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The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply.
Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When
these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away
defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation,
apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to
detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close
understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases,
such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the
key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches

targeting mitophagy in the therapy of cardiac diseases.

1. Introduction

Mitochondrial metabolism is important to supply a tremen-
dous energy demand for the heart [1]. Cardiac mitochondria
are responsible for the generation of about 6-7kg ATP each
day by oxidative phosphorylation and take up 30% volume of
cardiomyocytes [2]. Cardiac mitochondria have a critical role
in energy supply; contribute to calcium storage, cell apoptosis
modulation, and the necrosis pathway; and serve as a meta-
bolic hub for the Krebs cycle and fatty acid S-oxidation [3].
Thus, the normal function of the mitochondria is critical
for cardiac homeostasis. Aberrant mitochondrial function
results in inadequate energy, thereby augmenting the gener-
ation of reactive oxygen species (ROS, Figure 1) [4]. ROS
accumulation leads to damage to mitochondrial DNA, lipids,
and proteins involved in respiration, thereby contributing to
severe oxidative damage and cell death [5]. Such damage in

different terminal tissues, such as the brain and heart, is fea-
tured by different diseases, as manifested by neurodegenera-
tive and cardiovascular diseases [6].

Several compensating mechanisms function to maintain
the proper homeostasis of mitochondrial function [7]. For
example, the correct folding of mitochondrial proteins in
extreme oxidative conditions is maintained by a series of
mitochondrial chaperons and proteases [8]. If the capacity
of these proteins is counteracted, cells utilize the unfolded
protein response to compensate for the expression of chap-
erones and proteases and restore protein homeostasis [9].
Other mechanisms include alterations in mitochondrial
morphology. For instance, mitochondrial fusion and fission
allow for the exchange of matrix enzymes and mitochondrial
DNA of different mitochondria to maintain a healthy net-
work of interactions, and this phenomenon is commonly
defined as mitochondrial dynamics [10]. Mitochondrial
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FIGURE 1: Mitochondrial dysfunctions involved in cardiac disease. Cardiac mitochondria play an important role in energy supply, calcium
storage, cell apoptosis, and ROS production. Mitochondrial dynamics through fission and fusion cycles, biogenesis, and mitophagy
modulate the mitochondrial pool. Many factors can induce mitochondrial disorders, such as calcium overload, dysregulated
mitochondrial dynamics, energy depletion, increased oxidative stress, inhibited damaged mitochondria clearance, and cell apoptosis.
Efficient autophagy is essential for the homeostasis of cardiac metabolism. The defects of autophagy or its special type, mitophagy, would
ultimately lead to heart-related diseases. The consequences of mitochondrial dysfunction in the heart include ischemia/reperfusion
injury, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmias.

fusion is composed of the fusion of outer and inner mito-
chondrial membranes of different mitochondria [11]. The
mitochondrial fusion is induced by specific proteins, includ-
ing mitofusins (MFN) 1 and 2 on the outer membrane, and
optic atrophy 1 on the inner mitochondrial membrane and
intermembrane space [12]. Mitochondrial fission mediates
the redistribution of mitochondria in cardiomyocytes and
needs the interaction of a cytosolic protein, i.e., dynamin-
related protein 1 (DRP1), and an outer membrane protein,
i.e, MEN1 protein, thereby composing the mitochondrial
fission complex [13]. Mitochondrial dynamics is the conse-
quence of the consecutive balance of fusion and fission pro-
cesses [14]. For instance, the disruption of mitochondrial
fusion resolves mitochondrial fragmentation and induces
apoptosis [15]. The suggested roles of fusion and fission have
been assumed in many mitochondrial processes, such as
mitochondrial DNA deletion and bioenergetics, and in dif-
ferent cardiac diseases, including cardiomyopathies and
heart failure (HF) [16] (Figure 1).

Mitochondrial biogenesis contributes to the consecutive
production of new mitochondria into networks [17]. In car-
diomyocytes, the proper expansion of cardiac mitochondria
is essential to maintain adequate energy supply for cardiac
contractility. The mitochondrial biogenesis needs the incor-
poration of the transcriptional cascade, including the activa-
tion of PPAR coactivator 1, followed by increased nuclear

respiratory factors, which are responsible for the expression
of mitochondrial DNA and proteins [18].

