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Background. Osteoarthritis (OA) is a progressive illness that destroys cartilage. Oxidative stress is a major contributor of OA, while
endoplasmic reticulum (ER) stress is the key cellular damage under oxidative stress in chondrocytes. Echinacoside (ECH) is the
main extract and active substance of Cistanche, with potent antioxidative stress (OS) properties, and currently under clinical trials
in China. However, its function in OA is yet to be determined. Purpose. We aimed to explore the specific role of ECH in the
occurrence and development of OA and its underlying mechanism in vivo and in vitro. Methods. After the mice were
anesthetized, the bilateral medial knee joint meniscus resection was performed to establish the DMM model. TBHP was used
to induce oxidative stress to establish the OA model in chondrocytes in vitro. Western blot and RT-PCR were used to evaluate
the level of ER stress-related biomarkers such as p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP and apoptosis-
related proteins such as BAX, Bcl-2, and cleaved caspase-3. Meanwhile, we used SO staining, immunofluorescence, and
immunohistochemical staining to evaluate the pharmacological effects of ECH in mice in vivo. Results. We demonstrated the
effectiveness of ECH in suppressing ER stress and restoring ECM metabolism in vitro. In particular, ECH was shown to
suppress tert-Butyl hydroperoxide- (TBHP-) induced OS and subsequently lower the levels of p-PERK/PERK, GRP78, ATF4,
p-eIF2α/eIF2α, and CHOP in vitro. Simultaneously, ECH reduced MMP13 and ADAMTS5 levels and promoted Aggrecan and
Collagen II levels, suggesting ECM degradation suppression. Moreover, we showed that ECH mediates its cellular effects via
upregulation of Sirt1. Lastly, we confirmed that ECH can protect against OA in mouse OA models. Conclusion. In summary,
our findings indicate that ECH can inhibit ER stress and ECM degradation by upregulating Sirt1 in mouse chondrocytes
treated with TBHP. It can also prevent OA development in vivo.

1. Introduction

Osteoarthritis (OA) is marked with chronic pain and dehabil-
itating condition. It is caused by progressive joint deterioration
and involves pathological alterations in the articular cartilage,
bone, and synovium [1]. It is a substantial producer of disabil-

ity and socioeconomic loss worldwide [2], affecting 40% of the
global population > 70 years of age, and it greatly elevates
comorbidity and mortality risk [3].

As chondrocytes are the only cell type present in articu-
lar cartilage, changes in these cells are responsible for OA
disease processes [4]. During OA, chondrocytes are often
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dysregulated and undergo apoptosis [5]. Oxidative stress
(OS) is one of the most important pathological factors caus-
ing OA [6–8]. OS is capable of oxidizing and subsequently
disrupting cartilage homeostasis via induction of cell death
[4]. Healthy chondrocytes can maintain homeostasis, even
in the presence of OS. However, excessive OS can trigger
off the endoplasmic reticulum (ER) stress which is one of
the most studied OS reactions, response in cells, disrupt
dynamic balance of cartilage, and cause chondrocyte damage
and apoptosis [9]. As a consequence, the ER must be in
balance with other variables, like energy and oxygen.

ER stress is a major contributor of OA [10–12]. ER is the
largest organelle in a cell and is essential for protein folding
and transport [13]. Under conditions that promote OA, chon-
drocytic ER stress-related biomarkers like GRP78 (glucose-
regulated protein 78) gradually increase, which results in the
activation of 3 simultaneous signaling networks, namely,
ATF6 (activating transcription factor 6), IRE1α (inositol-
requiring enzyme 1 alpha), and PERK (protein kinase RNA-
like ER kinase) (Fig. S1) [14–16]. Here, we employed TBHP
(tert-Butyl hydroperoxide) to promote OS. Because of its
stable and long-lasting properties, it has been widely used in
the study of the mechanism of OA [17, 18].

In the process of endochondral ossification, chondrocytes
secrete a large amount of ECM (extracellular matrix), which is
regulated by ER [19, 20]. ECM mainly includes proteins like
Collagen II and Aggrecan. Collagen II provides tensile
strength, and Aggrecan is highly hydrated and thereby allows
cartilage to resist a compressive load [21, 22]. An increase in
these proteins represents a rise in cartilage secretion activity,
along with alterations in cartilage cellular function [23]. Under
physiologic conditions, this cartilaginous ECM is constantly
remodeled through degradation followed by the synthesis of
Collagen II and Aggrecan tomaintain the integrity of cartilage.
In osteoarthritis, the degeneration of the ECM far exceeds its
synthesis [24, 25]. The ECM of cartilage wears away, exposing
the articular cartilage and, eventually, the bone [21, 26, 27]. At
the same time, some studies have confirmed that repairing
ECM can significantly alleviate the progress of OA [28–31].

