracyclines is 9% to 18% [10, 11]. Within 2
years of HF, patients have a mortality rate of 60%, an
extremely poor prognosis [12]. Further, the incidence of
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myocarditis with checkpoint inhibitors can be as high as
13.9% [13]. As a result, cancer patients often suffer from a
variety of cardiotoxicities induced by treatment, which can
result in substantial adverse impact on their emotional, eco-
nomic, and social well-being [14, 15]. Unfortunately, the
mechanisms underlying chemotherapy-induced cardiotoxi-
city remain poorly understood.

Although clinical and demographic factors may increase
the susceptibility of some individuals to the risk and severity
of toxicity, individual differences in toxicity manifestations
are considerable, exacerbating these toxicities. Genetics,
therefore, could provide insights into the mechanism for tox-
icity induced by chemotherapy. The identification of genetic
biomarkers able to predict whether a patient is at risk of
developing cardiac dysfunction induced by chemotherapy
will minimize cardiotoxicities during cancer treatment,
through the administration of cardioprotective drugs or the
use of optimized cancer therapies. Data from studies on
genetic defects and pharmacological interventions have sug-
gested that many molecules, primarily those regulating oxida-

tive stress, inflammation, autophagy, apoptosis, and
metabolism, contribute to the pathogenesis of cardiotoxicity
induced by chemotherapy. In this article, we review the prog-
ress made in genetic research to elucidate the molecular mech-
anisms of chemotherapy-induced cardiotoxicity. Furthermore,
a network of functionally related proteins from a STRING
database [16] (Figure 1) was established to determine whether
these targets play a role in the prediction of or protection
against chemotherapy-induced cardiotoxicity. We propose a
variety of cardioprotective mechanisms and provide insights
for the development of therapies to reduce, or even cure, the
cardiotoxicity induced by chemotherapy in future studies.

2. Susceptibility Genes in Chemotherapy-
Induced Cardiotoxicity

Genes positively correlated with cardiotoxicity have been
found to contain alleles that change the encoding of protein
expression, leading to the development of disease [17, 18].
Genetic markers that predict whether patients will develop
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Figure 1: Graph of the protein network comprising combinations based on genetic studies that indicates the protective targets in the
chemotherapy-induced cardiotoxicity.
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cardiotoxicity from chemotherapy would allow for the care-
ful monitoring of patients, the administration of cardiopro-
tective drugs, and the early initiation of treatment after
cardiotoxicity [19–21]. This review provides an overview of
all the genetic variants that have been found to influence sus-
ceptibility to cardiotoxicity (Table 1 and Figure 2). The iden-
tified gene variants are discussed in view of the latest theories
regarding the complex pathological mechanisms responsible
for this adverse drug reaction.

2.1. Oxidative Stress. Chemotherapy produces reactive oxy-
gen species (ROS) via multiple pathways, including hydroxyl
radicals (-OH), superoxide radicals (O2-), and hydrogen per-
oxide (H2O2). Excessive ROS generation is the most widely
theorized mechanism for mediating chemotherapy-induced
cardiotoxicity [22–24]. H2O2 and O2- may generate the toxic
-OH and cause myocardial injury [25]. The heart is particu-
larly vulnerable to oxidative stress because of the low levels
of enzymes that neutralize these substances found in cardiac
tissue [26, 27]. ROS interacts with DNA, proteins, and lipid
membranes to destroy them.

Chemotherapy produces excessive free radicals by
exploiting cellular oxidoreductases, including nicotinamide
adenine dinucleotide phosphate (NADPH) and nicotinamide
adenine dinucleotide hydrogen (NADH) dehydrogenase,
resulting in cardiotoxicity [28–30]. The NADPH oxidase
(NOX) multienzyme complex uses NADPH or NADH as
an electron donor to promote a 1-electron reduction of oxy-
gen. This enzyme has been studied in the endothelium and
macrophages, and was recently confirmed as a possible pri-
mary source of ROS in the myocardium [31]. Genotypic var-
iations of alpha-1 class glutathione S-transferase (GSTA1,
rs3957357) and NOX p22phox (CYBA, rs4673) are predic-
tors of event-free survival. The influence of single-
nucleotide polymorphisms (SNPs) on toxicity was assessed
in 658 rituximab-CHOP- (R-CHOP-) 21 courses [32]. Over-
all, the SNPs influencing CYBA rs4673 and GSTA1
rs3957357 may predict patient prognosis after R-CHOP-21
treatment. In addition, a variant of the NOX subunit NCF4
(rs1883112) may prevent hematological and nonhematologi-
cal toxicity [33, 34]. Another study investigated genotype
participants and conducted a follow-up study for the occur-
rence and development of HF [35]. The SNPs were selected
from 82 genes potentially associated with cardiotoxicity.
Among 1,697 patients, 55 had acute anthracycline-induced
cardiotoxicity (ACT) and 54 had chronic ACT. This study
detected 5 genes that were related to polymorphisms in
NOX and doxorubicin (DOX) efflux transporters, while
chronic ACT was found to be related to NCF4 (rs1883112).
Additionally, acute ACT was found to be related to the
p22phox subunit (rs4673) and the RAC2 subunit
(rs13058338). Consistent with these results, mice with insuf-
ficient NOX activity were resistant to chronic DOX therapy
[35–37].

Meanwhile, another previous study investigated 2,950
patients who had undergone hematopoietic cell transplanta-
tion (HCT) from 1988 to 2007 [38]. Genotyping was per-
formed on 77 cases of HCT germline DNA and 178 cases
of control. The results of multivariate analysis showed that

the incidence of congestive heart failure (CHF) was higher
in patients with pre-HCT chest radiation and with gene var-
iants coding for the NOX subunit RAC2 (rs13058338), HFE
(rs1799945), or the DOX efflux transporter ATP-binding
cassette subfamily C member 2 (ABCC2, rs8187710) [35,
39]. In addition, the polymorphisms of NOX subunits and
transporters ABCC1, ABCC2, and SLC28A3 were genotyped
in patients with aggressive CD20 B-cell lymphoma [40, 41].
The RAC2 subunit genotypes were found to have statistical
significance in the multivariate logistic regression analysis.
In summary, RAC2 and CYBA genotypes appear to be
related to ACT [34, 42], which demonstrates that NOX is
associated with ACT.

ABCC1, also known as multidrug resistance-associated
protein 1 (MRP1), is expressed in the heart and is involved
in detoxifying and protecting against the toxic actions of
xenoorganisms [43, 44]. One study investigated the correla-
tion between left ventricular (LV) function and SNPs in the
ABCC1 gene in children treated with anthracyclines [45].
The data of acute lymphoblastic leukemia in children were
analyzed, and echocardiography and genotyping of 9 poly-
morphisms of the ABCC1 gene were performed. The results
revealed that the combination of ABCC1 rs3743527TT and
rs3743527tt-rs246221tc/TT is associated with lower LV frac-
tional shortening (FS), suggesting that genetic variations in
the ABCC1 gene may impact LV dysfunction induced by
anthracycline. Moreover, the synonymous encoding variant
rs7853758 in the SLC28A3 gene was significantly related to
ACT [46–48]. The risk and protection variants of other genes
have been described, including SLC28A1 and several kinds of
ATP-binding cassette transporters (ABCB1, ABCB4, and
ABCC1). The novel relevance of the Top2b (topoisomerase-
IIb) SNPs was verified [49], which suggested an association
between the SNPs of RAC2, NCF4, and SLC28A3, and 23
SNPs associated with ACT [50]. Another study examined
the relationship between 36 candidate polymorphisms of
MAP (methotrexate, adriamycin, and cisplatin) pathway
genes and grade 3-4 chemotherapy toxicity [48]. Blood sam-
ples were taken from patients who had completed MAP che-
motherapy. All patients were manually genotyped to identify
five polymorphisms, while the remaining 31 polymorphisms
were genotyped using Illumina 610-Quad microarray. The
results suggested that the toxicity of methotrexate was
enhanced in the MTHFR, ABCB1, and ABCC2 variants
[48, 51, 52].

The P450 oxidoreductase (POR) gene encodes a flavin
protein that transfers electrons from NADPH to various
kinds of proteins, including the cytochrome P450 enzymes
[53]. Anthracyclines and other quinone compounds are
transformed by microsomes into hemiquinone radical form
through an electron reduction reaction catalyzed by POR.
This biological activation step stabilizes the drug’s cross-
linking to DNA and is thought to greatly enhance its cytotox-
icity [54]. This study detected 60 gene-encoding proteins
participating in drug metabolism and efflux, with the POR
gene and daunorubicin (DNR) showing the strongest cardio-
toxic effects in patients with acute myeloid leukemia (AML)
[55]. In this cohort of patients with AML, the estimated var-
iation in the POR gene after DNR treatment accounted for
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approximately 11.6% of the LVEF-decreased patients and
13.2% of the LVEF-decreased patients with a cumulative
dose. In post hoc analysis, this association was driven by a
linear interaction of 3 SNPs (rs2868177, rs13240755, and
rs4732513) with a cumulative dose of DNR. Another study
examined the relationship between cytochrome P450 family
3 subfamily A member 5 (CYP3A5) genetic polymorphism
and the DNR plasma concentration in patients with AML
[56]. The study included 36 children who had been recently
diagnosed with acute lymphoblastic leukemia (ALL). Poly-
merase chain reaction- (PCR-) derived sequencing was used
to detect the CYP3A5 ∗ 3 genotype, and then PCR was used
to detect the mRNA expression of CYP3A5. The enzyme
activity of CYP3A was detected using a midazolam probe,
and the DNR concentration was determined via high-
performance liquid chromatography. The expression levels
of CYP3A5 mRNA in children with different genotypes were
different, while the activity of the CYP3A5 enzyme in the
CYP3A5 ∗ 1 allele was higher than that in the CYP3A5 ∗ 3
allele. The polymorphism of the CYP3A5 ∗ 3 gene is closely

related to CYP3A enzyme activity, the mRNA expression of
CYP3A5, and the DNR plasma drug concentration, and
results in different adverse drug reactions [56–58].