Autophagy is involved in the maintenance of intracellu-
lar homeostasis in most types of cardiovascular cells, partic-
ularly cardiomyocytes. Mitophagy is an autophagic response
that specifically targets damaged and, hence, potentially
cytotoxic mitochondria. Therefore, genetic defects in
autophagy or mitophagy have been identified to exacerbate
the disposition to spontaneously develop cardiodegenerative
disorders. Mice with cardiomyocyte-specific deletion of Atg5
developed cardiac hypertrophy, left ventricular dilatation,
contractile dysfunction, and premature death accompanied
by disorganized sarcomere structure, mitochondrial mis-
alignment, and aggregation [19]. Also, the depletion of
Pinkl, a key mediator of mitophagy, caused left ventricular
dysfunction and pathological cardiac hypertrophy in mice
by 2 months of age [20] (Figure 1).

The interaction of these processes permits high adapta-
tion to change metabolic environments. Once all of these
mechanisms fail to restore the normal function of damaged
mitochondria, cells initiate a removal process known as
mitophagy, which selectively promotes the autophagosome
to remove damaged organelles for the fitness of the mito-
chondrial network [21] (Figure 1).

Mitophagy, as a selective autophagy in mitochondrial
damage, is first identified in yeast [22]. The common feature
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of mitophagy is the appearance of autophagic vacuole con-
taining damaged mitochondria, which is also defined as a
mitophagosome [23]. Mitophagy is crucial in cardiac myo-
cytes. The mitophagy in the heart can be induced by hypoxia
and superabundant generation of ROS (such as reperfusion)
[24]. Aberrant mitophagy induces the accumulation of dam-
aged mitochondria, reduction of myocytes, and dysfunction
of contraction. The abnormalities in mitochondrial dynam-
ics and mitophagy are directly related to the defective clear-
ance of damaged mitochondria and inflammatory response
activation, which ultimately contribute to cardiac aging
and HF [25].

Mitophagy can be divided into three types: mitophagy
induced by nutrient limitation, mitophagy induced by dam-
age signals, and micromitophagy associated with small
mitochondrion-derived vesicles [23]. These types are basi-
cally different because the first two types require the fusion
to the lysosome to form an autophagosome surrounding
the mitochondria, whereas the latter does not. As shown in
Figure 2, mitophagy is closely supervised by a number of cel-
lular signal mechanisms, including PTEN-induced putative
kinase 1 (PINK1), Parkin, mitophagy receptors, and certain
mitophagy adaptors [26]. Mitophagy receptors are princi-
pally localized on the outer mitochondrial membrane
(OMM) via transmembrane domains and attach autophago-
somes to the mitochondria through the LC3-interacting
region (LIR) motif, including ATG32 in yeast, B-cell
CLL/lymphoma 2- (BCL2-) interacting protein 3 (BNIP3),
BNIP3-like (BNIP3L)/NIX, FUN14 domain-containing 1
(FUNDCI1), Bcl2-like 13 (BCL2L13), and FKBP prolyl isom-
erase 8, in mammalian cells [27]. These mitophagy receptors
recruit ATG8 family protein LC3 and its homolog gamma-
aminobutyric acid receptor-associated protein to the mito-
chondrial membrane and induce the initiation of mitophagy
independent of the ubiquitin pathway with the aid of the LIR
motif [27].

2. PINK1

Mitophagy can be dependent or independent to phos-
phatidylinositol-3,4,5-trisphosphate 3-phosphatase PINKI
[23]. Thus far, PINKI/Parkin-dependent mitophagy
remains the most extensively characterized mitophagy
(Figure 2). PINK1, a serine/threonine kinase, remains at a
low level in normal cells [28]. Upon mitochondrial damage,
PINKI1 accumulates at the OMM, triggering elevated mito-
chondrial ROS, depolarization, and increased misfolded pro-
teins. Ascending PINK1 autophosphorylates, activates itself,
and phosphorylates ubiquitin, thereby translocating Parkin
to the mitochondrial membrane [29]. As an E3 ligase, the
Parkin translocation and activation lead to the ubiquitina-
tion of mitochondrial proteins and autophagy [30]. The
recently described protein ubiquitin carboxyl-terminal
hydrolase 30 exerts an inhibitory effect on the Parkin-
mediated mitophagy [29]. Interestingly, Parkin can also
induce mitophagy in the absence of PINK1 by promoting
mitochondrial depolarization [31]. The ligase activity of Par-
kin can be modulated by some identified proteins at OMM,
including MEN1/2, voltage-dependent anion channel pro-

tein 1 (VDAC1), and mitochondrial Rho guanosine triphos-
phate hydrolases (MIRO) [23]. Therefore, the dynamics in
OMM are important for mitophagy. PINK1 is recruited into
the mitochondria and cleaved by the mitochondrial process-
ing peptidase to maintain a remarkably low level of PINK1
in healthy cells [32]. After cleavage, PINKI is ubiquitinated
and degraded by the ubiquitin proteasome system.