Sirt1 is a NAD+-dependent class 3 histone deacetylase that
is stimulated under stress and in age-related diseases. A large
number of studies confirmed that Sirt1 can effectively alleviate
the occurrence of ER stress [32, 33]. At the same time, it can
increase the expression of Aggrecan, Collagen II, and other
ECM proteins [34, 35]. Alternately, Sirt1 can also reduce
apoptosis by upregulating Bcl-2 [36].

Cistanche is an endangered species but a precious, tonic
Chinese medicine, honored as “Ginseng of the Deserts” [37].
Echinacoside (ECH) is a natural phenethyl alcohol commonly
found inCistanche [38, 39], and with potent anti-inflammatory
[38], antiaging [40], and anti-OS [41] properties. Moreover, as
the main ingredient that functions in Cistanche, a number of
recent studies confirmed numerous ECH benefits, such as in
repairing radiation damage [41], nerve damage [42], resisting
Alzheimer’s disease [43], and regulating the gut microbiota
diversity, increasing beneficial bacteria [44]. Furthermore, two
novel ECH derivatives, namely, Echinacoside and Naoqing
Zhiming tablet, entered clinical trials in China in 2007 [45].
At the same time, researchers are constantly developing new

application scenarios for this precious medicinal material
[37]. A recent study showed that ECH can act as an antagonist
of SARS-CoV-2M [46]. In 2019, following a request from the
European Commission, the EFSA Panel on Nutrition, Novel
Foods and Food Allergens (NDA) was asked to deliver an
opinion on water extract of Cistanche stems with ECH as the
main component as a novel food (NF) and stipulated the target
population and daily intake [47]. Finally, the NDA Panel,
having evaluated the data, adopted a scientific opinion on the
safety of water extract of Cistanche tubulosa stems as a NF
pursuant. However, till now, it is unknown whether ECH has
a similar therapeutic effect on OA.

Here, we explored the effectiveness of ECH in inhibiting
ER stress-mediated chondrocyte apoptosis and its underly-
ing mechanism. Furthermore, we assessed ECH efficacy in
surgically established mouse model of OA.

2. Materials and Methods

2.1. Ethics Statement. All surgical procedures, drug treat-
ments, and postoperative animal care procedures were
strictly performed in accordance with the guidelines for Ani-
mal Care and Use outlined by the Committee of Wenzhou
Medical University. No clinical trial was involved in the
current study.

2.2. Reagents and Antibodies. Reagents and their sources are
listed as follows: ECH (purity ≥ 98%), dimethyl sulfoxide
(DMSO), TBHP, TG, DAPI, and type II collagenases
(Sigma-Aldrich, St Louis, MO, USA); 0.25% trypsin (Gibco
NY, USA); fetal bovine serum (FBS), Dulbecco’s modified
Eagle’s medium- (DMEM-) F12 medium, and phosphate-
buffered saline (PBS) (HyClone, Logan, UT, USA); TUNEL
staining and CCK-8 kit (MedChemExpress, China); and all
cell culture reagents (Gibco, Grand Island, NY, USA). Anti-
bodies and their sources are listed as follows: primary antibod-
ies (1° Abs) against Sirt1, cleaved caspase-3, ATF4, GRP78,
CHOP, PERK, p-PERK, eIF2α, p-eIF2α, and β-actin (Cell Sig-
naling, Danvers, MA, USA); Bcl-2 Ab (Abcam, Cambridge,
UK); 1° Abs against Collagen II, Aggrecan, matrix metallopro-
teinase 13 (MMP13), a disintegrin and metalloproteinase with
thrombospondin motifs 5 (ADAMTS5), and β-actin (Abcam,
Cambridge, UK); and Alexa Fluor®488-labeled and Goat
Anti-Rabbit IgG (H+L) secondary antibody (2° Ab) (Jackson
Immuno Research, West Grove, PA, USA).

2.3. Cell Isolation and Culture. All animal protocols followed
the guidelines set by the Committee of Wenzhou Medical
University. The mice were kept in specific pathogen-free
(SPF) housing. To isolate chondrocytes, the cartilage was
excised from mice hip joints and sliced into 1mm3 portions,
before 0.25% trypsin-digestion for 1 h, followed by incuba-
tion with 0.2% collagenase II in DMEM-F12 at 37°C and
5% CO2 for 4 h, centrifugation at 1200 rpm for 5min, and
culture at 37°C and 5% CO2 in DMEM-F12 complete culture
medium with 10% FBS and 1% penicillin and streptomycin.
To ensure phenotype maintenance, 1st-3rd passage cells were
used for subsequent experiments.
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2.4. Cell Viability Assay. Chondrocyte survival was assessed
with the CCK-8 kit, following operational guidelines. In short,
5000 2nd passage mouse chondrocytes were plated in a 96-well
plate and incubated for 24h.Next, the cells were exposed to dif-
fering concentrations of ECH, namely, 0, 20, 40, 80, 120, and
160μM for 24h or 48h. For the next 24h, half of the mouse
chondrocytes were exposed to TBHP (20μM), PBS-rinsed,
and exposed to 100μl DMEM/F12 with 10μl CCK-8 for 2h.
Absorbance was measured at 450nm with a spectrophotome-
ter (Thermo Fisher). Each experiment was repeated 5X.