The evidence is increasingly indicating that drug metab-
olizing enzymes, such as the members of the glutathione S-
transferase (GST) family, have great effect for characterizing
the response of patients to chemotherapeutic drugs [59, 60].
The corresponding genes, such as GSTM1, glutathione
s-transferase Pi (GSTP1), and GSTT1, encode the phase
II detoxifying proteins that are involved in conjugating
substrates that are toxic to cancer cells, including the type
of chemotherapy used in the treatment of breast cancer
[61–63]. However, the key participant in the pathophysiol-
ogy of CHF is the renin-angiotensin-aldosterone system
(RAAS) [64]. This study determined whether polymor-
phisms in the RAAS and GST II detoxification enzyme fam-
ilies might be useful predictors of LVEF dynamics and CHF
risk [65]. The association between the gene polymorphisms
and cardiotoxicity development was investigated in 48 early
breast cancer patients undergoing anthracycline-assisted
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Figure 2: Mechanism of cardiotoxicity induced by susceptibility genes in chemotherapy. ROS: reactive oxygen species; NOX: nicotinamide
adenine dinucleotide phosphate oxidase; POR: P450 oxidoreductase; GST: glutathione S-transferase; CYP3A5: cytochrome P450 family 3
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chemotherapy. The following polymorphisms were analyzed:
p.Met235Thr and p.Thr174Met in angiotensinogen (AGT),
Ins/Del in angiotensin-converting enzyme (ACE), A1166C
in angiotensin II type 1 receptor (AGTR1A), and p.Ile105Val
in GSTP1 in c.-344t>c aldosterone synthase (CYP11B2). In
addition, GSTM1 can be used as a biomarker with a higher
risk of cardiotoxicity, as demonstrated previously in patient
cohorts [62, 66, 67].

The cardiotoxicity of anthracyclines is thought to be
caused by cardiomyocyte damage mediated by ROS, which is
produced by the mitochondrial respiratory chain and the non-
enzymatic iron pathways. A high oxidative metabolic rate and
weak antioxidant defense make cardiomyocytes especially sen-
sitive to free radical damage [68–70]. Catalase (CAT), GSTT1,
GSTM1, and superoxide dismutase II (SOD2) play important
roles in ROS metabolism. Rajić et al. demonstrated that deac-
tivating the variants of CAT (rs1001179 and rs10836235),
SOD2 (rs4880), GSTM1, and GSTT1 may increase cardio-
toxicity risk [71]. This hypothesis was investigated in a
long-term survival cohort of 76 children with ALL. Com-
pared to genetic polymorphisms, cardiac injury was assessed
as a property variable [72]. The results suggested a significant
association between CAT (rs10836235) and cardiac damage
after exposure to anthracyclines. The most important gene
was electron transfer flavoprotein beta subunit (ETFB,
rs79338777), which participated in mitochondrial b oxida-
tion and adenosine triphosphate (ATP) production, and
whose association was replicated in a group of independent
cancer patients treated with anthracyclines [73, 74].

An additional study investigated whether targeted dam-
age to the p53 gene could enhance the cardiotoxicity induced
by DOX [75, 76] by randomly assigning wild-type (WT)mice
and p53 knockout (p53 KO) mice to saline or DOX by intra-
peritoneal injection. The continuous imaging of animals
using high-frequency two-dimensional echocardiography
and the LV systolic function measurements assessed by FS
indicated weight loss in the WT mice as early as 4 days and
2 weeks after DOX injection. On the contrary, LVFS
remained unchanged after DOX injection in the p53 KO
mice. After DOX treatment, the apoptosis of cardiomyocytes
measured using TUNEL and the ligase reaction were found
to increase significantly, whereas the level of glutathione
and Cu/Zn SOD did not change in the p53 KO mice, but
not in the WT mice. Therefore, the p53 gene in p53-
mediated signaling may play an important role in the cardi-
otoxicity induced by DOX, and may regulate ROS induced
by DOX [77].

Hyaluronan (HA) generated by hyaluronan synthase 3
(HAS3) is a common ingredient and has a positive effect on
a variety of diseases [78]. Furthermore, HA is known to
decrease heart damage caused by ROS in cardiovascular dis-
ease. This study examined host sensitivity to anthracycline-
associated cardiomyopathy using a cardiovascular SNP array
to analyze common SNPs in 2,100 genes associated with car-
diovascular disease [79]. The study identified a common SNP
(rs2232228) in the HAS3 gene that modifies the risk of
anthracycline-induced cardiomyopathy. Compared to the
GG genotype, the rs2232228 AA genotype increased the risk
of cardiomyopathy by 8.9 times [38].

SLC22A17 was first identified in the brain as an orphan
transporter of unknown endogenous substrates, expressed
in a variety of tissues, including the heart [80]. SLC22A17
transports naturally occurring nucleotides, preferentially
selects guanine analogs and several nucleoside-based drugs,
and has a considerable substrate overlap with concentrated
nucleoside transporters [81, 82]. This study verified novel
variants related to ACT and evaluated them in a risk pre-
diction model. Two cohorts for the treatment of childhood
cancer were genotyped for 4,578 SNPs in the drug ADME
(absorption, distribution, metabolism, and elimination) and
toxicity genes [83]. An important association between
SLC22A7 (rs4149178) and SLC22A17 (rs4982753) was found,
and evidence was also found for some genes associated with
ROS [84]. Two new variants in SLC22A17 and SLC22A7 were
associated with cardiotoxicity induced by anthracyclines,
thereby improving risk stratification in patients.

2.2. Autophagy. Autophagy in its normal state is essential for
maintaining homeostasis [85, 86]; however, disorders of
autophagy in cardiomyocytes have been linked to a variety
of cardiovascular diseases [87–89]. Autophagy is associated
with cardiomyopathy induced by DOX [90–95], and the
ultraviolet irradiation resistance-associated gene (UVRAG),
an autophagy-related protein, can adjust autophagosome for-
mation [96], maturation [97], and autophagosomal lyso-
somal reformation (ALR) [98]. Studies on UVRAG-
deficient mice found that the autophagy flux was impaired
and autophagosomes were accumulated in the heart, suggest-
ing that UVRAG may regulate the maturation of autophago-
somes [99, 100]. An et al. evaluated the effect of UVRAG-
mediated autophagy in cardiotoxicity induced by DOX
[101]. The deficiency of UVRAG will aggravate the cardio-
toxicity induced by DOX, which is manifested by an
enhancement of cytoplasmic vacuoles, an increased collagen
accumulation, increased serum levels of lactate dehydroge-
nase (LDH) and myocardial creatine kinase (CK), increased
ROS levels, increased apoptosis, and reduced cardiac func-
tion. The autophagy flux was impaired in cardiotoxicity
induced by DOX, while a deficiency of UVRAG exacerbated
autophagy flux impairment in cardiotoxicity induced by
DOX. In summary, these data suggest that UVRAG defi-
ciency in part aggravates cardiotoxicity by exacerbating
DOX-induced autophagy impairment.

2.3. Apoptosis. General control nonderepressible 2 (GCN2) is
a eukaryotic initiation factor 2α (eIF2α) kinase that damages
ventricular adaptation to pressure overload by influencing
myocardial apoptosis [102]. After DOX treatment, systolic
dysfunction, apoptosis, and ROS were found to be reduced
in Gcn2-/- mice. GCN2 deficiency attenuated eIF2 phosphor-
ylation, induced its downstream targets, activated transcrip-
tion factor 4 (ATF4) and C/EBP homologous protein
(CHOP), and retained B-cell lymphoma-2 (Bcl-2) and mito-
chondrial uncoupling protein 2 (UCP2). In addition, this
study found that the knockdown of GCN2 weakened DOX-
induced ROS, while the overexpression of GCN2 intensified
it, and reduced Bcl-2 and UCP2 through the eIF2α-CHOP
pathway [103–105]. Furthermore, another study found that
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oxidative byproducts accumulated in the plasma of patients
treated with DOX [106]. At the RNA level, compared with
women who received chemotherapy but maintained normal
EF, the 260 transcripts of women with low EF changed after
chemotherapy, with a difference of >2 times. Notably, the
transcription of T cell leukemia/lymphoma 1A (TCL1A)
decreased by 4.8 times in women with chemotherapy-
induced low EF. TCL1A, also known as an AKT helper acti-
vator, is one of the primary presurvival factors of cardiac
myocytes. In addition, patients with low EFs had a twofold
reduction in ABCB1 transcription encoding multidrug resis-
tant protein 1 (MDR1), which may lead to higher cardiac
drug levels [107, 108]. Hence, cancer treatment-induced car-
diomyopathy may result in genetic susceptibility or
decreased TCL1A levels, decreased AKT activity, and aug-
mented sensitivity to DOX apoptosis.

