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Cisplatin chemotherapy causes myelosuppression and often limits treatment duration and dose escalation in patients. Novel
approaches to circumvent or lessen myelotoxicity may improve clinical outcome and quality of life in these patients.
Chlorella sorokiniana (CS) is a freshwater unicellular green alga and exhibits encouraging efficacy in immunomodulation
and anticancer in preclinical studies. However, the efficacy of CS on chemoprotection remains unclear. We report here, for
the first time, that CS extract (CSE) could protect normal myeloid cells and PBMCs from cisplatin toxicity. Also, cisplatin-
induced apoptosis in HL-60 cells was rescued through reservation of mitochondrial function, inhibition of cytochrome c
release to cytosol, and suppression of caspase and PARP activation. Intriguingly, cotreatment of CSE attenuated cisplatin-
evoked hypocellularity of bone marrow in mice. Furthermore, we observed the enhancement of CSF-GM activity in bone
marrow and spleen in mice administered CSE and cisplatin, along with increased CD11b levels in spleen. In conclusion,
we uncovered a novel mechanism of CSE on myeloprotection, whereby potentially supports the use of CSE as a
chemoprotector against cisplatin-induced bone marrow toxicity. Further clinical investigation of CSE in combination with
cisplatin is warranted.

1. Introduction

Chemotherapy is the most effective and widely used treat-
ment in most types of cancers [1]. Of which, cisplatin, cis-
diamminedichloroplatinum(II), has been used over 40 years
for treating at least 18 distinct tumor types as monotherapy
or combination therapy with other chemotherapeutics, radi-
ation therapy, and/or surgery, albeit lack of the cellular and
molecular mechanisms that underlie its efficacy [2, 3].
Indeed, cisplatin is the standard of care in children for treat-
ment of hematological tumors and in adults for treatment

of solid tumors such as testicular, prostate, urothelial, ovar-
ian, cervical, breast, brain, bladder, esophageal, head and
neck cancers, and nonsmall and small-cell lung cancer.
The antitumor efficacy of cisplatin primarily cross-links
with DNA and subsequently interferes with DNA transcrip-
tion and/or DNA replication [4]. However, cisplatin is asso-
ciated with several adverse effects in patients, including
renal, neuronal, auditory, bone marrow, and gastrointestinal
toxicities (e.g., nausea and vomiting) [5]. Often, these toxic
effects give rise to subtherapeutic dose delivery and/or
discontinuation of chemotherapy, ultimately compromise
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treatment outcomes such as disease control and survival in
patients with curable malignancies [6]. In particular, myelo-
toxicity is closely related to morbidity, mortality, cost, and
reduced chemotherapy dose intensity and treatment failure
[7]. Therefore, it has received great attention in developing
novel chemoprotective agents to reduce the overall toxicity
associated with cisplatin.

A chemoprotective agent that alleviates the adverse
effects of cisplatin without affecting its therapeutic effect
would definitely have clinical benefit. Although several nat-
ural and synthetic compounds have been reported to be che-
moprotective, such as hydrogen sulfide [8], vitamins C [9],
resveratrol, and genistein [10], the only FDA approved and
commonly accepted chemoprotective drug for cisplatin
therapy is amifostine, which is a sulfur-containing agent that
reduces renal toxicity and neutropenia caused by different
chemotherapy and radiotherapy regimens [11]. However, it
might diminish cisplatin’s activity and may lessen the effi-
cacy of cisplatin [12]. In addition, amifostine by itself is
related to apparent side effects, including hypotension, nau-
sea, and vomiting [13]. Therefore, there is a high demand in
finding significantly improved chemoprotectors against
cisplatin-induced toxicities.

In the present study, we investigated the chemoprotec-
tive ability and molecular mechanisms of Chlorella soro-
kiniana against cisplatin toxicity in vitro and evaluated
antimyelotoxicity effects of Chlorella sorokiniana in vivo.
Chlorella sorokiniana is a species of Chlorella, a genus of
freshwater unicellular green algae [14]. The extracts of
Chlorella have been demonstrated for potentially improving
human health and wildly used as botanical foods in modu-
lation of human immune responses [15, 16]. Importantly,
Chlorella extracts possess various beneficial pharmacologi-
cal effects against cancers [17], bacterial infections [18],
and viral replication [19]. From an earlier study, Chlorella
extract was reported to strongly increase the production
of IFN-γ and IL-2 and activate Th1 cells to strengthen
the immune system and host defense [20]. Along with this,
Chlorella sorokiniana was found to exhibit immunomodu-
latory effects in human monocyte-derived dendritic cells
through NF-κB and PI3K/MAPK pathways [21]. Most
recently, Lin et al. revealed Chlorella sorokiniana exerts
effects on inhibiting xenograft tumor growth and inducing
mitochondria-mediated apoptosis in human non-small-cell
lung cancer cells [22]. Despite the fact that Chlorella sorokini-
ana is involved in the anticancer and immunomodulatory
bioactivities, it is not clear whether Chlorella sorokiniana
can reduce the toxicity resulted from chemotherapeutic
drugs. Here, we report the effectiveness of Chlorella sorokini-
ana in the prevention of cisplatin-induced toxicity. We have
shown that Chlorella sorokiniana prevents cisplatin-induced
apoptosis in myeloid cells through a mitochondrial-
dependent caspase activation pathway. Also, Chlorella soro-
kiniana was able to reduce bone marrow toxicity in mice
upon cisplatin exposure. Thus, our results identify a novel
chemoprotective role of Chlorella sorokiniana in the preven-
tion of cisplatin-induced toxicity and suggest that this natural
product could be developed as a chemoprotective agent in
cancer therapy.