2.5. Terminal Deoxynucleotidyl Transferase-Mediated dUTP
Nick-End Labeling (TUNEL) Staining. TUNEL staining was
employed for apoptotic chondrocyte detection, under varying

24h treatments. Upon a 15min 4% PFA fixation, chondro-
cytes were PBS-rinsed 3X, permeabilized with 0.1% Triton
X-100 in PBS for 3min, stained with reagents from a TUNEL
staining kit, and counterstained with DAPI for 10min, before
visualization under a confocal microscope. The percentage of
apoptotic chondrocytes were then counted and analyzed.

2.6. Immunofluorescence Staining. Treated chondrocytes
were fixed in confocal dish with 1ml 4% PFA for 25min,
followed by permeation with 0.2% Triton X-100 in PBS for
5-10min, and blocking with 5% BSA for 90min at room
temperature (RT). Next, 1° Abs against CHOP, cleaved cas-
pase-3, MMP13, Collagen II, and Sirt1 were introduced for
24 h at 4°C, with subsequent exposure to Alexa Fluor 594-
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Figure 1: Effect of differing ECH concentrations on chondrocyte viability. (a) Chemical structure of ECH. (b) The cytotoxic effect of cyanidin on
mouse OA chondrocytes was determined at various concentrations for 24 hours using a CCK8 assay. (c) The cytotoxic effects of ECH onmouse
chondrocytes were examined and cell viability was assessed after 6, 12, 24, 36, and 48 hours with a CCK8 kit. (d) The viability of TBHP-treated
(20μM) chondrocytes after ECH treatment at various concentrations. Significant differences among different groups are indicated as ∗P < 0:05,
∗∗P < 0:01 vs. the control group; #P < 0:05 and ##P < 0:01 vs. the TBHP-alone treatment group. All values representmean ± standard deviation
(n = 3). DAPI: 4’,6-diamidino-2-phenylindole; TBHP: tert-Butyl hydroperoxide; ECH: Echinacoside.
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Figure 2: Continued.
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or Alexa Fluor 488-conjugated 2° Ab at a 1 : 500 dilution in
PBS in the dark for 90min. Finally, DAPI staining was per-
formed for 10min without light at RT. Fluorescence imaging
was done with a Nikon ECLIPSE Ti microscope (Japan), and
quantification was done with ImageJ.

2.7. Western Blot (WB). To isolate total proteins, chondro-
cytes were lysed with the RIPA lysis buffer with 1mM PMSF
(phenylmethanesulfonyl fluoride) on ice for 10min, before
being centrifuged for 15min at 12000 rpm and 4°C. Protein
quantification was done with the BCA protein assay kit
(Beyotime), and 40ng of protein was separated with sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS
PAGE) before transferring to a polyvinylidene difluoride
membrane (Bio-Rad, USA). The membrane then underwent
blocking in 5% nonfat milk for 2 h and was exposed to 1° Ab
(at 1: 1000 dilution) against Collagen II, Aggrecan, β-actin,
BAX, Bcl-2, MMP13, ADAMTS5, p-PERK, PERK, p-eIF2α,
eIF2α, GRP78, ATF4, and Sirt1 overnight (O/N) at 4°C, with
subsequent exposure to corresponding 2° Ab for 2 h at RT.
Post 3X TBST-rinses, the protein bands were visualized with
electrochemiluminescence plus reagent (Invitrogen) and
quantified with Image Lab3.0 (Bio-Rad).

2.8. RNA Extraction and Real-Time PCR (RT-PCR). TRIzol
(Invitrogen) was used for total RNA extraction from chondro-
cytes cotreated with 20μM TBHP and varying concentrations
of ECH. 1000ng RNA was then reverse transcribed into cDNA
(MBI Fermentas, Germany) before performing RT-PCR, fol-
lowing operational guidelines. The RT-PCR variables were set
in the sequence as follows: 10min at 95°C, 40 cycles of 15 s at
95°C, and 1min at 60°C, in a CFX96 Real-Time PCR System
(Bio-Rad Laboratories, California, USA). Relative gene expres-
sion, calculated via the 2−ΔΔCt formula [48], was normalized to