Several pathways and proteins are involved in PINKI1-
dependent mitophagy. MFN2 can be phosphorylated by
PINK1 and act as a Parkin receptor to remove damaged
mitochondria  [33]. VDACI, a key protein in
mitochondria-dependent apoptosis, is identified to be ubi-
quitinated through the interaction with Parkin and is
involved in Parkin recruitment [34]. By contrast, defects in
ubiquitination contribute to apoptosis and suppress mito-
phagy [35]. Therefore, the interaction between VDACI
and PINKI acts as a determinant in terms of damaged mito-
chondrial apoptosis and mitophagy [36]. In addition,
MIRO1/2 can be ubiquitinated by Parkin [37]. MIRO1/2
are components of the adaptor complex, which recruits the
mitochondria to motor proteins [38]. Thus, MIRO1/2 are
involved in Ca**-induced axonal mitochondrial movement.
Upon calcium binding, the adaptor complex dissociates
from microtubules and inhibits mitochondrial movement,
further promoting mitophagy to eliminate damaged mito-
chondria [38].

3. Light Chain 3 (LC3)

Ubiquitination is an important process in selective autoph-
agy for all cases [39]. Cargo-bound receptors recruit the
microtubule-associated protein 1 LC3 (MAP1LC3) by LIR
remains a well-established model, linking cargo with pre-
formed, autophagy-generated membrane [40] (Figure 2). In
this model, receptors are either a component of cargo or
attracted to the cargo by ubiquitination. Additionally, scaf-
fold proteins are essential for the recruitment of additional
autophagy-related  proteins [41]. In  mitochondria,
ubiquitin-bound adaptor proteins are responsible for the
transport of depolarized mitochondria to the perinuclear
region via the microtubule after OMM remodeling induced
by the degradation of ubiquitinated proteins [41]. The inter-
action of adaptor proteins and LC3 facilitates the sequestra-
tion of damaged mitochondria into autophagosomes [42].
Subsequently, the fusion of autophagosomes with lysosomes
promotes the degradation of damaged mitochondria.

Cargo-binding receptors (LC3 adaptors) can be recog-
nized by LC3 and recruited to polyubiquitinated substrates
on the mitochondria through their ubiquitin-binding
domain, including sequestosome-1 (p62), nuclear domain
10 protein 52, optineurin, Trans-activating transcriptional
regulatory protein of HTLV-1-binding protein 1, and neigh-
bor of breast cancer 1 gene 1 [43].

4. Ubiquitin-Independent Mitophagy

A previous study indicated that autophagy and mitophagy
are activated in PINK1-deficient cells [44]. Damaged mito-
chondria can also be eliminated independently of
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FIGURE 2: Major mitophagy pathways. PINK1/Parkin-mediated mitophagy. Upon mitochondrial depolarization under cell stress, PINK1
can no longer be imported into the mitochondria. The autophosphorylated PINK1 accumulates on OMM and recruits Parkin to the
mitochondria. The E3 ligase Parkin polyubiquitylates OMM proteins VDACI1, MEN1, MFN2, and Mirol, which are recognized by LC3
adaptors on phagophore. FUNDCI-mediated mitophagy: under hypoxic conditions, PGAMS5 dephosphorylates FUNDCI, restores
FUNDCI ability to interact with LC3 through LIR, and activates mitophagy. BNIP3/NIX-mediated mitophagy: BNIP3 and BNIP3L/NIX
act synergistically and share an overlapping biological function in activating mitophagy when mitochondria have stable membrane
potential. CHDH accumulates on the OMM and interacts with p62 and binds with LC3. AMBRAI, Bcl2L13, and cardiophospholipids

directly recognize LC3 through LIR.

ubiquitination by the LC3 adaptor. These adaptors perceive
damaged mitochondria directly and subsequently alter their
subcellular localization or their interacting proteins, thereby
translocating damaged mitochondria to autophagosomes.
The best example implicated in mitochondrial removal is
the BCL2/adenovirus E1B 19 kDa-interacting protein 3
(BNIP3) and BCL2/adenovirus E1B 19 kDa-interacting pro-
tein 3-like (NIX/BNIP3L) pathways [45]. BNIP3 and NIX
are reported to induce mitophagy in response to hypoxia
and induce mitochondrial depolarization and fusion with
cell membranes [45]. The N-terminals of BNIP3 and NIX
in the cytoplasm induce mitophagy through the interaction
with LC3-related molecules. The direct binding of BNIP3
stabilizes itself and promotes the recruitment of Parkin [46].