2. Materials and Methods

2.1. Reagents and Chemicals. Liquid form of Chlorella soro-
kiniana extract (CSE) was provided by International Crypto-
monadales Biotechnology (W87; Changhua, Taiwan). The
Chlorella sorokiniana W87 was refluxed with purified water
for 1 h, and the algae residue was removed by a high speed
separator and concentrated at 60°C until the solid content
of liquid extract was 5%. Cisplatin was purchased from Frese-
nius Kabi Oncology (Haryana, India). Other reagents and
chemicals were obtained from Sigma-Aldrich (St. Louis,
MO, USA) unless otherwise specified.

2.2. Cell Culture. HL-60 (human promyelocytic leukemia cell
line) and THP-1 (human acute monocytic leukemia cell line)
were obtained from the American Type Culture Collection
and cultured at 37°C in a humidified atmosphere of 5%
CO2 and 95% air. The HL-60 cells were incubated in Iscove’s
Modified Dulbecco’s Medium (IMDM) supplemented with
20% fetal bovine serum (FBS; Thermo Fisher Scientific,
Waltham, MA USA), 50U/mL penicillin, 50μg/mL strepto-
mycin (Thermo Fisher Scientific), 25mM HEPES, and
2mM L-glutamine (both from Invitrogen, Carlsbad, CA).
THP-1 cells were maintained in RPMI-1640 containing
10% FBS, 10mM HEPES, 1mM sodium pyruvate, 4.5 g/L
glucose, 1.5 g/L sodium bicarbonate, 50U/mL penicillin,
50μg/mL streptomycin, and 2mM L-glutamine.

2.3. Measurement of Cytotoxicity. The HL-60 or THP-1
(2 × 104 cells per well) were seeded into 96-well plates for
16 h and then treated with cisplatin and CSE for 72 h. Subse-
quently, the Alamar Blue assay (AbD Serotec, Raleigh, NC,
USA) was carried out (10% (v/v), 37°C, 4 h) to evaluate cell
viability. The absorbance was measured at wavelengths of
570 nm (oxidized state) and 600nm (reduced state) using a
microplate spectrophotometer (SpectraMax M5, Molecular
Devices, USA). Cell viability was calculated as the mean per-
centage relative to untreated cells.

2.4. Flow Cytometric Analysis. Cellular apoptosis was
detected with a FITC Annexin V Apoptosis Detection Kit
(BD Biosciences, San Jose, CA, USA) following the manu-
facturer’s instructions. After harvesting, HL-60 and THP-1
cells were spun down in Eppendorf tubes and resuspended
in 1x binding buffer, after which 5μL of Annexin V/PI or a
buffer control was added according to the manufacturer’s
instructions. Next, flow cytometric analysis was performed
on a CyFlow space instrument (Partec, Münster, Germany).
The resulting data were analyzed using FloMax software
(Partec).

2.5. Mitochondrial Fractionation. Mitochondrial-enriched
fractions were prepared according to a previously published
protocol [23]. Briefly, cells were homogenized on ice in IB-
1 buffer (225mM mannitol, 75mM sucrose, 1mM EDTA,
10mM HEPES; pH7.4), and the total homogenate was
centrifuged at 600 ×g at 4°C for 10min. The supernatant
was further centrifuged at 7,000 ×g at 4°C for 10min, and
the resulting supernatant was collected as the cytosolic frac-
tion. The remaining pellet, representing the mitochondrial-
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enriched fraction, was resuspended in IB-2 buffer (225mM
mannitol, 75mM sucrose, 20mM HEPES; pH7.4) and
centrifuged at 9,000 ×g for 10min at 4°C. The final pellet
was resuspended in sample buffer (25mM Tris-HCl,
pH6.8, 5mM EGTA, 1% (w/v) SDS) and sonicated for
30 sec prior to analysis by immunoblotting.

2.6. Western Blot Analysis. HL-60 cells were seeded in 6 cm
petri dishes at a density of 1 × 106 and cultured for 24h.
Then, cisplatin and CSE were added and the cells were
allowed to culture for 48 h. Western blot analysis was con-
ducted as previously described [24]. Proteins were extracted
from the cells using radioimmunoprecipitation assay (RIPA)
lysis buffer supplemented with 1mM phenylmethylsulfonyl
fluoride (PMSF), a cocktail of protease inhibitors (Roche,
Mannheim, Germany), and phosphatase inhibitors (Merck
Millipore, Billerica, MA, USA). The samples were separated
on a NuPAGE 4-12% Bis-Tris gel (Thermo Fisher Scientific)
before transferring to a polyvinylidene difluoride membrane
(Amersham Biosciences, Piscataway, NJ, USA) using the wet
electrophoretic transfer system (Bio-Rad, Hercules, CA,
USA). The membrane was blocked in TBST (TBS (150mM
NaCl, 20mM Tris-HCl, pH7.4) and 0.1% (v/v) Tween 20)
containing 3% (w/v) bovine serum albumin (BSA), incubated
with the indicated primary antibodies as follows: cytochrome
c (1 : 1000; rabbit monoclonal, Cell Signaling Technology,
Beverly, MA, USA), caspase-3 (1 : 1000; rabbit monoclonal,
Cell Signaling Technology), poly(ADP-ribose) polymerase
(PARP) (1 : 1000; rabbit monoclonal, Cell Signaling Technol-
ogy), translocase of the outer membrane 20 (TOM20)
(1 : 1000; rabbit monoclonal, Cell Signaling Technology),
cytochrome c oxidase subunit IV (COX IV) (1 : 1000; rabbit
monoclonal, Cell Signaling Technology), Hsp70 (1 : 2500;
mouse monoclonal, Enzo Life Sciences, Farmingdale, NY),
β-actin (1 : 5000; rabbit monoclonal, Novus Biologicals, Lit-
tleton, CO, USA), and GAPDH (1 : 1000; mouse monoclonal,
Cell Signaling Technology). The secondary antibody (1 : 5000
in blocking buffer) was incubated at room temperature for
2 h before standard enhanced chemiluminescence detec-
tion. For densitometric analyses, western blot films were
scanned and processed using a LAS 4000 (GE Healthcare,
Chicago, IL, USA) imaging system. ImageJ software (https://
imagej.nih.gov/ij/) was used for densitometric measurement
of the specific bands of interest. Values were normalized to
β-actin or GAPDH.