2.4. Inflammation. Previous studies have found that individ-
ual susceptibility to low doses of DOX treatment is related to
the differential expression of genes involved in the inflamma-
tory response [109], which correlates with increasing reports
on the important function of human leukocyte antigen
(HLA) to the hypersensitivity of complex polymorphism to
drug toxicity [110]. A study analyzing DNA from breast can-
cer patients treated with DOX and its role in the DOX-related
cardiotoxicity risk identified 18 SNPs of 9 genes in the HLA
region that may be associated with DOX cardiotoxicity
[109, 111]. This result suggested that increased susceptibil-
ity to DOX-induced cardiotoxicity is associated with the
dysregulation of autoimmune and inflammatory disease-
related genes [111]. In addition, Mori et al. treated rats with
three typical cardiotoxic compounds, namely, isoproterenol,
DOX, and carbofuran, which resulted in cardiac lesions in
rats [112]. This study was followed by microarray analysis
and histopathological examination. Using statistical and
cluster analysis, 36 probe groups were extracted from the
upregulation of three cardiotoxic compounds. The analysis
showed that these genes were involved in the myocardial
degeneration and inflammation observed in histopathologi-
cal analysis. Among the selected genes, Timp1, Spp1, Ccl7,
Fhl1, and Reg3b showed a sustained upregulation of high
expression levels in all three compounds at both time
points [113–115].

Toll-like receptors (TLRS), including TLR4, TLR2, and
TLR9, allow cardiomyocytes to respond to endogenous or
exogenous stimuli, and may alter their pathophysiological
response [116, 117]. One study investigated the potential role
of TLR2 and TLR4 gene expression as early biomarkers of
cardiomyopathy induced by DOX [118]. In this study, blood
collection, RNA isolation, cDNA reverse transcription, quan-
titative reverse transcription PCR (qRT-PCR), and relative
expression quantification were performed on samples from
25 patients with DOX-treated hematologic malignancies via
qRT-PCR. The results showed that TLR4 and TLR2 expres-
sion was higher in patients with diastolic dysfunction and
DOX treatment [118, 119]. In addition, DOX was found to
participate in PI3Kγ downstream signaling of TLR9, which
converged to autophagy inhibition and maladaptive meta-
bolic remodeling, ultimately leading to cardiomyocyte death

and systolic dysfunction. One study treated chronic DOX
in mice expressing inactive PI3Kγ or receiving selective
PI3Kγ inhibitors [120]. Cardiac function was assessed by
echocardiography, and DOX-mediated signaling was evalu-
ated in the heart tissue and cardiomyocytes. The dual cardi-
oprotective and anticancer effects of PI3Kγ inhibition were
evaluated in mice tumor models. The results showed that
PI3Kγ kinase dead (KD) mice exhibited preserved cardiac
function after a long-term low dose of DOX therapy and were
protected by DOX-induced cardiotoxicity. The effect of
PI3Kγ inhibition was found to have a causal relationship
with enhanced autophagy processing in the DOX-damaged
mitochondria. In terms of its mechanism, PI3Kγ was trig-
gered downstream of TLR9 in DOX-treated mice hearts by
mitochondrial DNA released by damaged organelles and
contained in the autolysosomes [121, 122].

2.5. MicroRNAs (miRNAs). MicroRNAs (miRNAs) are uni-
versally expressed small noncoding RNAs, which adjust gene
expression at the posttranscriptional level [123]. The impor-
tance of miRNAs in a wide range of human diseases suggests
their potential as biomarkers for clinical use [124]. Numer-
ous studies have shown that miRNA expression profiles are
associated with cardiovascular diseases, including fibrosis,
hypertrophy, arrhythmia, and HF, and can have powerful
and unexpected effects [125–128]. One study obtained infor-
mation about microRNA in cancer patients treated with
DOX to determine whether these patients developed cardiac
abnormalities after chemotherapy [129]. Plasma from 20
breast cancer patients who had undergone DOX treatment
were analyzed using quantitative RT-PCR and qPCR. The
circulating microRNA profiles of patients with cardiotoxicity
induced by DOX were then compared with those without
cardiotoxicity induced by DOX. The results indicated that
32 microRNAs were severely misregulated in patients with
cardiac dysfunction, the analysis of which suggested that they
were associated with inflammation [130, 131].

Another study determined whether specific miRNA
levels were discharged into the circulation due to cardiotoxi-
city induced by bevacizumab [132]. After miRNA array anal-
ysis using isolated RNA, this study selected 19 candidate
miRNAs from the array for a validation study of 90 controls
and 88 patients with cardiotoxicity induced by bevacizumab.
Compared to the control group, the circulating levels of the 5
miRNAs were significantly increased in patients with cardio-
toxicity induced by bevacizumab. To verify these findings,
the study compared selected miRNAs in plasma from 66
patients with acute myocardial infarction (AMI) with cardio-
toxicity induced by bevacizumab. The results confirmed a
specific rise in the expression of two miRNAs, miR1254
and miR579, in patients with cardiotoxicity induced by bev-
acizumab, with miR1254 showing the strongest association
with the clinical diagnosis of bevacizumab-induced cardio-
toxicity [132–134].

Furthermore, some studies have suggested that miR-320a
[135] and miR-34a [134] play important roles in
chemotherapy-induced cardiotoxicity. After DOX treatment,
miR-320a was found to increase in the cardiomyocytes, and
participated in DOX-induced cardiotoxicity due to its direct
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targeting of VEGF-A [135]. Therefore, the overexpression of
miR-320a enhanced cardiac apoptosis and caused vessel
abnormalities in the heart tissue and cardiac dysfunction in
mice. miR-34a had been shown to be upregulated in the myo-
cardium and plasma of DOX-treated rats and in the H9C2
cells of rat myocardium treated with DOX [136]. In terms
of its mechanism, miR-34a contributed to DOX-induced car-
diotoxicity by targeting the Sirt1/p66shc pathway [136]. It
was also shown that miR-34b/c was upregulated in the myo-
cardial cell line HL-1 treated with DOX [137]. This study
showed that the itchy E3 ubiquitin protein ligase (ITCH)
was a direct target of miR-34b/c, and that miR-34b/c reduced
HL-1 viability, promoted NF-κB expression, and increased
proinflammatory cytokines through ITCH downregulation
[137]. Overall, these studies demonstrated that DOX treat-
ment is associated with miRNA signaling, which may poten-
tially predict cardiac dysfunction in breast cancer patients
[138]. Thus, these data provide a basis for future studies to
identify biomarkers for cardiotoxicity induced by DOX.

2.6. Iron Metabolism. Hereditary hemochromatosis (HH) is
an inherited iron metabolism disorder that leads to tissue
damage associated with excess levels of iron. Homozygotes
of the C282Y mutation are present in 52-100% of HH
patients [139]. Non-cancer-related idiopathic cardiomyopa-
thy and early pathological LV remodeling were found to be
higher in patients [140] than in healthy controls [141]. This
study retrospectively assessed 97 consecutive necropsies for
HFE genotypes, cardiac iron, and cardiac events from
patients with solid and hematologic tumors [142]. The iron
concentrations in the heart and liver were tested using atomic
absorption spectrometry, and the HFE gene mutations
related to HH were analyzed. Haplotypes 282C/63D and
282Y/63H of HFE mutations were found to be related to
higher cardiac iron deposition [143]. Other studies also con-
firmed a link between HH associated with the mutation fre-
quency of the HDE gene and its association with DOX-
related cardiotoxicity in children at high risk of ALL [144].
C282Y and H63D were analyzed in the peripheral blood,
while serum cardiac troponin-T (cTnT) and N-terminal pro-
brain natriuretic peptide (NT-proBNP), biomarkers for heart
injury and cardiomyopathy, were measured during treat-
ment. The results suggested that the heterozygous C282Y
genotype was related with multiple increases in the concen-
tration of cTnT. LV structure and function were evaluated
by echocardiography. The results showed that LVFS and
end-systolic and -diastolic posterior wall thickness were
abnormal in children with both alleles. In short, DOX-
induced associated cardiotoxicity is associated with C282Y
HFE carriers [141, 145].

DOX-dependent cardiotoxicity is presumed to occur
through ROS production and cellular iron accumulation.
One study found that DOX treatment produced cardiotoxi-
city through preferential iron accumulation in mitochondria
[146]. In cardiomyocytes, DOX became concentrated in the
mitochondria and enhanced mitochondrial iron and cellular
ROS levels. ABCB8 is a mitochondrial protein that promotes
iron output both in vitro and in the heart of transgenic mice,
such that its overexpression was found to reduce the content

of mitochondrial iron and cellular ROS, and provided protec-
tion against DOX-induced cardiomyopathy [147, 148]. The
mitochondrial levels of iron were significantly higher in
patients with DOX-induced cardiomyopathy than in patients
with other types of cardiomyopathy or normal heart func-
tion. These results suggested that the cardiotoxic effects of
DOX were caused by an accumulation of mitochondrial iron,
such that reducing the mitochondrial iron levels could pre-
vent DOX-induced cardiomyopathy.

Ferroptosis is a new form of regulatory cell death, charac-
terized by the iron-dependent accumulation of lipid perox-
ides to lethal levels, which is different from apoptosis,
necrosis, and autophagy morphobically, biochemically, and
genetically [149, 150]. In typical apoptotic or necrotic mice,
DOX-induced cardiomyocytes exhibited characteristic fer-
roptotic cell death. RNA sequencing results showed that
heme oxygenase-1 (Hmox1) was markedly upregulated in
the DOX-treated mouse heart [151]. By administering DOX
to the mice, heme degradation caused by the Nrf2-mediated
upregulation of Hmox1 and cardiomyopathy caused by rapid
and systematic accumulation of nonheme iron were induced,
but were not observed, in Nrf2-deficient mice. Since ferrop-
tosis is driven by damage to lipid membranes, excess free
iron was found to accumulate in the mitochondria, which
led to lipid peroxidation in the membrane. MitoTEMPO, a
mitochondria-targeted antioxidant, can rescue DOX cardio-
myopathy and supports oxidative mitochondrial damage,
which is the main mechanism of heart damage caused by
ferroptosis.