internal control GADPH. The primers for Sirt1, ATF4, GRP78,
CHOP, BAX, MMP13, ADAMTS5, Collagen II, Aggrecan, and
GAPDH were designed by the NCBI Primer-Blast Tool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) which are
listed as follows: Sirt1 (F)5′-GAGTGTGCTGGAGGATCTG-
3′, (R)5′-TGCTCTGATTTGTCTGGTGT-3′; ATF4 (F)5′-
TCGATGCTCTGTTTCGAATG-3′, (R)5′-ATTTTCAGCTG
GTCCAACGG-3′; GRP78 (F)5′-AGGAGGACAAGAAGGA
GGA-3′, (R)5′-GAGTGAAGGCCACATACGA-3′; CHOP
(F)5′-CTGCCTTTCACCTTGGAGAC-3′, (R)5′-CGTTTC
CTGGGGATGAGATA-3′; BAX (F)5′-TTGCTTCAGGG
TTTCATCCA-3′, (R)5′-CAGCCTTGAGCACCAGTTTG-3′;
MMP13 (F)5′-CCCCTTCCCTATGGTGAT-3′, (R)5′-AAGC
CAAAGAAAGACTGC-3′; ADAMTS (F)5′-AAAACTGGC
GAGTACCTT-3′, (R)5′-TCCTTTGTGGCTGAATAG-3′;
Collagen II (F)5′-GAAGGATGGCTGCACGAAAC-3′, (R)5′
-CGGGAGGTCTTCTGTGATCG-3′; Aggrecan (F)5′-CCAA
ACCAACCCGACAAT-3′, (R)5′-GGGAGCTGATCTCATA
GCG-3′; and GAPDH (F)5′-TTGATGGCAACAATCTCCA
C-3′, (R)5′-CGTCCCGTAGACAAAATGGT-3′.

2.9. siRNA Transfection. The specific Sirt1 small-interfering
RNA (siRNA) was purchased from Invitrogen (Carlsbad,
CA, USA). Chondrocytes were transfected with the siRNA at
a confluence of 30–50%; >95% of the cells were viable 12h
later. Then, the medium was changed, and the cells were incu-
bated further for 3 days and passaged for further experiments.
Transfection efficacies were measured via RT-PCR.

2.10. OA Model. Sixty C57BL/6 male wild-type (WT) mice,
aged 10 weeks old, were acquired from the Animal Center
of Chinese Academy of Sciences, Shanghai, China. Our
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Figure 2: Effect of ECH on TBHP-mediated chondrocyte apoptosis. (a, b) Apoptotic chondrocytes were examined using TUNEL
fluorescence immunocytochemistry (green). Nuclei were counterstained with DAPI (blue) (bar: 50 μm). (c–f) The protein levels of Bcl-2,
BAX, and cleaved caspase-3 in each group were detected. (g, h) The representative cleaved caspase-3 was detected by
immunofluorescence combined with DAPI staining for nuclei (bar: 20 μm). The values represent mean ± standard deviation (n = 3). ∗∗P
< 0:01, ∗P < 0:05. TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labeling; DAPI: 4’,6-diamidino-2-phenylindole; TBHP:
tert-Butyl hydroperoxide; ECH: Echinacoside.

5Oxidative Medicine and Cellular Longevity

https://www.ncbi.nlm.nih.gov/tools/primer-blast/


animal protocols followed the guidelines of the National
Institutes of Health and were agreed upon by the Animal
Care and Use Committee of Wenzhou Medical University.
OA was achieved by surgically conducting DMM, as
reported previously [49]. In short, mice were intraperitone-
ally anesthetized with 2% (w/v) pentobarbital (40mg/kg).
Then, an incision was made on the right knee joint capsule

medial to the patellar tendon. Subsequently, the medial
meniscotibial ligament was excised. In control mice, the
same procedure was followed, without DMM. Post opera-
tion, the animals were arbitrarily placed into 3 groups: sham,
DMM, and DMM+ECH. After 8 weeks, mice were sacri-
ficed, and the knee joints were harvested for histology
investigation.
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Figure 3: ECH inhibits TBHP-induced ER stress in chondrocyte cells. (a) The mRNA expression of GRP78, ATF4, and CHOP was
measured by real-time PCR. (b, c) The protein expressions of p-PERK, GRP78, p-eIF2α, and CHOP in mouse chondrocytes treated as
above were visualized by western blot. (d, e) The representative CHOP was detected by immunofluorescence combined with DAPI
staining for nuclei (bar: 20μm). All values represent mean ± standard deviation (n = 3). ∗∗P < 0:01, ∗P < 0:05. DAPI: 4’,6-diamidino-2-
phenylindole; TBHP: tert-Butyl hydroperoxide; ECH: Echinacoside.
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Figure 4: Continued.
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2.11. X-Ray Imaging Method. After eight weeks, the animals
were treated with surgery or no treatment, and the animals
were examined by X-ray. A digital X-ray machine (Kubtec
Model XPERT.8; KUB Technologies Inc.) was used to per-