2.7. Assessment of Mitochondrial Mass. MitoTracker Green
FM (M7514, Thermo Fisher Scientific) is a mitochondrion-
selective probe that becomes fluorescent in the lipid environ-
ment of mitochondria. MitoTracker Green FM contains a
thiol-reactive chloromethyl moiety, resulting in stable pep-
tide and protein conjugates after accumulation in mitochon-
dria, thus allowing estimation of mitochondrial mass in live
cells [25]. HL-60 cells were seeded into a 96-well plate at a
density of 5 × 104 cells per well. Then, cisplatin and CSE were
added to the cells. At 24 h, HL-60 cells were incubated at 37°C
with 500nM MitoTracker Green FM in phosphate-buffered
saline (PBS) for 45min and washed twice with PBS. A Spec-

traMax M5 microplate reader (Molecular Devices, USA) was
used to detect the fluorescence emission at 516nm in
response to alternating 490 nm excitation.

2.8. Mouse Bone Marrow Colony-Forming Unit-Granulocyte
Macrophage (CFU-GM) Assay. Eight-week-old male Balb/c
mice were obtained from BioLASCO (Taipei City, Taiwan).
The mice were maintained on pelleted food and water ad libi-
tum and housed in controlled environmental conditions
(22 ± 1°C and a 12h light/dark cycle). The protocol for the
animal study was approved by the Institutional Animal Care
and Use Committee of Chung-Hsing University (protocol
no. 108-107).

After the mice were sacrificed, femurs were dissected.
Bone marrow cells were flushed with IMDM, counted, and
kept in a melting ice bath until use. A total of 1 × 106 bone
marrow cells was resuspended in IMDM supplemented with
20% fetal calf serum, 10% conditioned medium of recombi-
nant mouse interleukin-3 (rmIL-3), 10% citrate bovine
plasma, and 1.5mg/mL CaCl2. The cultures were incubated
with CSE (10, 100, and 500μg/mL) for 7 days at 37°C in a
humidified atmosphere of 5% CO2 and 95% air. The forma-
tion of colonies was observed by microscopy. Colonies of at
least 50 cells were scored at 40x magnification.

For cisplatin and CSE experiments, mice were intraperi-
toneally (i.p.) injected with three doses of cisplatin on days
1-3 and received CSE by oral gavage on days 4-10. The con-
trol group received sterile distilled water by oral gavage on
days 4-10. The animals were sacrificed on day 10 to perform
CFU-GM assay.

2.9. Hematopoietic Cell Survival Assay. At sacrifice, whole
blood (2mL) was collected from ICR mouse (BioLASCO,
Taipei City, Taiwan) via heart puncture into K2EDTA-
containing tubes. The peripheral blood mononuclear cells
(PBMCs) were separated from the whole blood diluted
1 : 2 with PBS by gradient centrifugation using Histopaque®-
1077 (Sigma-Aldrich). The mixture was centrifuged at
400 ×g for 30min at room temperature. The PBMCs were
washed once with PBS and pelleted down; then, red blood
cell (RBC) was lysed with 2mL of RBC lysis buffer (1x) for
4min and stop the reaction by adding 8mL of 1x PBS.
Finally, cells were spun down and resuspended in RPMI-
1640 medium supplemented with 10% (v/v) FBS, HEPES
(20 nM), 2-mercaptoethanol, penicillin (100U/mL), and
streptomycin (100μg/mL).

For measurement of CSE effect, PBMCs (2 × 104 cells
per well) were seeded into a clear bottom black-well plate
or a round bottom plate for 24h at 37°C in a humidified
5% CO2 atmosphere and treated with cisplatin (4μM)
and CSE (25, 50, and 100μg/mL) for 7 days. The viable
cells were determined by CyQuant Direct Cell Proliferation
Assay (C35012, Invitrogen) according to the manufac-
turer’s protocol. CyQuant reagent dye was added in a vol-
ume of 100μL, incubated for 2 h protected from light at
room temperature. Fluorescence intensity at 480nm excita-
tion and 535nm emission was measured using a microplate
spectrophotometer.
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2.10. Animals and Treatments. Male BALB/c mice (7-10
weeks old) were purchased from BioLASCO (Taipei City,
Taiwan). Mice were housed under specific pathogen-free
conditions in the Biomedical Research Animal Laboratory,
Industrial Technology Research Institute. All protocols were
approved by the Institutional Animal Care and Use Commit-
tee and conducted accordingly to the Guide for the Care and
Use of Laboratory Animals (protocol no. 2015-032).