2.7. Metabolism. Carbonyl reductase (CBR) catalyzes the
metabolism of anthracyclines, and SNPs in CBR affect meta-
bolic efficiency. CBRs catalyze the reduction of anthracy-
clines into the cardiotoxic alcohol metabolites, especially
carbonyl reductase 1 (CBR1) and carbonyl reductase 3
(CBR3), whose polymorphism affects the synthesis of these
metabolites [152–154]. Blanco et al. and Reinbolt et al. inves-
tigated whether the SNPs in CBR1 (1096GA) and CBR3
(V244M) altered the risk of anthracycline-associated cardio-
myopathy in cancer patients [155, 156]. They found that the
CBR genotype was related to an increased risk of cardiomy-
opathy. Another study evaluated the relationship between
changes in functional cardiac parameters after treatment
with anthracyclines and the polymorphism of CBR3 and
GSTP1 [157]. This study included 70 patients with normal
cardiac function who received anthracyclines to assess car-
diac function using gated blood pool scintigraphy and echo-
cardiography. A TaqMan probe was used to genotype the
polymorphisms of 70 patients, which were verified via
DNA sequencing. In terms of the CBR3p.V244M polymor-
phism, the systolic and diastolic parameters from GG to
AA all showed a worsening trend [158]. Meanwhile, G allele
carriers with the GSTP1p.I105V polymorphism were com-
mon, and PFR was significantly reduced compared to
patients with the AA genotype. Therefore, the variation of
CBR3 and GSTP1 may be related to changes in short-term
functional cardiac parameters after chemotherapy [159, 160].

Previous studies have also suggested that 13 of the natu-
rally existing nonsynonymous SNPs in aldo-keto reductases
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(AKR) and CBR decrease the metabolic rate of anthracy-
clines in vitro [161]. This study investigated these SNPs indi-
vidually and jointly for their correlation with cardiotoxicity
in patients with DNR induced by AML [162]. Five of the 13
SNPs showing an in vitro action on anthracycline drug
metabolism were tested in 185 AML patients. The results
indicated the in vitro role of nonsynonymous SNPs in the
reductase genes in the metabolism of anthracycline [163].
Another study validated the evidence of a link between SNPs
and cardiotoxicity in ABCB1 in breast cancer patients treated
with anthracyclines [50]. An echocardiography was used to
analyze 166 breast cancer patients treated with DOX, with
19 cases of abnormal systolic function and 147 control cases.
After applying the appropriate statistical correction, four
high-priority SNPs were detected in the main analysis, while
23 other SNPs were screened using uncorrected secondary
analysis. Two SNPs, including ABCB1 and CBR3, which
are associated with cardiotoxicity, were identified as a result.

2.8. Sarcomere Disruption. Although anthracyclines have
been successfully used to treat cancer, their use is limited by
their cardiotoxic side effects [164]. There are several known
risk factors for anthracycline-associated cardiomyopathy
(AACM) [165]; however, the absence of these known risk
factors lead to the development of AACM. One study inves-
tigated whether genetic susceptibility to dilated cardiomyop-
athy (DCM) is a risk factor for AACM [166]. A hospital-
based and two hospital registries for cancer patients treated
with systemic cancer were reviewed, with an emphasis on
AACM. Mutations in genetically related cardiomyopathy in
selected AACM family patients were analyzed and their pre-
symptomatic cardiology was evaluated. The study analyzed 5
AACM families with DCM and 1 AACM family member
with potential early signs of mild DCM. As a result, patho-
genic MYH7 mutations were identified in the two families.
Moreover, in the DCM family with AACM, mutations in
MYH7 c.1633G>A and c.2863G>A were identified. There-
fore, it can be hypothesized that genetic susceptibility to
DCM may be a potential risk factor for AACM [166, 167].

The SNP rs1786814 on the CELF4 gene is an important
cut-off for the interaction between genes and the environ-
ment [168–170]. Genome-wide association studies were used
to investigate the potential mechanistic implications of veri-
fied SNPs. Multivariate analysis showed that cardiomyopathy
was rare and dose independent in patients with the A allele.
However, in patients exposed to anthracyclines, compared
to those with the GA/AA genotype, the rs1786814 GG geno-
type had a 10.2-fold increased cardiomyopathy risk. The
CUG-BP and ETR-3-like factor proteins control the develop-
mental regulatory splicing of TNNT2, and this gene encodes
cTnT. More than one cTnT variant may cause a transient
mitotic myofilament response to calcium, resulting in a
reduction in contractile force. Analysis showed that the
rs1786814 GG genotype was correlated with more than one
TNNT2 splicing variant. In summary, this study suggests
that the CELF4 (rs1786814) polymorphism modifies the
dose-dependent association between anthracyclines and car-
diomyopathy, possibly through pathways involving abnor-
mal splicing of TNNT2 variants [171–173].

Titin-truncating variants (TTNtv) are observably con-
spicuous in DCM, occurring in 15% of outpatients and 25%
of end-stage patients [174–177], but are rarely found in
childhood-onset DCM [178]. Meanwhile, this study found
TTNtv in 8.1% of adults and 5.0% of children with cancer
treatment-induced cardiomyopathy (CCM). Garcia-Pavia
et al. studied patients from three cohorts, retrospectively
enrolling patients with multiple cancers, breast cancer, and
AML, and sequenced their cardiomyopathy genes, including
nine prespecified genes [179]. This study compared the inci-
dence of rare mutations between the CCM cohort and the
cancer genome atlas (TCGA) participants, healthy volun-
teers, and reference populations with matched lineages. The
prevailing CCM genotype was simulated in anthracycline-
treated mice based on the genotype assessment of clinical
characteristics and results. Of the nine priority genes, CCM
patients had more rare protein-altered variants than their
peers. TTNtv was found to be dominant, occurring in 7.5%
of patients with CCM. Compared to patients without TTNtv,
patients with CCMTTNtv experienced more HF, atrial fibril-
lation, and impaired myocardial recovery. This finding is
consistent with data showing that TTNtv mice treated with
anthracyclines and isolated TTNtv cardiomyocytes showed
persistent systolic dysfunction, which varied from that of
the wild type [179, 180].

2.9. Epigenetics. Since mitochondrial dysfunction can dra-
matically reprogram the epigenome [181, 182], cardiotoxicity
may also be induced by the epigenetic changes associated
with mitochondrial dysfunction. For verification, the study
used rats injected with DOX or saline for 8 weeks [183]. Gene
expression, global DNAmethylation, and the acetylation sta-
tus of proteome lysine were assessed by qPCR, ELISA, and
Western blot, respectively, in saline- or DOX-treated rat car-
diac tissue. This study showed that DOX treatment reduced
global mtDNA methylation in the heart, which was accom-
panied by obvious changes in the expression of multiple
functional genes. DOX disrupted the cardiac mitochondrial
biogenesis, which was demonstrated by the reduced ratio of
mitochondrial DNA versus genomic DNA and the decreased
transcription levels of several mitochondrial genes [184].
Furthermore, the transcription of genes involved in the lipid
metabolism and epigenetic regulation was also affected.
Western blot analysis showed that the protein acetylation
patterns in DOX-treated rat heart mitochondrial fractions
were different from the control. These results indicated that
the interaction between epigenetic alterations and mitochon-
drial dysfunction may be the main determinant of DOX-
induced cardiotoxicity. In addition, Ferreira et al. investi-
gated the correlation between nanomolar DOX concentra-
tion and epigenetic-related mitochondrial adaptation [185].
H9C2 cardiomyocytes were cultured with DOX for 24 hours
and then recovered in nontoxic medium for 9 days. It was
found that nanomolar DOX pretreatment led to the upregu-
lation of mitochondrial DNA transcripts, with the decrease
of DNA methyltransferase 1 (DNMT1) and the global meth-
ylation levels. This result suggested that nanomolar DOX
preconditioning induction may be based on epigenetic mito-
chondrial adaptation.
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2.10. Others

2.10.1. HER2 (erbB-2, neu). HER2 (erbB-2, neu) is a trans-
membrane protein with tyrosine kinase activity but no defi-
nite physiological ligands. Milano et al. found that HER2
gene polymorphism coding for the HER2 (Ile655Val) trans-
membrane domain may be a predictor of cardiac toxicity
[186, 187]. A case-control study tested 11 ErbB2 single-
gene SNPs that led to changes in the amino acid sequence
of the HER2-neu protein related to cardiotoxicity in trastu-
zumab therapy [188]. Only the two ErbB2 SNPS (Ile 655
Val and Pro 1170 Ala) were discovered to be mutated by
single-gene SNP analysis. The HER2/neu Pro 1170 Ala poly-
morphism could be used to identify an increased risk of car-
diotoxicity in patients receiving trastuzumab. Another study
used TaqMan allele identification to genotype the HER2 655
A>G (rs1136201) genetic variation [189]. The result showed
that the polymorphism of HER2 655 A>G was significantly
correlated with cardiotoxicity, and supported the role of
HER2 655 A>G polymorphism as a genetic marker of cardi-
otoxicity in trastuzumab-induced HER2-positive breast can-
cer patients. Roca et al. investigated the predictive value of
HER2, FCGRIIA, and FCGRIIIA gene polymorphisms on
cardiotoxicity [190]. A total of 132 patients with HER2-
positive breast cancer were analyzed, and the results showed
that the HER2-I655V genotype was significantly associated
with cardiotoxicity, whereas the FCGR2A-131 H/H genotype
was markedly associated with shorter event-free survival
(EFS). These results may contribute to improved efficacy
and reduced toxicity, leading to the selection of HER2
blockers in adjuvant therapy. Another study examined the
effects of a HER2 gene polymorphism (Ile655Val) on the
pharmacodynamics of trastuzumab-induced cardiotoxicity,
suggesting that the presence of the Val allele may be a risk
factor for cardiotoxicity induced by trastuzumab in breast
cancer patients [191, 192].