form X-ray imaging on all mice to assess changes in joint
space, osteophyte formation, and cartilage surface calcifica-
tion. The correct image was obtained under the following
settings: 50 kV and 160μA.
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Figure 4: ECH reduced TBHP-stimulated chondrocyte apoptosis by preventing ER stress. (a) The mRNA expression levels of ER stress-
related biomarker proteins in each group were detected by using real-time PCR analysis. (b, c) ROS in mouse chondrocytes were
assessed with the ROS Assay Kit. (d–j) The protein expression levels of BAX and PERK-eIF2α-ATF4-CHOP pathway-related biomarkers
were assayed by western blot analysis. (k, l) The representative CHOP was detected by immunofluorescence combined with DAPI
staining for nuclei (bar: 50μm). All values represent mean ± standard deviation (n = 3). ∗∗P < 0:01, ∗P < 0:05. TBHP: tert-Butyl
hydroperoxide; ECH: Echinacoside; TG: thapsigargin; ROS: reactive oxygen species.
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2.12. Histological Analysis. Mouse sacrifice was done with
intraperitoneal administration of 10% chloral hydrate, and
knee joints were isolated and sliced, followed by fixation
with 4% (v/v) PFA for 24h, decalcification with neutral

10% (v/v) EDTA solution for 1 month, dehydration, paraf-
fin-embedding, and cryosectioning into 5μm sagittal sections.
The slides were then stained with safranin O–fast green (S–O),
and the morphology assessed under a microscope by a
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Figure 5: ECH upregulates the expression of Sirt1 in TBHP-stimulated chondrocytes. (a, b) Protein expression levels of Sirt1 were evaluated
by western blot analysis. (c, d) Sirt1 immunofluorescence staining. Markedly increased green bright puncta indicated the upregulated
expression of Sirt1 (bar: 20μm). (e, f) The protein expression levels of Sirt1 were assayed by western blot analysis. All values represent
mean ± standard deviation (n = 3). ∗∗P < 0:01, ∗P < 0:05. TBHP: tert-Butyl hydroperoxide; ECH: Echinacoside; TG: thapsigargin.
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Figure 6: Continued.
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number of experienced, blinded histologists. Knee joint speci-
men classification was performed with the OARSI scoring
system for medial femoral condyle and medial tibial plateau
as reported previously [50]. Subsequently, the sections were
exposed to 1° Ab against Collagen II, MMP13, and Sirt1 at
4°C O/N, followed by 2° Ab at RT for 2h. Color development
was done with the DAB substrate system (ZSBiO, Beijing,
China). Hematoxylin staining revealed the nuclei. Finally,
the sections were observed under a microscope for the quanti-
fication of stain+ cells [51].

2.13. Statistical Analysis.All experiments were replicated thrice.
Data are expressed asmean ± SD. Statistical analyses employed
SPSS 20.0, using one-way analysis of variance (ANOVA) and
Tukey’s test to compare between treated and untreated cells
and tissues. Nonparametric data (OARSI grading) employed
the Kruskal-Wallis H test. P values < 0.05 were significant.

3. Results

3.1. Effect of Differing ECH Concentrations on Chondrocyte
Viability. To elucidate the effect of ECH on chondrocytes,
we treated mouse chondrocytes with differing concentra-
tions of ECH, namely, 0, 20, 40, 80, 120, and 160μM for 6,
12, 24, 36, and 48 h, and tested cell viability, using the cell
survival CCK8 assay. ECH concentration < 80μM showed
no obvious cytotoxicity in any of the observed time points
(Figure 1(b)). Simultaneously, ECHconcentration < 80 μM
did not markedly alter cell activity in the first 24 h
(Figure 1(c)). Next, to test the protective nature of ECH,
we induced OS using TBHB, in the presence of differing
concentrations and exposure times of ECH. We discovered,
using CCK8, that 80μM ECH exposure for 24 h was the
most optimal in protecting chondrocytes from damage
(Figure 1(d)). These conditions were thus used in subse-
quent experiments.

3.2. Effect of ECH on TBHP-Mediated Chondrocyte Apoptosis.
Using TUNEL staining, we demonstrated that TBHP pro-
motes the apoptosis of chondrocytes, while ECH effectively
rescues them (Figures 2(a) and 2(b)). Moreover, we revealed,
using western blot, that ECH elevated antiapoptotic genes
Bcl-2 level and diminished proapoptotic genes BAX and
cleaved caspase-3 levels in TBHP-induced chondrocytes
(Figures 2(c)–2(f)). Next, we used cellular immunofluores-
cence (IF) to show remarkably high cleaved caspase-3 levels
in TBHP-stimulated chondrocytes, but low levels after ECH
exposure (Figures 2(g) and 2(h)). Based on these results,
TBHP was able to stimulate OS-induced chondrocyte apopto-
sis, whereas ECH preconditioning prevented this process.