Mice were randomly divided into 3 groups (n = 8 per
group) for cisplatin experiments and treated with CSE (start-
ing from day 1) as shown in Figure 1. Mice were intraperito-
neally (i.p.) injected with 4 doses of cisplatin (5mg/kg/day)
on days 1, 3, 5, and 7, while the control group received
10mL/kg of 5% Dextrose on days 1, 3, 5, and 7. For CSE
treatment, mice received CSE at 9.6mL/kg/day by oral
gavage on days 1-7. The control and vehicle groups received
sterile distilled water at 10mL/kg/day by oral gavage on days
1-7. One day after last CSE administration, all animals were
euthanized by CO2 inhalation.

2.11. Body Weight Evaluation. Body weights of individual
mice were measured periodically during the study. Weight
gain was calculated by subtracting the weight on a given
day from the initial weight. Percentage change in body
weight of mice was evaluated.

2.12. Bone Marrow Cell Preparations. Mouse bone marrow
cells were isolated from the femoral bones of BALB/c mice
as described previously with slight modifications [26]. In
brief, femoral bones were removed from CO2-euthanized
mice under sterile conditions and immersed in ice-cold
Hank’s balanced salt solution (HBSS) containing 100U/mL
penicillin and 100μg/mL streptomycin (all from Thermo
Fisher Scientific). Both epiphyses of the femurs were
removed with sterile scissors, and bone marrow cells were
collected by strongly flushing the diaphysis with ice-cold
HBSS using a 1mL syringe. RBCs were lysed using a 0.9%
(w/v) NH4Cl solution (Stemcell Technologies, Cambridge,
MA, USA). After washing with HBSS, bone marrow cells
were resuspended in RPMI-1640 media containing 2% FBS,
100U/mL penicillin, and 100μg/mL streptomycin. Viable
cells were counted using the trypan blue exclusion method.

2.13. Splenocyte Preparations. Mice were euthanized by CO2
asphyxiation, and spleens were immediately removed asep-
tically. The tissues were grounded through a 70μm pore-
sized meshed cell strainer (Thermo Fisher Scientific) into
ice-cold RPMI-1640 media containing 100U/mL penicillin
and 100μg/mL streptomycin (all from Thermo Fisher Sci-
entific). After a 1,600 rpm centrifugation for 5min at 4°C,
red blood cell lysis was carried out for 5 sec in 450μL of
sterile distilled water and neutralized by adding 50μL of
10x PBS (pH7.4). Cells were centrifuged at 1,600 rpm for
3min at room temperature and resuspended in RPMI-
1640 media containing 2% FBS, 100U/mL penicillin, and
100μg/mL streptomycin. Viable cells were counted using
the trypan blue exclusion method.

2.14. CFU-GM Assay in Bone Marrow and Splenocytes. Via-
ble bone marrow cells and splenocytes were homogeneously

dispersed in the MethoCult™ GF M3534 medium (Stemcell
Technologies) at densities of 1 × 104/mL and 2 × 104/mL,
respectively. Cells were plated in 35mm culture dishes
(Stemcell Technologies) and incubated at 37°C in a humidi-
fied atmosphere of 5% CO2. Following a 9-day (bone marrow
cells) and 13-day (splenocytes) incubation, the number of
CFU-GM with colonies consisting of more than 50 cells
was manually counted under an inverted microscope
(BX51, Olympus, Tokyo, Japan). The average colony number
of the quadruplicated dishes per group was represented for
each specimen.

2.15. Histological Analysis. The sternums and spleens were
dissected frommice and fixed at 10% neutral buffered forma-
lin (Thermo Fisher Scientific) for 3-5 days at room tempera-
ture. Bone decalcification was achieved by immersing the
samples in Surgipath Decalcifier I (Leica Microsystems,
Richmond, IL, USA) for 2 h at room temperature. The decal-
cified bone and spleen samples were then dehydrated using a
tissue processor (Histo-Tek VP1; Sakura Finetek Japan,
Tokyo, Japan) and embedded in paraffin (Nippon Seiro,
Tokyo, Japan) according to the standard procedure. Longitu-
dinal 5μm thick sections were obtained, collected on micro-
scope slides (Muto Pure Chemicals, Tokyo, Japan), and
stained with hematoxylin and eosin (H&E). Images were
obtained by a BX51 microscope (Olympus, Tokyo, Japan)
and acquired with cellSens Standard 1.6 imaging software
(Olympus, Tokyo, Japan).

2.16. Immunohistochemistry Analysis. Immunohistochemis-
try was performed on histological sections of formalin-fixed
paraffin-embedded spleen samples by using the BOND-
MAX Fully Automated IHC and ISH Staining System and
Bond Polymer Refine Detection System (Leica Biosystems,
Wetzlar, Germany) as per the manufacturer’s protocol with
proprietary reagents. Briefly, slides were deparaffinized on
the automated system with Bond Dewax Solution (Leica
Biosystems). Antigen retrieval method was used in sodium
citrate buffer (pH6) for samples for 30min. The rat primary
monoclonal antibody that reacts to mouse CD11b (1 : 100,
LifeSpan BioSciences, Seattle, WA, USA) was used at a
1 : 100 concentration in 10% animal serum in tris-buffered