5. Additional Parkin-Independent Mitophagy

Many other Parkin-independent mechanisms, including
receptor-mediated mechanisms, exist. For example,
FUNDCI, an OMM-localized protein, can initiate mito-
phagy by recruiting the MAP1LC3B/LC3B through its LIR
motif in mammalian cells [47]. The FUNDCI activity is
modulated by phosphorylation via several different kinases
[48]. The dephosphorylation mediated by PGAMS5 is
required to activate and interact with LC3, thus leading to
mitophagy [49]. Choline dehydrogenase (CHDH) accumu-
lates in the OMM in response to damaged mitochondrial
potential, which is normally localized in IMM and OMM

[50]. CHDH associates with p62 and forms the CHDH-
p62-LC3 complex that mediates mitophagy. Notably, the
monophosphate-activated protein kinase (AMPK), a nutri-
ent deprivation sensor, can also induce Parkin-independent
mitophagy through the TBK1 phosphorylation and activa-
tion [51].

6. Novel Regulatory Pathways

Recent publications also mentioned the physiologically
related LC3-independent mitophagy. The Rab9-mediated
autophagosome drives mitophagy by forming Rab9, Unc-
51-like kinase 1 (ULK1), and DRPI protein complex [52].
Furthermore, accelerating novel pathways involved in mito-
phagy continue to be identified. For instance, SMAD-
specific E3 may modulate autophagy [53]. The autophagy
protein coiled-coil myosin like BCL2-interacting protein
(BECN1)/Beclinl exerts a critical role in autophagosome
formation and maturation and interacts with Parkin but is
independent of its translocation to mitochondria [54]. At
present, accumulating studies have associated mitophagy
with ER stress via the specialized ER-mitochondrial contact
regions (MAMs) that are responsible for Ca** fluxes and
apoptosis modulation [55, 56]. The critical function of
MAMs in mitophagy is well established because they are
indispensable for the initiation autophagy, and many
autophagy-related proteins are located in MAMs [56].
PINK1 and Beclinl are identified to relocalize in MAMs to
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facilitate the contact of mitochondria with ER and the for-
mation of the autophagosome in response to mitophagy
stimulation [54].

7. Mitophagy and Cardiac Disease

Considering the critical role of mitophagy in the removal of
damaged mitochondria, accumulating evidence believes that
alterations in mitophagy can contribute to the progression of
cardiac disease [57]. Notably, PINKI is highly expressed
especially in the heart. PINKI is downregulated in the heart
tissues of patients with late-stage HF compared with those of
normal controls [58]. Moreover, the ablation of PINKI in
mice induces cardiac hypertrophy at two months of age,
and PINK1 knockout aggravates the infarct size after ische-
mia/reperfusion (I/R) injury (Table 1).

7.1. Ischemic Heart Disease. Myocardial damage in ischemic
heart disease is the outcome of inadequate myocardial
requirement and coronary blood flow, acutely threatening
human health. Ischemia leads to cell damage and death in
the myocardium. Therapies targeting coronary circulation
can potentially restore cardiac injury. However, reperfusion
causes irreversible cardiac damage, which is known as I/R
injury [59]. The critical role of mitochondria in cardiac func-
tion makes mitochondria the main target of I/R injury. I/R
induces damage to mitochondrial cristae, abnormality in
mitochondrial membrane potential, and mitochondrial per-
meability transition pore (mPTP) and subsequently results
in aggravated imbalance of mitophagy [60]. Mitophagy pro-
tects cardiac cells from I/R injury [61]. I/R injury inhibits
mitophagy and induces apoptosis in myocardial cells.
Despite these, mitophagy may cause adverse effects on I/R
injury. Mitophagy inhibition can possibly alleviate the I/R
injury of cardiomyocytes, decrease apoptosis, and improve
cardiac function [62] (Table 1). PINK1 and Parkin are
enhanced, and the Parkin translocation and activation are
increased in I/R injury. Parkin ablation in young mice,
which are sensitive to I/R injury, exhibits normal heart func-
tion [63]. Besides, during I/R injury, BNIP3 is upregulated,
and FUNDCI is downregulated [63]. The effect of I/R injury
on mitophagy depends on the phosphorylation state of
BNIP3. The increased phosphorylation at S17 in I/R injury
can strengthen the binding of BNIP3 and LC3, thus promot-
ing mitophagy [64]. I/R injury induces phosphorylation at
Y18 and S13, which reduces LC3 binding and mitophagy
[62]. Other mitophagy regulators also influence the process
of I/R injury. For instance, Pgam5, a serine/threonine pro-
tein phosphatase, is also involved in I/R injury [65]. The
depletion of Pgam5 in mice shows augmented infarct vol-
ume and is well correlated with mitophagy inhibition.