3.3. ECH Inhibits TBHP-Stimulated ER Stress in Chondrocyte.
To elucidate the role of ECH in ER stress inhibition, both real-
time polymerase chain reaction (RT-PCR) and western blot
(WB) methods were used to analyze expression of ER stress-
related biomarkers. RT-PCR evaluation revealed that GRP78,
CHOP, and ATF4 levels rose dramatically with exposure to
TBHP; however, this effect was partially reversed by ECH
treatment (Figure 3(a)). Similarly, protein expression evalua-
tions, with WB, revealed that GRP78 and CHOP levels, along
with phosphorylated forms of PERK and eIF2α, were mark-
edly upregulated under TBHP stimulation. However, after
treatment with three increasing concentrations of ECH, it
was shown that the same ER stress-related biomarkers
decreased sequentially with increasing ECH concentrations
(Figures 3(b) and 3(c)). Additionally, CHOP protein IF stain-
ing confirmed protein response to TBHP and ECH pretreat-
ment seen with WB (Figures 3(d) and 3(e)).

3.4. ECH Reduced TBHP-Stimulated Chondrocyte Apoptosis
by Preventing ER Stress. Since our earlier results revealed
that ECH relieves OS, we next examined whether this pro-
cess involves protection against ER stress. To test this, we
used thapsigargin (TG) to specifically stimulate ER stress.
We demonstrated, using RT-PCR, that after ECH treatment
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Figure 6: Sirt1 silencing abrogated the ECH-mediated protection against TBHP-induced OS. (a) After knocking down Sirt1 with siRNA,
real-time PCR was used to test the knockdown effect. (b) The mRNA expression levels of BAX, GRP78, ATF4, and CHOP in each group
were examined by real-time PCR analysis. (c–h) The protein expression levels of Sirt1, GRP78, ATF4, CHOP, and BAX were assayed by
western blot analysis. All values represent mean ± standard deviation (n = 3). ∗∗P < 0:01, ∗P < 0:05. TBHP: tert-Butyl hydroperoxide;
ECH: Echinacoside.
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(TBHP+ECH group), the levels of GRP78, ATF4, and CHOP
in chondrocytes were significantly reduced compared with the
TBHP group. On the contrary, after treatment with TG
(TBHP+ECH+TG group), the mRNA levels of GRP78,
ATF4, and CHOP were significantly increased (Figure 4(a)).
We also assessed intracellular ROS levels in chondrocytes
treated with TBHP and TG, with or without ECH, using a
reactive oxygen analysis kit. Similar to earlier results, we
showed the ECH protected against TBHP-induced apoptosis
(Figures 4(b) and 4(c)). To further verify whether the ECH-
mediated repair of the ER stress pathway prevented TBHP-
induced chondrocyte apoptosis, TG was used to activate ER
stress, and WB was employed to detect the levels of ER
stress-related biomarkers, including PERK and eIF2α. Based
on our results, TG suppressed the protective activity of ECH
on TBHP-stimulated apoptosis (Figures 4(d)–4(j)). Subse-
quent IF also confirmed these results (Figures 4(k) and 4(l)).
Hence, we propose that ECH reduces OS-stimulated chondro-
cyte apoptosis by repairing ER stress.

3.5. ECH Upregulates the Expression of Sirt1 in TBHP-
Stimulated Chondrocytes. Given that Sirt1 is known to main-
tain ER homeostasis under stress, we explored whether
ECH-mediated protection against TBHP-stimulated OS
involves Sirt1. Based on our WB analysis of Sirt1 levels, TBHP
stimulation vastly reduced Sirt1, whereas increasing concen-
trations of ECH pretreatment elevated Sirt1 levels in a dose-
dependent manner (Figures 5(a) and 5(b)). Likewise, Sirt1+

cells, in IF staining, were scarce after TBHP stimulation, but
increased significantly after ECH treatment (Figures 5(c) and
5(d)). However, increase in Sirt1+ cells with ECH treatment
was abrogated with TG exposure (Figures 5(e) and 5(f)).
Collectively, these results suggest that ECH protects against

TBHP-induced OS via Sirt1 and TG can specifically inhibit
this process.

3.6. Sirt1 Silencing Abrogated the ECH-Mediated Protection
against TBHP-Induced OS. To further verify that ECH
mediates its protective role via Sirt1 upregulation, we silenced
Sirt1 in TBHP-stimulated chondrocytes. Using RT-PCR, we
demonstrated that Sirt1 siRNA-treated chondrocytes exhib-
ited markedly reduced levels of Sirt1 mRNA (Figure 6(a)).
Subsequently, using both RT-PCR and WB, we showed that
Sirt1 silencing can greatly eliminate the protective effect of
ECH on ER stress and apoptosis (Figures 6(b)–6(h)). Hence,
Sirt1 silencing can strongly reduce the ER stress response
induced by TBHP.

3.7. ECH Prevents TBHP-Stimulated ECM Destruction in
Chondrocytes. To assess the role of ECH in TBHP-stimulated
ECM destruction, Collagen type II, ADAMTS5, Aggrecan,
and MMP13 protein levels were detected using RT-PCR and
WB. As depicted in Figures 7(a)–7(f), TBHP treatment signif-
icantly reduced the synthesis of Aggrecan and Collagen II but
increased the levels of ADAMTS5 and MMP13, indicating
ECM destruction. Alternately, ECH treatment reversed the
damage caused by TBHP. We, additionally, confirmed our
RT-PCR and WB data using IF staining (Figures 7(g)–7(j)).
Overall, these results strongly suggest a protective role of
ECH in preventing ECM degradation.