1 2 3 4 5 6 7

CisplatinCisplatin CisplatinCisplatin

CSE treatment

Sacrifice

8Day

Figure 1: Study scheme of cisplatin and CSE treatment. Mice were
divided into 3 groups: (i) control group: 10mL/kg/day of 5%
Dextrose by i.p. injection on days 1, 3, 5, and 7; distilled water
(10mL/kg/day) by oral gavage on days 1-7. (ii) Cisplatin group:
cisplatin (5mg/kg/day) by i.p. injection on days 1, 3, 5, and 7;
distilled water (10mL/kg/day) by oral gavage on days 1-7. (iii)
CSE groups: cisplatin (5mg/kg/day) by i.p. injection on days 1, 3,
5, and 7; CSE (9.6mL/kg/day) by oral gavage on days 1-7.
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saline/0.09% Proclin 950 and incubated for 25min. The sec-
ondary antibodies used were linker rabbit anti-rat IgG (H&L)
(1 : 100, ImmunoReagents, Raleigh, NC, USA) for 8min and
polymer goat anti-rabbit-HRP-IgG (1 : 100, ImmunoRea-
gents) for 8min. The reaction was developed with a diamino-
benzidine (DAB) substrate kit (Leica Biosystems) for 3min.
Sections were counterstained with hematoxylin for 3min.
The tissue slides were mounted with gum and a cover glass.
Images were obtained by a BX51 microscope (Olympus,
Tokyo, Japan), acquired with cellSens Standard imaging 1.6
software (Olympus, Tokyo, Japan).

2.17. Statistical Analysis. All data are expressed as mean ±
the standard error of the mean (SEM). Statistical differences
between groups were analyzed by one-way analysis of vari-
ance (ANOVA) followed by Dunnett’s multiple comparisons
test. The analyses were performed using statistical software R
(version 3.4.1; GraphPad Software, Inc., La Jolla, CA, USA).
Results were considered statistically significant for P values
less than 0.05.

3. Results

3.1. CSE Protects Myeloid Cells against Cisplatin-Induced
Cytotoxicity. HL-60 and THP-1 have been commonly used
as cellular models to study protective effect against chemo-
toxicity to myeloid cells [27–31]. To determine the dose
response to CSE and cisplatin, varying concentrations of
CSE (6.25-100μg/mL) and cisplatin (0.25-8μM) were pre-
liminarily tested on myeloid cell lines for 72 h. Alamar Blue
assay revealed no significant cytotoxicity was observed in
HL-60 and THP-1 cells with 6.25-100μg/mL CSE
(Figure 2(a)). However, cisplatin elicited significant reduc-
tion of cell viability at 4μM and 2μM in HL-60
(57:1 ± 0:6%, P < 0:001) and THP-1 (49:1 ± 0:7%, P < 0:001
) cells, respectively (Figure 2(b)). Thus, cisplatin at a concen-
tration of 4μM or below and 100μg/mL of CSE were taken
for further experiments.

For studying cytoprotective effects of CSE, we initially
treated myeloid cells with CSE and cisplatin for 72 h. Incuba-
tion with cisplatin significantly reduced cell viability in HL-
60 cells (P < 0:001, Figure 3(a)) and THP-1 cells (P < 0:001,
Figure 3(b)); however, this decrease was greatly attenuated
by CSE (25-100μg/mL) treatment in a dose-dependent man-
ner (P < 0:001, Figures 3(a) and 3(b)). At the maximal dose
of 100μg/mL, CSE showed no cytotoxic activity alone after
3 days of incubation. Thus, these results indicate that CSE
could rescue cisplatin-evoked cytotoxicity.

3.2. CSE Inhibits Cisplatin-Induced Apoptosis in Cancer
Myeloid Cells. Since cisplatin induces apoptosis in HL-60
cells [32–34], we were interested to know if CSE can block
cisplatin-induced apoptosis by staining with PI and Annexin
V. An insult with cisplatin led to pronounced apoptosis in
HL-60 (45:2 ± 0:8%, P < 0:001) and THP-1 (11:9 ± 0:4%, P
< 0:001) (Figures 4(a) and 4(b)). However, CSE treatment
(25-100μg/mL) reduced the apoptotic HL-60 and THP-1
cells to approximately 19.7-26.1% and 8.6-9.4%, respectively

(Figures 4(a) and 4(b)). These results suggest that CSE
inhibits cisplatin-induced apoptosis in myeloid cells.

3.3. CSE Attenuates Cisplatin-Induced Caspase-3-Dependent
Apoptosis in HL-60 Cells. To gain insight into the mechanism
of CSE on decreasing cisplatin-induced apoptosis, levels of
caspase-3 and PARP were evaluated using immunoblot. As
shown in Figure 5, treating HL-60 cells with cisplatin
(4μM) increased cleaved caspase-3 and cleaved PARP (Lane
3), which was reversed by the administration of CSE at
100μg/mL (Lane 4). These results support the evidence that
CSE rescues HL-60 cells from cisplatin-induced apoptosis
through the caspase-3-dependent pathway.