2.10.2. G Protein-Coupled Receptor 35 (GPR35). The G
protein-coupled receptor 35 (GPR35) is the family of G
protein-coupled receptors, a membrane protein that medi-
ates a wide range of physiological processes [193]. The
in vitro functional analysis of cardiomyocytes suggested that
the overexpression of GPR35 decreased cell viability and pro-
moted morphological changes [194, 195]. Ruiz-Pinto et al.
studied the variation association on the Illumina HumanEx-
ome BeadChip array in 83 cancer patients treated with
anthracyclines [191]. A gene-based analysis identified a novel
and significant association between GPR35 and chronic
ACT. This study found the greatest contribution to this asso-
ciation in rs12468485, where the T allele was associated with
lower anthracycline doses and an increased risk of chronic
ACT for more severe symptomatic cardiac presentation.
Using exome array data, the results indicated that GPR35
was a novel susceptibility gene associated with the induction
of ACT in cancer patients during treatment [196, 197].

2.10.3. Histamine N-Ethyltransferase (HNMT). The exact rel-
evance between histamine n-ethyltransferase (HNMT) and
cardiotoxicity is currently unknown. However, it has been

proposed that antihistamines may be able to reverse multi-
drug resistance in breast cancer cells [198]. Recent research
has shown that many SNPs play a role in ACT in children.
One study investigated two adult ACT sisters who had devel-
oped ACT after administration with relatively low doses of
DOX [199]. One of the sisters carried the HNMT variant
genotype (rs17583889), while the other was heterozygous,
suggesting that these genotypes had similar effects in ACT
adults. Although further studies are needed, these gene types
may play important roles for the clinical application of adria-
mycin liposomes.

2.10.4. Renin-Angiotensin System- (RAS-) Related Genes. In
the heart, variations in certain renin-angiotensin system
(RAS) components are frequently observed in the conditions
leading to HF progression, such as ACE and angiotensin II
type 1 receptor (AT1) [200–202]. One study investigated
whether the renin-angiotensin-related gene could be altered
using chemotherapy and radiation in a rat model [203].
Female rats were divided into three groups: the control
group, the radiation (IR) group, and the chemotherapy+radi-
ation (TC+IR) group. Left ventricular analysis was per-
formed five months after treatment, and changes in the
mRNA levels of several RAS-related genes were assessed by
RT-PCR, such as angiotensinogen, renin, ACE, AT1, and
vascular endothelial growth factor (VEGF), which may be
involved in ACE. Compared with the control group, only
decreased levels of ACE and VEGF were observed in renin,
TC+IR, and IR, while increased levels of AT1 mRNA were
observed in the TC+IR group and IR groups. In summary,
both chemotherapy and radiotherapy may result in signifi-
cant changes to the expression of some RAS-related genes
[203, 204].

2.10.5. Others. A genome-wide association study (GWAS)
was conducted on 3,431 patients from a randomized phase
III study-adjuvant breast cancer trial (E5103) to identify the
SNP genotypes associated with an increased risk of CHF after
treatment with anthracyclines [205]. The study attempted to
validate the drug candidates in two separate phase III adju-
vant trials, E1199 and BEATRICE. When CHF was assessed
by a cardiologist, 11 SNPs were found, 9 of which were inde-
pendent chromosomal regions associated with increased risk.
A study of the two most important SNPs in E1199 showed
that the SNP rs28714259 was associated with an increased
risk of CHF at a critical level. Subsequently, rs28714259 was
tested in BEATRICE and was found to be significantly corre-
lated with LVEF reduction. Therefore, the SNP rs28714259
represents a validated SNP associated with anthracycline-
induced CHF in breast cancer clinical trials [205, 206].

A susceptibility to the chemotherapeutic drug-induced
prolongation of QT interval is thought to be associated with
SNPs or genetic mutations, some of which are present in
the potassium channel gene [207]. Using electrocardiograms,
the QTc intervals and arrhythmia characteristics were
assessed in early breast cancer patients undergoing FEC100
chemotherapy. In the treated patients, a total of 131 ECG
records were obtained, and the QTc interval was measured
in 127 records. After each treatment, a marked trend in
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QTc interval prolongation was observed, lasting for four
chemotherapy cycles. In the first to the fourth chemotherapy
cycle, the median length of QTc interval prolongation was
13, 11, 18, and 14ms, respectively. In the first and fourth
weeks before and after treatment, the QTc intervals were sig-
nificantly different, and a supraventricular premature beat
was found in 3 of the 131 cycles in 2 of the 34 patients.
Therefore, this study confirmed that FEC100 is associated
with significantly longer QTc intervals in early breast cancer
patients [208].

CHF: congestive heart failure; LVEF: left ventricular ejec-
tion fraction; SF: shortening fraction; DLBCL: diffuse large B-
cell lymphoma; AML: acute myeloid leukemia; ALL: acute
lymphoblastic leukemia; OSC: osteosarcoma; NADPH: nico-
tinamide adenine dinucleotide phosphate; ROS: reactive oxy-
gen species; NOX: nicotinamide adenine dinucleotide
phosphate oxidase; POR: P450 oxidoreductase; GST: gluta-
thione S-transferase; CYP3A5: cytochrome P450 family 3
subfamily A member 5; CAT: catalase; HAS3: hyaluronan
synthase 3; SOD: superoxide dismutase; UVRAG: ultraviolet
irradiation resistance-associated gene; GCN2: general control
nonderepressible 2; eIF2α: eukaryotic initiation factor 2α;
UCP2: uncoupling protein 2; Bcl-2: B-cell lymphoma-2;
TCL1A: T cell leukemia/lymphoma 1A; HLA: human leuko-
cyte antigen; TLR2: Toll-like receptor 2; TLR4: Toll-like
receptor 4; TLR9: Toll-like receptor 9; Hmox1: heme
oxygenase-1; CBR: carbonyl reductase; CBR1: carbonyl
reductase 1; CBR3: carbonyl reductase 3; TTNtv: titin-
truncating variants; GPR35: G protein-coupled receptor 35;
HNMT: histamine n-ethyltransferase; RAS-related genes:
renin-angiotensin system-related genes.

3. Protective Genes in Cancer Treatment-
Induced Cardiotoxicity

Genes are known to play important roles in various human
cancers, as well as in the pathogenesis of heart development
and cardiovascular disease, due to their involvement in
adjusting heart function, cardiac hypertrophy, and HF
[209]. The following provides a summary of various cardiac
protective mechanisms and insights into the development
of new drugs and personalized therapies to decrease, or even
eliminate, the toxic effects of chemotherapy on the heart
(Table 2 and Figure 3).

3.1. Oxidative Stress. Anthracycline-induced cardiotoxicity
has been associated with polymorphisms in genes encoding
for NOX complex subunits, namely, ABCC1 and ABCC2,
among survivors of various cancers [35, 38, 45]. Krajinovic
et al. analyzed 251 children with ALL using echocardiogra-
phy to determine the impact of the metabolic and functional
pathway polymorphism of DOX on cardiotoxicity [210].
The results of association analysis indicated a regulatory role
of the variants A-1629 T (an ATP-binding cassette trans-
porter) and G894T (the NOS3 endothelial nitric oxide syn-
thase gene). The ABCC5 tt-1629 genotype had an average
reduction in EF and SF of 8–12%, while the NOS3 TT894
genotype exerted a protective role on EF and FS in the

patients [210, 211], especially in those who were not admin-
istered dexrazoxane.

Another study investigated the mechanisms and targets
for DOX-induced cardiotoxicity [212]. Both in vitro models
of cells and in vivo models of mice were established, the
results of which indicated that DOX could significantly
reduce the activity of H9C2 cells, increase the levels of LDH
and CK, and induce histopathological and electrocardiac
changes in mice, thereby inducing myocardial oxidative
damage. An mRNA microarray assay was used to select
miR-140-5p as the target miRNA responsible for a significant
increase in DOX-induced cardiotoxicity. A double-luciferase
reporter gene assay suggested that miR-140-5p was able to
directly target Nrf2 and Sirt2, thereby increasing DOX-
induced oxidative damage to the myocardium. Furthermore,
the intracellular ROS levels were found to prominently
increase or decrease after miR-140-5p mimic or inhibitor
transfection, with changes in the expression levels of Nrf2
and Sirt2 [213–216]. In addition, DOX-induced oxidative
damage to the myocardium was found to be alleviated in
mice treated with a miR-140-5p antagomir. Therefore,
miR-140-5p/Sirt2 and miR-140-5p/Nrf2 may become new
targets for the treatment of DOX-induced cardiotoxicity.

3.2. Endoplasmic Reticulum (ER) Stress. It has been shown
that DOX causes endoplasmic reticulum (ER) dilation in
both human and mouse hearts [217, 218], suggesting that
ER dysfunction is related to DOX-induced cardiotoxicity,
and that the inhibition of ER stress is a feasible method to
improve DOX-induced cardiotoxicity [219]. One study
found that DOX caused the ER in the hearts of mice to
expand, suggesting that DOX may affect ER function. DOX
activated the ER transmembrane stress sensor in cultured
cardiomyocytes and mouse hearts and activated transcrip-
tion factor 6 (ATF6) [220]. However, DOX inhibited the
expression of ATF6 downstream genes, including the X-box
binding protein 1 (XBP1). Reduced levels of XBP1 resulted
in an inability to induce the expression of ER chaperone glu-
cose regulatory protein (GRP) 78, which plays a major role in
the adaptive response to ER stress. Moreover, DOX activated
caspase-12, an apoptotic molecule located in the ER mem-
brane, resulting in cardiac dysfunction. In brief, DOX can
activate the apoptosis response caused by ER stress, further
increasing ER stress in the mouse heart. However, the over-
expression of heart-specific GRP78 or the administration of
the chemical ER partner alleviates the cardiac dysfunction
caused by DOX.