3.8. Sirt1 Silencing Abrogated ECH-Mediated Protection of
ECM under Induced OS. To delineate the role of ECH in
reducing ECM degeneration via Sirt1, we silenced Sirt1 in
TBHP-treated chondrocytes, using siRNA. We demonstrated
that, in Sirt1-silenced and TBHP-treated chondrocytes, the
protective effects of ECH on Aggrecan and Collagen II and
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Figure 7: ECH prevents TBHP-stimulated ECM destruction in chondrocytes. (a) Real-time PCR analysis was used to examine the mRNA
levels of Aggrecan, ADAMTS5, MMP13, and Collagen II in each group. (b–f) The protein expression levels of Aggrecan, ADAMTS5,
MMP13, and Collagen II were assayed by western blot analysis. (g–j) Immunofluorescence staining of Collagen II and MMP13 and
quantitation of the number of chondrocytes positive for Collagen II and MMP13 in different groups. Markedly increased green bright
puncta indicated the upregulation of Collagen II protein expression (bar: 20μm). All values represent mean ± standard deviation (n = 3).
∗∗P < 0:01, ∗P < 0:05. TBHP: tert-Butyl hydroperoxide; ECH: Echinacoside.
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the subsequent loss of ADAMTS5 and MMP13 were largely
abolished (Figures 8(a)–8(e)). At the same time, the immuno-
fluorescence of MMP13 and Collagen II also showed the same
result (Figures 8(f)–8(i)). Based on these data, ECH activation
of Sirt1 can significantly improve ECM degradation of OA
chondrocytes stimulated by TBHP.

3.9. ECH Improved OA Conditions in a Destabilizing Medial
Meniscus (DMM) Mouse Model. To examine ECH efficacy in
preventing OA progression in vivo, OA mouse models were
generated by surgically conducting DMM.Moreover, one shot
of either 100mg/kg ECH or saline was provided intraperitone-
ally once a day for 8 weeks. Based on our X-ray data, the DMM
animals experienced cartilage sclerosis and thinning of the
knee joint space, relative to sham animals (Figure 9(a)). Using
safranin O staining, we showed that the DMM animals had

surface articular degradation, extensive proteoglycan deple-
tion, and obvious loss of chondrocytes, relative to sham ani-
mals. However, with ECH treatment, there were fewer
proteoglycan depletion and articular degradation, relative to
OA animals. The Osteoarthritis Research Society Interna-
tional (OARSI) scores were used to identify OA status in these
mice. Based on our analysis, the OA animals had higher
OARSI scores, relative to sham animals, and this was reversed
by ECH Administration (Figures 9(b) and 9(c)).

To further confirm ECH-mediated ECM protection
in vivo, we assessed MMP13, Collagen II, and Sirt1 using
IHC. We demonstrated markedly higher MMP13+ cells and
drastically reduced Collagen II+ and Sirt1+ cells in the DMM
animals, relative to sham animals (Figures 9(d)–9(g)). We also
demonstrated more cleaved caspase-3+ cells in DMM than
sham animals and less cleaved caspase-3+ cells with ECH
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Figure 8: Sirt1 silencing abrogated ECH-mediated protection of ECM under induced OS. (a–e) The protein expression levels of Aggrecan,
ADAMTS5, MMP13, and Collagen II were assayed by western blot analysis. (f–i) Immunofluorescence staining of MMP13 and Collagen II
and quantitation of the number of chondrocytes positive for MMP13 and Collagen II in different groups. Markedly increased green bright
puncta indicated the upregulation of MMP13 and Collagen II protein expression (bar: 20μm). All values represent mean ± standard
deviation (n = 3). ∗∗P < 0:01, ∗P < 0:05. TBHP: tert-Butyl hydroperoxide; ECH: Echinacoside.
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administration, relative to controls by immunofluorescence
(Figures 9(h) and 9(i)). In all, these evidences suggest that
ECH protects against ECM degradation.

4. Discussion

Osteoarthritis (OA) is a widespread progressive illness and a
major contributor of disability, affecting more than 303 mil-
lion people worldwide [52]. Although OA is not fatal, it still
causes a substantial economic burden on society, especially
in countries with large aging population. Given the projected
increase in elderly population, the number of OA patients is
expected to rise by 50% in the next 20 years [53]. However,
comprehensive and systematic understanding of OA patho-
genesis is still lacking. Among its many influencing factors,
OS damage to articular cartilage cells in bone joints was
shown to be one of the main causes of OA [54]. Moreover,
the ER stress process can stimulate GRP78, CHOP, and
other proteins, which can further increase the level of apo-
ptosis and necrosis within the tissue [55].