3.4. CSE Mitigates Cisplatin-Evoked Caspase-3 Activation
through the Mitochondrial Pathway. Considering caspase-3
is activated by proapoptotic molecules such as cytochrome
c released from mitochondria [35], we measured cytochrome
c in the cytosolic and mitochondrial fractions prepared from
myeloid cells. As shown in Figure 6, increasing amounts of
cytochrome c were detected in the cytosol from HL-60 cells
treated with cisplatin (Lane 5), whereas the corresponding
mitochondrial fractions from the same cells showed a deple-
tion of cytochrome c (Lane 6). However, the elevated cyto-
chrome c level in cytosol was reduced upon 100μg/mL CSE
treatment (Lane 7, Figure 6). Similarly, CSE increased the
levels of COX IV and TOM20 in cisplatin-treated mitochon-
drial fractions, though to a somewhat smaller extent (Lane 8,
Figure 6). To further substantiate these observations, we used
a mitochondrial-specific dye (MitoTracker Green FM) that
binds mitochondrial membrane independently of the mem-
brane potential, and thus staining intensity has been consid-
ered an index of mitochondrial mass [36]. Notably, the
decrease in MitoTracker Green staining induced by cisplatin
was restored in HL-60 cells treated with CSE (Figure 7).
These results support the idea that reduction of cisplatin-
triggered caspase-3 activation by CSE is possibly mediated
by the mitochondrial pathway.

3.5. CSE Protects Normal Myeloid Cells against Cisplatin-
Induced Toxicity. In order to test whether normal myeloid
cells could also confer chemoprotection to cisplatin in vitro,
mouse bone marrow cells first incubated with CSE for 7 days.
CFU-GM assay revealed CSE at 10, 100, and 500μg/mL sig-
nificantly increased the number of CFU-GM after 7-day
treatment (P < 0:05, Figure 8(a)). Similarly, CSE alone treat-
ment promoted mouse PBMC proliferation by the CyQuant
Direct assay (Figures 8(b) and 8(c)). A slight reduction in
proliferation rate was observed in 4μM cisplatin-treated
PBMCs. Nevertheless, cell survival was increased by CSE
(25, 50, and 100μg/mL) compared to cisplatin exposure
(Figure 8(c)).

Next, to investigate whether CSE possesses beneficial
effects on normal myeloid cells in vivo, mice were adminis-
tered cisplatin (5mg/kg) for 3 days and treated with CSE
for 7 days. CFU-GM assay revealed CSE at 10, 100, and
500μg/mL increased the number of CFU-GM after 7-day
incubation (Figure 8(d)). The number of CFU-GM was sig-
nificantly (P < 0:01) reduced in cisplatin-treated mice
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(Figure 8(d)). Strikingly, this decrease was reversed by
CSE treatment at 0.8-8.3mL/kg. These results highlight
the role of CSE in the protection of normal myeloid cells
from cisplatin.

3.6. CSE Ameliorates Cisplatin-Induced Bone Marrow
Hypocellularity. To evaluate further the effect of chemopro-
tection in a clinically relevant setting, we analyzed whether
CSE treatment affects body weight or bone marrow in mice
receiving cisplatin. Compared to the control group, a steady
decrease in body weight was observed after cisplatin admin-
istration (Figure 9(a)). The decline in body weight was
pronounced on days 3-7 of cisplatin treatment. CSE at

9.6mL/kg showed no significant effects on weight loss
induced by cisplatin. Treatment of CSE did not have a signif-
icant effect on weight loss induced by cisplatin, indicating
that body weight may not be a sensitive enough measure
for chemoprotection of CSE against cisplatin. In contrary,
9.6mL/kg of CSE (Figures 9(d) and 9(g)) ameliorated the
marked reduction of bone marrow cells (hypocellularity)
induced by cisplatin treatment (Figures 9(c) and 9(f)). These
findings suggest that CSE is capable to protect bone marrow
from cisplatin-evoked toxicity.

3.7. CSE Restores Hematopoietic Progenitor Cells after
Cisplatin Treatment. The CFU-GM assay has been well
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Figure 2: Effect of CSE and cisplatin on myeloid cell proliferation. The HL-60 and THP-1 were cultured in CSE (a) or cisplatin (b) at
indicated concentrations for 72 h. Cell viability was measured using the Alamar Blue assay. Data are expressed as mean ± SEM (n = 3).
Differences among groups were analyzed by one-way ANOVA and post hoc Dunnett’s test. ∗∗∗P < 0:001 versus the untreated control group.
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Figure 3: CSE protects cells from cisplatin-induced cytotoxicity. The HL-60 (a) and THP-1 (b) were cultured in cisplatin at 4μM and 2 μM,
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recognized as a substitute to experimental animals to pre-
dict myelotoxicity in humans [37]. Because bone marrow
hypocellularity might result from inadequate growth of
hematopoietic progenitors in cisplatin-treated mice, we
examined the in vitro clonogenic potential of committed
myeloid progenitors. As shown in Figure 10(a), the number
of colonies from hematopoietic progenitors from cisplatin-
administered mice was markedly reduced by approximately
56% (P < 0:05), as compared with controls. In contrast, CSE
treatment increased CFU-GM activity in bone marrow, but
differences were not statistically significant (Figure 10(a)).
Likewise, the number of colonies obtained from cisplatin-
treated splenocyteswas also severelydepressed for themyeloid
assay when compared with controls (P < 0:01; Figure 10(b)).

However, CSE treatment led to higher CFU-GM activity
in the spleen compared to cisplatin alone (P < 0:05;
Figure 10(b)). Correspondingly, CSE at 9.6mL/kg greatly
restored the granulocyte/macrophage biomarker CD11b
expression in splenocytes exposed to cisplatin (Figures 11(c)
and 11(f)). Thus, these data suggest that CSE could pro-
tect hematopoietic progenitors in response to the toxicity
of cisplatin.