CACNA1H was found to be related to DOX-induced car-
diac toxicity, while the CACNA1H-specific inhibitor ABT-
639 significantly reduced DOX-induced cardiac damage
and dysfunction, and relieved ER stress and the apoptosis
of cardiac myocytes [221, 222]. One study assessed DOX-
induced heart damage and changes in CACNA1H expres-
sion, and investigated the effects of ER stress and apoptosis
on DOX-induced heart damage in mice [222]. To determine
the effect of CACNA1H in this process, this study assessed
the DOX-induced changes in heart injury and ER stress after
treatment with a CACNA1H-specific inhibitor, ABT-639.
Lastly, the ER stress inhibitor UR906 was used to determine
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the effect of ER stress on DOX-induced cardiac toxicity in
H9C2 cells. The results showed that DOX treatment resulted
in cardiac injury, decreased cardiac function, increased myo-
cardial cell apoptosis, and a significant increase in CAC-
NA1H expression in the heart tissue. The CACNA1H
inhibitor ABT-639 was found to partially protect cardiac
function and reduce apoptosis in mice [223]. These results
suggest that CACNA1H may reduce DOX-induced cardio-
toxicity by decreasing the severity of ER stress, since ABT-
639 significantly altered the expression of ER stress-related
proteins, including PERK, P-PERK, ATF6, CHOP, ATF4,
and GRP78. Therefore, the inhibition of CACNA1Hmay sig-
nificantly reduce DOX-induced ER stress, cardiac toxicity,
and apoptosis.

3.3. Apoptosis. Apoptosis plays an important role in car-
diovascular disease. It is associated with the loss of cardi-
omyocytes in several kinds of heart diseases, including
myocardial infarction, myocardial hypertrophy, HF, and car-
diotoxicity [224–226]. Recent studies have shown that the
inhibition of cardiomyocyte apoptosis can significantly
reduce DOX-induced cardiac dysfunction [227–230]. There-

fore, the discovery of novel genes that alleviate the apoptosis
of cardiomyocytes is essential for the treatment of DOX-
induced cardiotoxicity. Currently, a newmitochondrial inner
membrane protein, mitochondrial fission protein 1 (Mtfp1),
has been authenticated [231] and is considered to be indis-
pensable for maintaining mitochondrial membrane integral-
ity; it has, therefore, been associated with mitochondrial
fission regulation [232]. One study reported on the role of
Mtfp1 in mitochondrial division and on the induction of
apoptosis in DOX-induced cardiotoxicity [233]. The knock-
down of Mtfp1 can prevent mitochondrial fission in cardio-
myocytes, subsequently decreasing DOX-induced apoptosis
by preventing the accumulation of mitochondrial-type dyna-
min 1-like (Dnm1l). Conversely, when Mtfp1 is overex-
pressed, DOX can lead to large amounts of cardiomyocytes
undergoing mitochondrial apoptosis. These results indicate
that the knockdown of Mtfp1 can minimize myocardial cell
loss in DOX-induced cardiotoxicity. Therefore, Mtfp1
expression regulation is a potential new treatment for cardi-
otoxicity induced by chemotherapy [233, 234].

The transcription factor GATA4 has been shown to
influence the expression of various cardiac-related genes

CardioprotectionChemotherapy

miR-140-5p Nrf2, Sirt2
ROS

NOS3ABCC5

Bcl2

XBP1, ATF6GRP78
ER stress

CACNA1H Ca2+
verload

Apoptosis

MG132,
LMP7 UPS

HDAC2, HDAC6,
Anf, Bnf, Bmp-1, 

Myh-7, sFRP4

GATA4, Mtfp, 
miR-21, CTRP1, 

SNHG1, AKAP-Lbc,
PRDM2, GSDME, 

Es-Exos

Autophagy, Dnm1l, 
BTG2, PKB/AKT,

miR-195/Bcl-2, PKD1, 
DNA double-strand breaks, 

Bnip3, TLR4
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Figure 3: The mechanism by which genes protect against cardiotoxicity in chemotherapy. ROS: reactive oxygen species; ER stress:
endoplasmic reticulum stress; ATF6: transcription factor 6; XBP1: X-box binding protein 1; GRP78 glucose regulatory protein; Mtfp1:
mitochondrial fission protein 1; Dnm1l: dynamin 1-like; BTG2: B-cell translocation gene 2; CTRP1: C1q/TNF-related protein 1;
PKB/AKT: protein kinase B phosphorylation; Bcl-2: B-cell lymphoma-2; AKAP: A-kinase anchoring protein; SNHG1: small nucleolar
RNA host gene 1; PRDM2: PR domain-containing 2 with ZNF domain; GSDME: gasdermin D; Bnip3: Bcl-2/adenovirus E1B 19 kDa
interaction protein 3; ES-Exos: embryonic stem cell-derived exosomes; TLR4: Toll-like receptor 4; UPS: ubiquitin-proteasome system;
HDAC2: histone deacetylase; VEGF-β: vascular endothelial growth factor-β.
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[235, 236]. Previous studies have shown that DOX could
downregulate GATA4 transcription in myocardial cells
[237, 238]. The GATA4 level protection by the 1-adrenergic
agonist phenylephrine or GATA4 overexpression by the
adenovirus-mediated gene transfer protected myocardial
apoptosis induced by DOX [237–239]. The protective effect
of GATA4 against DOX-induced cardiotoxicity is mediated
at least in part by its ability to upregulate the expression of
the Bcl-2 gene [240], which is a survival factor that inhibits
apoptosis and autophagy. Kobayashi et al. investigated the
ability of GATA4 to suppress autophagy and act as the
underlying mechanism of protection against DOX-induced
toxicity in cardiomyocytes [94]. DOX treatment decreased
the GATA4 protein levels, leaving cardiomyocytes vulnerable
to DOX-induced toxicity. Indeed, autophagy activated by
GATA4 gene silencing was found to increase the toxicity of
DOX, while the overexpression of GATA4 restrained the
autophagy induced by DOX, thereby decreasing cardiomyo-
cyte apoptosis. This mechanism indicates that GATA4 may
upregulate Bcl-2 gene expression and inhibit the activation
of autophagy-related genes induced by DOX, thus the antia-
poptosis and antiautophagy roles of GATA4. These findings
suggest that the activation of autophagy mediated DOX-
induced cardiotoxicity, while the preservation of GATA4
inhibited autophagy by regulating the Bcl-2 and autophagy-
related gene expression, thereby suppressing cardiotoxicity
induced by DOX [94, 241, 242].

mRNA-21 (miR-21) plays an important role in adjusting
apoptosis [243]. Although miR-21 is involved in cardiovas-
cular disease, little is known about its biological function in
response to cardiotoxicity induced by DOX. One study
reported on the effects of DOX on cardiac function and
miR-21 expression in mouse heart tissue and H9C2 cardiac
myocytes [244]. The results suggested that the cardiac func-
tion of mice with chronic DOX injury was worse than that
of mice with acute DOX injury; DOX treatment prominently
enhanced the expression of miR-21 in mice cardiac tissues
and H9C2 cardiomyocytes. The overexpression of miR-21
weakened apoptosis in cardiomyocytes induced by DOX
and decreased the levels of miR-21 expression attenuated
by the DOX-induced apoptosis of cardiomyocytes. The
results of functional gain and loss experiments suggested that
the B-cell translocation gene 2 (BTG2) was a target of miR-
21, with BTG2 expression being prominently reduced in
DOX-treated cardiomyocytes. In this study, miR-21 was
found to protect mice myocardial and H9C2 cells from cardi-
otoxicity induced by DOX by targeting BTG [245, 246].

C1q/TNF-related protein 1 (CTRP1) is a highly con-
served family of proteins [247] expressed in the heart [248,
249]. Chen et al. studied the expression of CTRP1 in the heart
using an in vivo gene delivery system [250]. Two weeks after
the gene was delivered, an intraperitoneal injection of DOX
was administered to the mice to induce cardiac injury. In
the DOX-treated mice, the levels of CTRP1 were reduced.
The overexpression of CTRP1 then decreased cardiac tropo-
nin I, recovered cardiac function, and weakened cardiac cell
apoptosis. CTRP1 expression also ameliorated cell viability
and decreased the release of LDH. In contrast, DOX led to
a reduction in protein kinase B phosphorylation (PKB/AKT)

[251], but this was recovered by CTRP1 overexpression. The
inhibition of AKT can counteract the inhibitory roles of
CTRP1 on myocardial cell apoptosis [252]. In AKT-
deficient mice, CTRP1 lost its ability to provide protection
against cardiac damage caused by DOX. However, transfu-
sion with recombinant CTRP1 could reverse preestablished
cardiac damage caused by DOX therapy. Overall, CTRP1
provided protection against cardiotoxicity induced by DOX
by activating the AKT signal pathway [250, 253]. Therefore,
CTRP1 has therapeutic potential against cardiotoxicity
induced by DOX.