Three ER stress-sensing proteins have been reported thus
far, namely, ATF6, IRE1α, and PERK. In our current research,
we primarily focused on ECH’s protection of the PERK-
eIF2α-ATF4-CHOP signaling network. We showed that
ECH can significantly reduce the levels of ER stress marker
proteins GRP78, ATF4, and CHOP, as well as the phosphory-
lated forms of PERK and eIF2α. ECH also reduced the levels of
proapoptotic protein BAX and increased antiapoptotic protein
Bcl-2 expression to protect against chondrocyte apoptosis.
Furthermore, to confirm the association between ER stress
and apoptosis, we employed ER stress stimulator TG. We
showed that the antiapoptotic property of ECH was inhibited
by TG. In subsequent studies, we were pleasantly surprised to
find that knocking down the expression of Sirt1 significantly
weakened the therapeutic effect of ECH. In conclusion, our
work confirmed that ECH can inhibit the PERK-eIF2α-
ATF4-CHOP pathway by promoting the expression of Sirt1,

thereby alleviating ER stress, which ultimately reduces cell
apoptosis. At the same time, we found that ECH treatment
also helps to inhibit the degradation of ECM. After knocking
down Sirt1, the therapeutic effect of ECH would be compro-
mised. This is in accordance with other studies that reported
on Sirt1’s ability to inhibit ER stress by eliminating free radi-
cals and OS [18, 36] and provide some inhibition of ECM
degradation.

Nowadays, pharmacological interventions by therapeutic
class in clinical are as follows: (1) analgesics such as Acet-
aminophen (paracetamol) [56], (2) nonsteroidal anti-
inflammatory drugs (NSAIDs) such as celecoxib [57, 58],
(3) antioxidants such as vitamin E [59, 60], (4) bone-acting
agents such as vitamin D [61, 62], and (5) intra-articular
injection medications such as hyaluronic acid [63]. These
drugs usually relieve only partial clinical symptoms such as
joint redness, swelling, and pain, but whether they are effec-
tive in delaying the progression of osteoarthritis remains
highly controversial [64–68]. In the meantime, serious com-
plications are more likely to be developed during the course
of medication [69–72]. Therefore, it is urgent to develop a
new drug for clinical treatment of osteoarthritis.

As a very valuable plant extract, ECH is playing an
increasingly important role in clinical practice [37]. Two
novel ECH derivatives entered clinical trials in China [44],
and the European Commission regards ECH as a novel food
and attaches great importance to the formulation of relevant
rules [47], guaranteeing the safety of it used in the human
body. ECH has been identified to possess the properties of
natural anti-inflammatory [38], antiaging [40], and anti-OS
[41] properties. According to the experimental results, we
speculate that ECH can perform multiple functions as anti-
inflammatory and antioxidants in the clinical treatment of
OA. Moreover, as the main ingredient that functions in
Cistanche, a number of recent studies confirmed numerous
ECH benefits, such as in repairing nerve damage [42], resist-
ing Alzheimer’s disease [43], and exerting hypoglycemic and
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Figure 9: ECH improved OA conditions in a destabilizing medial meniscus (DMM) mouse model. (a) The degenerative changes of articular
cartilage in each group were assessed by X-ray imaging. The joint degenerative changes include the calcification of cartilage surface and the
narrowing of knee joint space. Lesions of articular cartilage were indicated by black arrows. (b, c) Histological analysis and microscopic
observation of cartilage destruction in each group were evaluated at 8 weeks postsurgery by safranin O staining (bar: 50 μm). The defects
and destruction of cartilage surface indicated the osteoarthritis pathological changes of rat knee joint. (d–g) Immunohistochemical
staining of Sirt1, MMP13, and Collagen II expression in the cartilage samples (bar: 50 μm). (h–i) Immunofluorescence shows the
expression of cleaved caspase-3 in cartilage tissue. ∗∗P < 0:01, ∗P < 0:05. TBHP: tert-Butyl hydroperoxide; ECH: Echinacoside.
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hypolipidemic effects [73]. Osteoarthritis is among the most
prevalent chronic diseases and is a leading cause of disability
worldwide [74–76]. It affects 40% of the global population
> 70 years of age and greatly elevates comorbidity and mor-
tality risk [3]. The elderly is prone to chronic diseases such
as diabetes and hyperlipidemia. The elderly is prone to
chronic diseases such as diabetes and hyperlipidemia. Com-
bining ECH with the functions of hypoglycemic and hypo-
lipidemic effects, we speculate that ECH can play a better
role in the clinical treatment of osteoarthritis in the elderly.

In conclusion, we demonstrate that ECH can target Sirt1
upregulation, which contributes to the restoration of endo-
plasmic stress-induced apoptosis of mouse chondrocytes and
TBHP-stimulated ECM degradation (Figure 10). Our research
has further expanded the use scenarios of ECH, verified the
relevant pharmacological effects of ECH, broadened the clini-
cal application scenarios of ECH, and provided certain sup-
port for the research and application of ECH drugs.
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