4. Discussion

Here, we show that the extract of Chlorella sorokiniana
provides chemoprotective effects against cisplatin in vitro
and in vivo. In this study, we reveal that CSE abrogates

PI

PI

Control − CSE (25 𝜇g/mL) CSE (50 𝜇g/mL) CSE (100 𝜇g/mL)

Annexin V

0.1 1 10 100
FL2

FL
1

1000
0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

0.1 1 10 100
FL2

1000 0.1 1 10 100
FL2

1000 0.1 1 10 100
FL2

1000 0.1 1 10 100
FL2

1000

− CSE (25 𝜇g/mL)

0.1 1 10 100
FL2

FL
1

1000
0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

FL
1

0.1

1

10

100

1000

0.1 1 10 100
FL2

1000 0.1 1 10 100
FL2

1000 0.1 1 10 100
FL2

1000 0.1 1 10 100
FL2

1000

HL-60

THP-1

Cisplatin

Control CSE (50 𝜇g/mL) CSE (100 𝜇g/mL)

Annexin V

Cisplatin

(a)

Cisplatin − +

− −

+ + +

CSE (𝜇g/mL) 25 50 100

A
po

pt
ot

ic 
ce

ll (
%

)

50

40

30

20

10

###

0

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

HL-60

Cisplatin − +

− −

+ + +

CSE (𝜇g/mL) 25 50 100

A
po

pt
ot

ic 
ce

ll (
%

)

15

10

5

###

0

⁎⁎ ⁎⁎
⁎

THP-1

(b)
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cisplatin-induced cytotoxicity by reducing cell death (Figures 3
and 4), suppressing apoptosis signaling (Figure 5), and pre-
venting mitochondrial damage (Figures 6 and 7) in cancer

myeloid cells. CSE also confers protection from cisplatin in
mouse bone marrow cells and PBMCs (Figure 8), as well as
restores hematopoietic progenitor cells after cisplatin treat-
ment in the spleen (Figures 10 and 11). These results demon-
strate CSE’s positive effect on protecting myeloid cells from
the insult of cisplatin. Additionally, the beneficial effects
observed for bone marrow (Figure 9) from mice receiving
cisplatin support CSE’s relevance and potential therapeutic
value in treating cisplatin-evoked toxicity.

Cisplatin chemotherapy has been a mainstay of cancer
treatment since approved by the FDA in 1978 [2] for a broad
range of cancers [3]. Despite being efficacious on damaging
tumor cells via cross-linking with DNA and induction of
apoptosis [4], cisplatin is associated with several side effects
resulted from hepatotoxicity, nephrotoxicity, ototoxicity,
myelotoxicity, and gastrointestinal toxicity [5]. Conse-
quently, these cumulative and irreversible toxicities reduce
the potential options for cisplatin as a future treatment on
relapse. Hence, its use is limited in terms of dose and dura-
tion of treatment, with subsequent decreased tumor control
and survival, and ultimately interfering with patient safety
and quality of life.

In our in vitro model of cisplatin-induced toxicity in
myeloid cells, we observed that cisplatin treatment markedly
increased the number of apoptotic cells that was reversed by
CSE treatment. Earlier studies have pointed out that cisplatin
induces apoptosis in HL-60 cells through BCL2 downregula-
tion and activation of BCL2L12 expression [33], oxidative
stress, and inhibition of cell cycle progression [34]. Also, cis-
platin activated the intrinsic pathway of apoptosis through
alteration of the mitochondrial membrane potential, release
of cytochrome c, and upregulation of caspase-3 activity in
acute promyelocytic leukemia (APL) and human T leukemia
cells [38]. In agreement with the previous reports, we found
cisplatin-evoked caspase-3 activation coincided with the
reduction of mitochondrial content in HL-60 cells. Notably,
not only did CSE diminish the levels of cleaved caspase-3
and cleaved PARP, but it also decreased the release of cyto-
chrome c to the cytosolic fractions. On top of that, CSE
increased the levels of COX IV, TOM20, and HSP70 in
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mitochondrial fractions, as well as restored mitochondrial
mass in cisplatin-treated cells.

Caspase-3 plays a central role in the execution of the apo-
ptotic program [39] and is primarily responsible for the

cleavage of PARP during cell death [40]. Indeed, PARP cleav-
age serves as a marker of cells undergoing apoptosis by pre-
venting futile repair of DNA strand breaks and essentially
inactivates the enzyme to incapably respond to DNA strand
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breaks [41]. Cisplatin binds with high affinity to nuclear
DNA and can physically interact with several cytoplasmic
nucleophiles, including mitochondrial DNA (mtDNA) as
well as multiple mitochondrial and extramitochondrial pro-
teins [42–46]. It is well accepted that these lesions mediate
cisplatin’s cytotoxic effect.

Mitochondria are the powerhouses of the cell [47]. In
addition to ATP generation, mitochondrial electron trans-
port chain is a major cellular source of reactive oxygen spe-
cies (ROS) (estimated at approximately 90%), mainly H2O2
from complex I, II, and III [47–50]. Oxidative stress plays a

role in the pathogenesis of cisplatin-induced dose-limiting
toxicities, and mitochondrial-dependent ROS response
enhances the cytotoxic effect caused by nuclear DNA damage
[51]. Release of cytochrome c from mitochondria to cytosol
causes mitochondrial damage and dysfunction during apo-
ptosis [52]. Besides, the chaperone protein HSP70 has been
shown to suppress the mitochondrial release of cytochrome
c [53, 54] and cooperates with HSP90 to inhibit cytochrome
c-mediated caspase activation [55, 56], thereby halting fur-
ther caspase activation. The present study demonstrated that
HSP70 was elevated by CSE treatment in the mitochondrial
fraction of HL-60 cells exposed to cisplatin. These results are
supported by previous reports showing reduction of HSP70
enhances cisplatin-induced apoptosis in HGC-27 gastric can-
cer cells and A529 lung adenocarcinoma cells, as well as accu-
mulation of HSP70 inhibits heat shock-induced apoptosis in
HL-60 cells [57–59]. In relation to thesefindings, it is of interest
that we observed that cisplatin-induced release of cytochrome c
frommitochondria and compromised mitochondrial function
were reversed by CSE. We propose that CSE-mediated rescue
of mitochondria to HL-60 reverses the cytotoxic effects of
cisplatin, thereby facilitating cell survival.