7.2. Diabetic Cardiomyopathy (DCM). As a major phenotype
of tissue damage caused by diabetes, DCM acts as the main
source of morbidity and mortality in patients with diabetes
[66]. Considering that mitochondria are the major site for
ROS production and oxidative stress injury, the dysfunction
in the mitochondria is an outstanding inducer of DCM [67].
In DCM, a huge amount of ROS is produced, further aggra-

vating the injury in mitochondria and the invalid cycle of
cardiomyocyte death [67]. Animal studies demonstrated
effective antioxidative therapy in DCM. However, the con-
tinued production of ROS from damaged mitochondria
potentially prevents the use of antioxidative therapy clini-
cally [68]. The potential therapeutic target of DCM is the
inhibition of the sustained production of ROS by mito-
phagy. The exact role and relevant regulatory mechanism
of mitophagy in DCM remain elusive. In DCM, the mito-
phagy level is apparently different. The mitophagy status is
suppressed in type 1 diabetes but enhanced in type 2 dia-
betes models [69]. The protection or destruction effect of
mitophagy in DCM requires additional evidence. Mito-
chondrial ROS production is elevated, and the BNIP3 level
in prediabetic rats is inhibited compared with that in con-
trol rats [70] (Table 1). PINKI and Parkin levels are sup-
pressed in type 1 and type 2 diabetes models. Mice
subjected to Parkin ablation display enhanced mitophagy,
serious cardiac hypertrophy, and diastolic dysfunctions
under high-fat diet stress [71]. A recent study revealed
that the inhibition of mitophagy results in the accumula-
tion of heart lipid on high-fat diet [72]. Increased mito-
phagy by trans-activator of transcription-Beclinl
contributes to the suppression of cardiomyopathy develop-
ment [73]. Melatonin therapy relieves DCM-induced mito-
chondrial function by boosting PINK1/Parkin-mediated
mitophagy [74].

7.3. Cardiac Hypertrophy. As an adaptive compensatory
mechanism, cardiac hypertrophy is recognized as “physio-
logical” in normal cardiac functions and “pathological” in
cardiac dysfunctions [75]. Growing evidence has shown dif-
ferent signaling pathways in physiological and pathological
hypertrophy. Pathological hypertrophy is accompanied by
reduced OXPHOS [76] and can be induced by multiple
stimuli, including hemodynamic pressure, ischemia, and
myocardial injury. Pathological hypertrophy can be benefi-
cial at first because of the compensation in contractibility
and myocardial function and induces irreversible structure
remodeling, amplified secretion of inflammatory cytokine,
cell dysfunction, and cell death. These phenomena ulti-
mately promote the progression of heart disease and
HF [77].

Cardiac remodeling is commonly accompanied by aug-
mented autophagy, whose function in disease pathology
remains unclear [78]. Some research believed in the detri-
mental effect of mitophagy activation in myocardium
remodeling and fibrosis. Conversely, the impaired mito-
phagy induced by the loss of the key element of mitophagy
can contribute to pathological cardiac remodeling. Parkin-
depleted mice exhibit elevated cardiac remodeling, and
PINK1-ablated mice show abnormal mitochondrial func-
tion, increased oxidative stress, and pathological hypertro-
phy [79] (Table 1). The depletion of BNIP3 also exhibits
cardiac hypertrophy at old age [80]. Therefore, the activation
and inhibition of mitophagy bring about an adverse out-
come in the progression of cardiac hypertrophy and remod-
eling. Efforts are needed for the comprehensive
understanding of mitophagy in this pathology.
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TaBLE 1: Summary of mitophagy pathways in cardiac diseases.
Pathology Mechanism of action

The ablation of PINK1 in mice induced cardiac hypertrophy at 2 months of age, and PINK1 knockout aggravated

Ischemic heart
disease

infarct size after I/R injury
During I/R injury, BNIP3 is upregulated and FUNDCI is downregulated