A-kinase anchoring proteins (AKAPs) have been pro-
posed to coordinate and synchronize the activity of a variety
of signal transducers to regulate key cellular processes in the
heart [254, 255]. AKAP-Lbc is a protein primarily expressed
in the cardiac tissue that coordinates the activation of the
hypertrophic transduction pathway downstream of α1-Ars
[256–258]. In in vivo experiments, AKAP-Lbc has been
shown to promote compensatory hypertrophy and cardio-
myocyte protection in stress-overloaded hearts [259–261].
The stimulation of myocardial cells by the α1-adrenergic
receptor (AR) agonist phenylephrine (PE) was found to
prominently inhibit DOX-induced apoptosis [262]. Impor-
tantly, this result suggests that AKAP-Lbc is crucial for send-
ing protection signals downstream of α1-Ars [263]. This
study also found that the inhibition of AKAP-Lbc expression
in the ventricular myocytes infected with lentivirus RNAmay
reduce PE’s ability to reduce DOX-induced apoptosis [238].
AKAP-Lbc-mediated cardiomyocytes activate the expression
of antiapoptotic protein Bcl-2 and suppress the transport of
proapoptotic protein Bax to the mitochondria [239, 240]. In
summary, AKAP-Lbc can provide cardiomyocytes with pro-
tection against DOX-induced toxicity.

Long noncoding RNA (lncRNA), a group of RNA mole-
cules with lengths greater than 200 nucleotides, has limited
protein-coding potential and has recently been identified as
a key factor in many diseases, including cardiovascular dis-
ease [264]. lncRNA small nucleolar RNA host gene 1
(SNHG1) on human chromosome 11 has been found to be
abnormally expressed in a variety of human cancers [265].
Chen et al. investigated whether DOX toxicity in AC16 cardi-
omyocytes in vitro can be adjusted by lncRNA SNHG1, with
the aim of identifying potential mechanisms [266]. This study
found that DOX treatment resulted in severe damage in AC16
cells by reducing cell viability and increasing cell apoptosis,
while the overexpression of SNHG1 reduced apoptosis in
DOX-treated AC16 cells. In addition, this study found that
SNHG1 could counteract the inhibitory role of miR-195 on
Bcl-2, while miR-195 restoration blocked the beneficial action
of SNHG1 against DOX toxicity in AC16 cells [267]. In
short, this study provided convincing evidence that SNHG1
partially protects cardiomyocytes from DOX-induced toxic-
ity by modulating the miR-195/Bcl-2 axis [266, 267].

PR domain-containing 2 with ZNF domain (PRDM2) is
crucial for the BRCA1-dependent repair of DNA double-
strand breaks [268]. Damage to this mechanism increases
DOX cardiotoxicity in mice [269]. In addition, PRDM2 is a
heme oxygenase-1 transcriptional regulator [270], which, in
addition to preventing oxidative stress [271, 272], has also
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been shown to promote the repair of DOX-induced DNA
double-strand breaks [273] and decrease cardiomyocyte apo-
ptosis [274]. One study examined the genetic factors that
influence changes in cardiac LV function following chemo-
therapy with anthracyclines [275]. GWAS was conducted in
this study which identified LV function changes in 385 cases
of anthracyclines using BioVU after exposure to anthracy-
clines. The DNA samples were subsequently linked to an
unidentified electronic medical record data. In a prospective
clinical trial, 181 patients exposed to anthracyclines were
independently replicated for variants. This study used path
analysis to evaluate the combined roles of various kinds of
genetic variations. These results were among the 11 candi-
date genes found in GWAS and located in SNP rs7542939
near PRDM2. Pathways associated with cell metabolism,
DNA repair, and cardiac remodeling were identified. There-
fore, using genome-wide associations, this study confirmed a
susceptibility site near PRDM2 [275, 276].

Pyroptosis is a novel form of programmed cell death
characterized by the swelling of cells, the blowing of large
bubbles in plasma, and cytolysis, which results in the release
of the cell contents and proinflammatory molecules [277,
278]. A study investigated the role of gasdermin D-
(GSDME-) mediated pyroptosis in DOX-induced cardiac
injury to assess the effect of BH3 protein Bcl-2/adenovirus
E1B 19 kDa interaction protein 3 (Bnip3) in regulating of
DOX-induced pyroptosis [279]. In vitro and in vivo cardio-
toxicity models induced by DOX were established by DOX
treatment. Cell transfection was used to regulate the expres-
sion of GSDME, caspase-3, and Bnip3. The release of LDH
was determined using the LDH-cytotoxicity assay. Western
blotting was used to measure protein level expression, flow
cytometry analysis was used to determine cell death, echocar-
diography was used to detect heart function, and HE staining
was used to observe the pathological features of the cardiac
tissue. The results showed that GSDME-mediated pyroptosis
was associated with DOX-induced cardiotoxicity in vivo.
Furthermore, DOX induced the activation of caspase-3 and
ultimately activated GSDME-dependent pyroptosis, which
was inhibited by the silencing or inhibition of caspase-3.
Other studies have shown that GSDME inhibition can inhibit
the DOX-induced pyroptosis of cardiomyocytes in vitro.
Lastly, DOX increased the expression of Bnip3, where Bnip3
silencing inhibited DOX-induced myocardial apoptosis [280,
281]. As such, this study revealed a novel pathway, the
Bnip3-caspase-3-GSDME pathway, by which myocardial
pyroptosis is regulated after DOX therapy.

Another study investigated whether embryonic stem cell-
derived exosomes (ES-Exos) in DOX-induced cardiotoxicity
attenuated inflammation-induced pyroptosis, inflammatory
cell signal transduction, proinflammatory M1 macrophages,
and poor cardiac remodeling [282]. To this end, the study
transplanted ES-Exos and compared them with ES cells
(ESCs) to detect pyroptosis, inflammation, cell signaling,
adverse cardiac remodeling, and their effects on DOX-
induced cardiac dysfunction. The results showed that DOX
treatment significantly increased the expression of inflam-
masome markers (TLR4 and NLRP3), pyroptotic markers
(caspase-1, IL1-β, and IL-18), cellular signaling proteins

(MyD88, p-P38, and p-JNK), proinflammatory M1 macro-
phages, and TNF-α cytokines. ES-Exos or ESCs inhibited this
increased expression of pyroptosis, inflammation, and cell
signaling proteins. In addition, ES-Exos or ESCs increased
M2 macrophages and anti-inflammatory cytokine IL-10, sig-
nificantly inhibited cytoplasmic vacuoles and hypertrophy,
and improved cardiac function [283, 284].

3.4. Proteasome Activity. DOX enhanced ubiquitin-
proteasome system- (UPS-) mediated proteolysis in the
heart, indicating that UPS hyperfunction may be an impor-
tant mechanism of DOX-induced acute cardiotoxicity
[285–287]. The O-linked attachment of monosaccharide-N-
acetylglucosamine (O-GlcNAc) is a highly dynamic and
ubiquitous protein modification [288]. Protein O-GlcNAcy-
lation has rapidly become a key regulator of several impor-
tant biological processes, including proteasomal degra-
dation and apoptosis. However, proteasome inhibition has
been found to be very effective in inhibiting cell proliferation
in the treatment of cancer and for preventing restenosis
[289]. These findings also suggest that the use of DOX with
antitumor proteasome inhibitors may reduce the toxicity of
DOX. Moreover, the overexpression of immunoprotea-
some-catalyzed subunits was found to markedly attenuate
DOX-induced myocyte apoptosis and other UPS gene
expression [290], while its knockdown significantly increased
DOX-induced myocyte apoptosis [291].

UPS has been reported to be involved in Cx43 degrada-
tion [292]. The proteasome inhibitor MG132 has been found
to suppress the internalization and degradation of Cx43 [293,
294]. This study investigated the roles of the MG132 protea-
some inhibitor on Cx43, Zo-1, and 20S proteasome, and
ubiquitin expression levels in adriamycin-induced HF rats
[295]. MG132 was found to reduce adriamycin-induced
injury in HF. Moreover, MG132 suppressed the expression
of 20S proteasome and ubiquitin, while upregulating Cx43
and ZO-1. These findings indicate that inhibiting UPS upre-
gulates Cx43 expression and suggest that proteasome inhibi-
tors may be used against Cx43 degradation, thus preventing
CX43-mediated arrhythmia in HF.