The improvement in mitochondrial function and sur-
vival of myeloid cells in the presence of CSE is likely not lim-
ited to the prevention of cell death. Cisplatin is known to
generate myelotoxicity [60–62]. However, when we treated
the mice with CSE while administration of cisplatin, which
elicited hypocellularity of bone marrow, we observed the pos-
itive effect of CSE on the restoration of bone marrow in vivo.
Hematological toxicity such as leukopenia and anemia
occurred in approximately half of cisplatin-treated patients
with lung cancer and advanced ovarian cancer [63]. Hitherto,
hematopoietic growth factors (HGFs) like recombinant
granulocyte-colony-stimulating factor (G-CSF) and erythro-
poietin are first-line choices for the treatment of patients with
chemotherapy-induced myelosuppression [60]. Neverthe-
less, the use of HGFs has been impeded by their high costs
and their own side effects including myalgia, bone pain, pul-
monary infiltrates, rash, and thrombophlebitis [63]. Further-
more, the potential of G-CSF to promote tumor growth by
enhancing neovascularization in a tumor raised a critical
safety issue of G-CSF in cancer patients [64]. Therefore, the
development of efficient and safer therapeutics or preventives
are still needed for the management of cancer patients.

Previous reports have demonstrated natural products are
beneficial in cisplatin-induced myelotoxicity in animal
models, such as vetiver oil (Java) [65], olive, and olive oil
[66]. In the current study, the in vivo impact of CSE treat-
ment on cisplatin-induced toxicity was evaluated. Consistent
with our in vitro findings, cisplatin caused remarkable bone
marrow hypocellularity; however, CSE at 9.6mL/kg pre-
served bone marrow cellularity (Figures 9(d) and 9(g)). In
the non-tumor-bearing host, cisplatin treatment might
induce acute hematotoxic injury that leads to stimulation of
G-CSF, the major regulator of neutrophilic granulocytes
and to rebound leukocytosis [67]. Indeed, G-CSF in combi-
nation with IL-1α has been found to synergistically enhance
recovery of primitive hematopoietic cells in mice exposed
to 5-fluorouracil [68]. Thus, we further addressed whether
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weight changes after cisplatin treatment. Mice were administered
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images (n = 5‐8 per group).
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CSE could affect colony formation in bone marrow and
spleen after cisplatin treatment. As shown in Figure 10(a),
CSE showed a slight tendency to promote hematopoietic pro-
genitor cell CFU-GM activity in bone marrow from mice
receiving cisplatin, which is consistent with the fact that bone
marrow CFU-GM content is directly linked to recovery of
peripheral blood cells [69]. Furthermore, elevated CFU-GM
activity (Figure 10(b)) and CD11b levels (Figures 11(c) and
11(f)) in the spleen were also found in CSE-treated mice
upon cisplatin exposure. Taken together, these results indi-
cate that CSE exerts a protective role in cisplatin-induced
myelotoxicity along with hematopoietic damage.

5. Conclusions

In summary, we found that combining CSE administration
with cisplatin produced protective effects against bone mar-

row toxicity, probably through suppression of apoptosis
via a mitochondrial-dependent caspase activation pathway
(Figure 12). To the best of our knowledge, this is the first

0

20

40

60 #
ns

Co
lo

ny
 n

um
be

r (
/1

04  ce
lls

)

Control Cis Cis + CSE

(a)

80

20

40

0

60

##

Control Cis + CSECis

Co
lo

ny
 n

um
be

r (
/2

 ×
10

4  ce
lls

)

⁎

(b)

Figure 10: CSE restores hematopoietic progenitors in mice after cisplatin administration. One day after the last cisplatin injection, bone
marrow (a) and spleen (b) cells were cultured for respective 9 and 13 days, and the colony number of CFU-GM per bone marrow and
spleen was counted. Data are represented as mean ± SEM (n = 4 per group). The significance of the data was analyzed by one-way
ANOVA with post hoc Dunnett’s test. #P < 0:05 and ##P < 0:01 versus the control group; ∗P < 0:05 and ns (not significant) versus the
cisplatin group.
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Figure 11: CSE recovers CD11b levels in cisplatin-treated mice.
Cisplatin was administered at 5mg/kg/day for 4 doses in the
absence or presence of CSE (9.6mL/kg/day) for 7 days.
Immunohistochemical analysis was conducted with anti-CD11b to
analyze spleen and observed by a microscope at 40x (a–c) and
200x (d–f) magnification; bar, 50μm. Shown are representative
images (n = 5‐8 per group).
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study to examine the beneficial effects of Chlorella sorokini-
ana extract in myelosuppression after cisplatin treatment in
normal mice. Therefore, this study promises the use of
Chlorella sorokiniana as a chemoprotective agent but
necessitates further experimental (tumor model) and clini-
cal studies to validate our preliminary findings.
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