Fundcl-knockout (KO) platelets present impaired mitochondria, which cause more I/R heart injury

The depletion of Pgam5 in mice showed augmented infarct volume, well correlated with mitophagy inhibition

Mitochondrial ROS production was elevated, and BNIP3 level was inhibited in prediabetic rats

Diabetic
cardiomyopathy

PINKI1 and Parkin levels were suppressed in both type 1 and type 2 diabetes models. Parkin ablation mice displayed
enhanced mitophagy and serious cardiac hypertrophy under high-fat diet stress

TAT-Beclinl contributed to the suppression of cardiomyopathy development

Parkin-depleted mice exhibited elevated cardiac remodeling, and PINK1-ablated mice showed abnormal

Cardiac hypertrophy

mitochondrial function, increased oxidative stress, and pathological hypertrophy

The depletion of BNIP3 also exhibited cardiac hypertrophy at old age

Beclinl and LC3-II were reduced in the specimen of HF patients

MEN?2 is reported to modulate HF-associated mitophagy via changing the mitochondrial membrane potential

PINK1 downregulation is commonly observed in HF patients. PINK1-depleted mice were more liable to heart stress

Heart failure

and heart failure induced by overload

NIX depletion showed decreased myocardial fibrosis and more normal systolic function in stress-induced HF mice

models

BNIP3 is activated under hypoxia condition and elevated in an in vitro model of chronic HF

Arrhythmia

Decrease in mitophagy leads to proarrhythmic spontaneous Ca’* release via oxidized RyR2s by mito-ROS

7.4. Heart Failure. As the late stage of various kinds of heart
disease, HF is featured by high morbidity and mortality.
Present therapies of HF may relieve symptoms, but the prog-
nosis remains unsatisfied. For the effective screening of the
HF strategy, an improved understanding of oxidative stress
and relevant chronic inflammation is necessary. HF is char-
acterized by mitochondrial dysfunction. Along with aging or
disease, mitophagy is receding, leading to inadequate
removal of damaged mitochondria and elevated ROS and
peroxide levels [81]. The accumulated oxidative damage of
mitochondrial proteins, lipids, and DNA ultimately results
in HF. Studies revealed reduced autophagy-specific genes
Beclinl and LC3-II in the specimen of patients with HF
(Table 1). Thus, mitophagy is assumed to be also correlated
with the progression of HF. MFN2 is reported to modulate
HF-associated mitophagy by changing the mitochondrial
membrane potential [82]. Follow-up studies noticed that
inadequate mitophagy further exacerbates heart injury. The
PINK1 downregulation is commonly observed in patients
with HF, suggesting reduced mitophagy level in HF [3].
However, the cause and effect of mitophagy and HF remain
to be determined. PINK1-depleted mice are liable to heart
stress and HF induced by overload. The Parkin-associated
mitophagy weakens with age. The damaged mitochondrial
number increases with age. When the balance of Parkin-
mediated mitophagy and damaged mitochondria is broken,
the mitophagy in cardiomyocytes is unable to maintain the
normal function of mitochondria [83]. The Parkin depletion
in mice induces accumulated abnormal mitochondria, which
ultimately increases the risk of HF. The NIX depletion shows
decreased myocardial fibrosis and normal systolic function
in stress-induced HF mouse models [84]. No study has men-
tioned increased mitophagy with the occurrence of HF.

However, in practice, the increased mitophagy results in
the removal of superabundant mitochondria, leading to
inadequate supply of energy for cardiomyocytes with resid-
ual mitochondria that is detrimental for patients with HF.
As a mediator of mitophagy, BNIP3 is activated under hyp-
oxic conditions and elevated in an in vitro model of chronic
HF [85]. DRP1 involves mitochondrial fission, and the Par-
kin recruitment composes the protective response of mito-
phagy [86]. Once DRP1 is disrupted, mitochondrial
elongation is accompanied by mitophagy inhibition, which
further leads to cardiac dysfunction and elevated sensitivity
to I/R. Similar phenotypes are observed in the case of the
tamoxifen-inducible cardiac-specific DRP1-KO mouse
model [76].