In another study, the role of UPS as a key monitoring
pathway for maintaining cell viability and counteracting the
toxicity of DOX treatment was also reported [296]. In addi-
tion to DOX treatment, the inhibition of proteasome activity
is another reasonable strategy for the treatment of multiple
myeloma (MM). As such, the mechanism by which small
molecular compounds with clinically relevant proteasome
subunit specificity affect DOX cytotoxicity was investigated.
The activity of the b5 standard proteasome subunits was
found to be critical in limiting off-target cytotoxicity in pri-
mary cardiomyocytes during DOX therapy. LMP7 inhibition
in primary cardiomyocytes or the genetic ablation of LMP7
in cardiac tissue did not affect the development of DOX car-
diotoxicity. These results suggest that immunoproteasome-
specific inhibitors with known antitumor activity against
MM cells may be beneficial in reducing cardiomyocyte death,
compared with the compound carfilzomib [297], which tar-
geted both the b5 standard proteasome and the LMP7 immu-
noproteasome subunit.
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3.5. Histone Deacetylase (HDAC) Inhibitors.Histone deacety-
lases (HDACs) are widely expressed enzymes that can cata-
lyze the removal of acetyl groups from histones, resulting in
reduced DNA accessibility and gene silencing [298].
Although the exact mechanism of HDAC inhibitors in
chemotherapy-induced cardiotoxicity is unclear, HDAC
inhibitors are known to have a variety of effects [299–301].
Song et al. showed that HDAC6 was upregulated in DOX-
treated cardiomyocytes in vitro and in an in vivomice model,
resulting in the deacetylation of α-tubulin [302]. Therefore,
the genetic or pharmacological inhibition action of HDAC6
in mice has a cardioprotective effect on DOX by restoring
the autophagic flux. In another study, Hanf et al. proved that
DOX treatment affected the expression level of HDAC
(SIRT1 and HDAC2) [303]. Nevertheless, pterostilbene, a
natural analog of resveratrol and an antioxidant, was found
to reduce cardiotoxicity induced by DOX both in vitro and
in vivo [304]. This effect was attributed to the increased dea-
cetylation activity of SIRT1, indicating its cardioprotective
effect on DOX. In summary, HDAC inhibitors have a cardi-
oprotective effect on DOX [305]. In Piotrowska et al.’s study,
it was found that DOX, in a generally considered “safe” dose,
caused adverse myocardial changes as soon as 2 weeks after
continuous infusion in a mature chronic DOX infusion
mouse model [306, 307]. The study also found that the low
doses of DOX led to specific changes in several of the HDAC
transcription profiles, which are epigenetic regulators of
heart remodeling. These results indicated a potential cardio-
protective therapy by modulating HDAC (Hdac2, Hdac4,
Hdac6, and Hdac7) expression or activity during DOX treat-
ment. Another study used various combinations of DNA
methyltransferase and HDAC inhibitors, including DC301,
DC302, and DC303 [308]. Induced by DC301 and DC302,
Wharton’s jelly mesenchymal stem cells (WJMSCs) differen-
tiated into myocardial structures with Wnt antagonists,
sFRP3 and sFRP4, and Dickkopf 1 (Dkk1) and Dkk3 upreg-
ulated. Cardiac progenitor cells were injected in vivo in a
DOX-induced cardiotoxic mouse model. Bisulfite sequencing
was used to examine the promoter methylation status of the
cardiac transcription factor Nkx2.5 and the Wnt antagonist
secreted frizzled-related protein 4 (sFRP4) after cardiac dif-
ferentiation and revealed that sFRP4 was activated by pro-
moter CpG island demethylation during cardiogenesis. The
MSC-derived cardiac progenitors not only successfully trans-
planted to the site of DOX-induced cardiac injury in mice but
also formed functional cardiomyocytes and recovered car-
diac function [309–311]. These studies revealed the connec-
tion between Wnt inhibition and epigenetic modification to
activate cardiac differentiation, which could strengthen the
efficacy of stem cells in the treatment of cardiac injury.

3.6. Others. Vascular endothelial growth factor-β (VEGF-β),
which promotes coronary angiogenesis and physiological
cardiac hypertrophy, has potential for protection against
DOX-induced cardiotoxicity [312]. In one study, doses at
simulated clinical concentrations were administered to ade-
noviral vectors or control vectors expressing VEGF-β in nor-
mal mice 1 week prior to DOX treatment [313]. VEGF-β
treatment suppressed DOX-induced heart atrophy, protected

the sparse capillaries in the heart, and ameliorated the
endothelial function of DOX-treated mice. VEGF-β also
increased the volume of the LV without compromising
cardiac function and decreased the expression of genes
related to cardiovascular disease [314–316]. Importantly,
VEGF-β did not affect tumor growth. As such, the inhibi-
tion of DOX-induced endothelial injury and the preven-
tion of chemotherapy-related cardiotoxicity provide new
therapeutic directions.

ALL: acute lymphoblastic leukemia; LV: left ventricular;
LVFS: left ventricular fractional shortening; LVEF: left ven-
tricular ejection fraction; HF: heart failure; UPP: ubiquitin-
proteasome pathway; UPS: ubiquitin-proteasome system;
LDH: lactic dehydrogenase; CK-MB: creatine kinase-MB;
ROS: reactive oxygen species; ER: endoplasmic reticulum;
ATF6: transcription factor 6; XBP1: X-box binding protein
1; GRP78 glucose regulatory protein; Mtfp1: mitochondrial
fission protein 1; Dnm1l: dynamin 1-like; BTG2: B-cell
translocation gene 2; CTRP1: C1q/TNF-related protein 1;
PKB/AKT: protein kinase B phosphorylation; Bcl-2: B-
cell lymphoma-2; AKAP: A-kinase anchoring protein;
SNHG1: small nucleolar RNA host gene 1; PRDM2: PR
domain-containing 2 with ZNF domain; GSDME: gasdermin
D; Bnip3: Bcl-2/adenovirus E1B 19 kDa interaction protein 3;
ES-Exos: embryonic stem cell-derived exosomes; TLR4: Toll-
like receptor 4; HDAC: histone deacetylase; HDAC2: histone
deacetylase 2; sFRP4: secreted frizzled-related protein 4;
VEGF-β: vascular endothelial growth factor-β.

4. Discussion

This review provides an integrated overview of all the genetic
variations that have been found to affect susceptibility to
cardiotoxicity induced by chemotherapy. Genetics provides
an insight into the development of toxicity associated with
these cancer treatments, and by identifying the functional
genetic variants related to these toxicities, we can improve
our understanding of the potential mechanisms and path-
ways, thus paving the way for the development of novel
therapies for these toxicities [317]. In addition, genetic
markers with underlying predictive power could be used
to identify patients who would benefit from careful moni-
toring and the prescription of cardioprotective drugs. Once
chemotherapy-induced cardiotoxicity occurs, the use of
appropriate therapeutic measures can alleviate this toxicity
[18, 318, 319]. Meanwhile, clinicians can select specific
treatments for patients according to the genotype studied
and compare the differences in drug efficacy, toxicity, and
side effects among patients with different genotypes [320].
Gene polymorphisms are closely related to individual differ-
ences in the effect of drugs. The research results are applied to
rational drug use, thereby providing guidance for clinical
drug therapy of tumors.

The majority of genes studied were related to biochemical
pathways of chemotherapy-induced cardiotoxicity. For these
genes, animal and mechanism studies have shown that their
alleles changed the expression or activity levels of the
encoded protein, thereby promoting the occurrence and
development of disease. Cardiac toxicity results from
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oxidative stress, autophagy, apoptosis, inflammation, DNA
damage, metabolism, and sarcoplasmic reticulum, among
others. To date, several potential cellular and molecular
mechanisms involving several genes for cardiotoxicity have
been identified. Accordingly, the main susceptibility genes
related to cardiotoxicity after chemotherapy are CYBA,
GSTA1, NCF4, RAC2, ABCC1, ABCC2, CAT, UVRAG,
GCN2, TCL1A, TLRS, C282Y, Hmox1, CBRs, MYH7,
TNNT2, and TTNtv.

ROS is considered the primary mediator of
chemotherapy-induced cardiotoxicity. Mitochondria are
abundant in cardiomyocytes and are the main source of
ROS. Changes in gene expression (CYBA, GSTA1, NCF4,
RAC2, ABCC1, ABCC2, and CAT) lead to mitochondrial
dysfunction, which results in increased ROS production
and, ultimately, muscle cell damage. The turnover of dam-
aged mitochondria via autophagy is essential to maintain
the structure and function of cardiomyocytes [321], and
UVRAG deficiency exacerbates DOX-induced cardiotoxicity.
Moreover, a decreased ratio of Bcl-2/Bax can lead to the for-
mation of pores in the mitochondria and the activation of
the apoptotic pathway [322, 323]. GCN2 deficiency confers
resistance to DOX-induced cardiomyocyte apoptosis by
increasing the ratio of Bcl-2 and Bax. Moreover, an accumu-
lation of iron (C282Y and Hmox1) in the mitochondria has
recently been shown to cause chemotherapy cardiotoxicity,
primarily by promoting ROS generation. Meanwhile,
DOX-induced cardiac injury was found to be morphologi-
cally characterized by inflammation [324]. The genes
TCL1A, TLR4, TLR2, and TLR9 appear to be strongly
related with the inflammation and repair processes that
occur following myocardial injury.

This study has some limitations which deserve discus-
sion. Firstly, we found a total of 64 articles associated with
chemotherapy-induced cardiotoxicity. Most of the studies
were single case and animal studies and there were inconsis-
tencies in the results reported between the studies. Secondly,
the majority of the included studies had a small sample size.
To ensure that the research results more effectively influence
the development of personalized medicines, future studies
should use large populations. Finally, the participants had
different backgrounds. Multicenter research on patients
from other regions, particularly Asia, Australia, Africa, Oce-
ania, and South America, should be performed. Further-
more, an objective definition of cardiotoxicity and the
frequency of events for each genotype should be considered.
We also selectively discussed the role of genes included in
the literature. It should be noted that the genes discussed
in this review do not mean that they are superior to the other
genes identified. Therefore, high-quality studies are needed
to determine the susceptibility genes in chemotherapy-
induced cardiotoxicity, thus providing guidance for clinical
drug therapy of tumors.

5. Conclusion

In recent times, with improved treatment regimens, cancer
patients have a better chance of survival. Unfortunately, they
are at risk of developing long-term cardiotoxicity because of

their anticancer therapies. However, there is a serious lack
of reliable and sensitive biomarkers for the clinical evaluation
of chemotherapy-induced cardiotoxicity. Based on genetic
analyses, the combination of chemotherapy-induced cardio-
toxicity and treatment targeting molecular targets of specific
genes may prevent or mitigate the cardiotoxicity induced by
chemotherapy in patients. In the context of inevitable cardi-
otoxicity, the effective and safe treatment of different types of
cancer is important and deserves further study. This review
reveals a number of potential therapeutic targets and pro-
vides a viable hypothesis for the development of new gene-
targeted drugs for the treatment of chemotherapy-induced
cardiotoxicity. But more high-quality studies are needed
to determine the susceptibility genes in chemotherapy-
induced cardiotoxicity, thus providing guidance for clinical
drug therapy of tumors.
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