The vital role of mitophagy in HF progression is also
indicated by patients with HF and AMPK a2 genetically
modified mouse models [87]. The Parkin phosphorylation
at serine 495 is essential for the translocation of Parkin to
the mitochondria to trigger the occurrence of mitophagy in
HF conditions [88]. In addition, the protein level of PINK1
is found to be markedly inhibited in end-stage HF, suggest-
ing inadequate mitophagy [89]. As demonstrated by Hos-
hino et al, mitophagy impairment promotes HF
progression in mice through the recruitment of p53 to Par-
kin and p53 sequestration [90]. This process leads to damage
to the recycling of dysfunctional mitochondria and progres-
sion of cardiac dysfunction. Recent evidence also focuses on
the role of ULK1-dependent mitophagy against HF induced
by pressure overload [57].

Most previous studies believed mitophagy as a cardio-
protective process because of the effective removal of dys-
functional mitochondria. However, paradoxically, others
believe that the mitophagy pathway is detrimental in the
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process of HF because mitophagy activation induces the ini-
tiation of fibrosis in HF instead of compensation in cardiac
hypertrophy.

7.5. Arrhythmia. As a prominent component of heart dis-
ease, arrhythmia may occur alone or in association with
other cardiac complications. Coordinate electrical transmis-
sion contributes to normal heart function. Once the cardiac
electrical transmission fails, cardiac arrhythmia occurs. To
date, the role of mitophagy in arrhythmia is unclear
although widespread evidence points out that the mitochon-
drion plays a critical role in arrhythmia due to its ability to
produce energy and ROS [91]. The dysfunction of mito-
chondria affects ATP production and electrical transmission,
leading to altered sarcolemmal K" fluxes via ATP-sensitive
potassium channels [92]. The reduced production of ROS
induces heterogeneity in cardiac action potential. Mitochon-
drial dysfunction reduces the mitochondrial membrane
potential, further lessens ATP, and elevates ROS [93]. Subse-
quently, mitochondrial dysfunction is worsened concomi-
tant with reduced mitochondrial membrane potential and
ATP production. This futile cycle contributes to electrophys-
iological alterations and ultimately causes arrhythmia.
Therefore, appropriate mitophagy is essential for the
homeostasis of mitochondria and elimination of poisonous
substances. The alteration of ATP and ROS levels in
arrhythmia induced by mitochondrial damage plays an
important part in mitophagy [94]. Thus, mitophagy may
inhibit or slow down the progression of arrhythmia by
removing damaged mitochondria and modulating ATP
and ROS levels (Table 1).

8. Therapeutic Application of Mitophagy in
Heart Diseases

Given the critical role of mitophagy in the pathogenesis of
heart disease, mitophagy acts as a promising therapeutic tar-
get (Figure 3). The promotion or inhibition of mitophagy
can be used to treat or delay the progression of heart disease,
maintain stable accumulation of normal mitochondria, and
relieve cell damage. Several inhibitors, such as EA and met-
formin, target AMPK or JNK pathways, thereby mediating
mitophagy. Spermidine targets HAT and affects the tran-
scription of mitophagy-related proteins by altering histone
acetylation. miR-137 can target the mitophagy-related pro-
tein FUNDCI in myocardial cells and serve as a target for
the treatment of heart diseases (Figure 3).

8.1. Clinical Drugs and Chemical Reagents. Mitophagy can
be modulated by certain drugs and agents. For instance, mel-
atonin inhibits the opening of mPTP and PINK1/Parkin
activation in the endothelial cells of I/R models [95]. Thus,
melatonin can protect cell death induced by mitophagy
and cardiac microvessels triggered by I/R injury through
the inhibition of the mitochondrial fission VDACI-HK2-
mPTP mitophagy axis [95]. The mechanism of melatonin
in the mediation of mitophagy restoration in DCM is differ-
ent and probably due to Parkin translocation and Mstl1 inhi-
bition [96]. Consistently, the chronic metformin

administration (antidiabetic drugs and a potent autophagy
inducer) prevents cardiomyopathy by activating AMPK
and autophagy activity in diabetic OVE26 mice [97]. Thus,
the activation of AMPK may represent a novel approach
for DCM therapy (Figure 3). Moreover, the modulation of
heme oxygenase-1 and mitochondrial aldehyde dehydroge-
nase (ALDH2) serves as activators of AMPK, recovers nor-
mal autophagic activity, and protects from cardiomyopathy
[98]. Simvastatin promotes the translocation of Parkin and
p62/SQSTM1 and activates mitophagy, thus inhibiting the
infarct size in cellular and mouse myocardial infarction
models [99]. Coenzyme Q exerts its anti-ischemic function
by disturbing mitophagy [100]. Liraglutide facilitates myo-
cardial restoration to inhibit myocardial infarction by the
upregulation of SIRT1 and Parkin, activation of mitophagy,
reduction in cellular oxidative stress, optimum redox state,
and mitochondrial homeostasis [101].

Zinc modulates enhanced mitophagy to suppress the
production of superoxide mitochondria, decrease mitochon-
drial membrane potential, and alleviate I/R injury by upreg-
ulating PINK1 and Beclinl [62]. In aged myocardium and
animals stimulated with isoproterenol, the restoration of
mitophagy with antioxidant TEMPOL pretreatment leads
to cardiac recovery through the elevation of PINKI and Par-
kin [62]. The sevoflurane downregulation of Parkin makes it
a potential therapy for the inhibition of mitophagy, rever-
sion of mitochondrial damage, and further protection of
the heart [102]. Curcumin suppresses mitophagy through
the inactivation of acetyltransferase p300 and inhibition of
histone acetylation and GATA4 transcription levels [103].
Erythorbic acid in combination with anthracycline therapy
results in reduced cardiomyocyte mitochondrial damage
and necrotic cell death and alleviated oxidative stress and
cardiac function through the inhibition of BNIP3-induced
mitophagy [62]. Another natural compound, spermidine
has shown cardioprotection in mice through mitophagy
induction in cardiomyocytes and is associated with the
inhibited acetyltransferase EP300 and the ATM-driven acti-
vation of the PINK1/Parkin-regulated mitophagy pathway
[104] (Figure 3). Additionally, ER stress inducers, like tuni-
camycin and thapsigargin, may be involved in the protection
of ischemic stroke injury through the mediation of mito-
phagy stimulation [105].

Instead of exerting a beneficial effect on heart disease,
mitophagy activation may be detrimental to disease progres-
sion. Peroxynitrite treatment aggravates cerebral I/R injury
in stroke through the induction of PINK1/Parkin-involved
mitophagy and recruitment of Drp1 to injured mitochondria
[106]. Therefore, the inhibition of peroxynitrite-mediated
mitophagy by naringin, a natural antioxidant, attenuates
I/R injury by restraining the translocation of Parkin to mito-
chondria [107].

In addition, several signaling pathways are responsible
for the regulation of molecules involved in mitophagy.
Rab5-positive early endosomes by the ESCRT- and Parkin-
dependent mechanism are responsible for the sequestration
of damaged mitochondria in cardiomyocytes [108]. The
ablation of Rab5 results in the increased sensitivity of
embryonic fibroblasts and cardiomyocytes to cell death.
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The p53-TIGAR axis is involved in the inhibition of mito-
phagy by the downregulation of BNIP3, further promoting
the accumulation of damaged mitochondria and attenuated
cardioprotective effect [109]. Also, BNIP3 can be modulated
by the JNK signaling pathway in HF models. As a regulator
of the FOXO3a transcription factor, JNK regulates mito-
phagy through the modulation of BNIP3 levels [110].

8.2. Antagonists/Agonists and Gene Knockin/Knockout.
Mitophagy can also be modulated by the antagonist of cer-
tain receptors, inhibitors of upstream molecules, and
mitophagy-related genes. STAT1 acts as a binding molecule
of LC3b at the mitochondria. Thus, STAT1 reduces mito-
phagy and accelerates cell death during myocardial I/R stim-
ulation [111]. The agonist of G protein-coupled estrogen
receptor 1 (GPER) promotes mitophagy inhibition, the
integrity of mitochondria structure and function, and heart
protection against I/R injury through the activation of
GPER, decreased translocation of Parkin to the mitochon-
dria, reduced PINKI protein level, and inhibition of the
PINK1/Parkin pathway [27]. The activation of ALDH2
inhibits phosphatase and PINK1/Parkin expression and 4-
hydroxynonenal, ROS, and mitochondrial superoxide accu-
mulation and modulates autophagy to defend the heart from
I/R injury in I/R rats and hypoxia/reoxygenation H9C2 cells

[112]. The Sirt3 overexpression is essential in the occurrence
and progression of DCM via the deacetylation activity on
FOXO3a and activation of Parkin expression and Parkin-
related mitophagy [113]. The Mstl ablation dramatically
facilitates the elevation of Parkin, mitochondrial transloca-
tion, and the protection of the myocardium in DCM, which
is associated with Sirt3 downregulation [114]. BAG3 deple-
tion results in reduced PINK1/Parkin-dependent mitophagy
and aberrant removal of defective mitochondria, contribut-
ing to the increased accumulation of toxic substances and
cell death under HF by the upstream modulation of Parkin
[7]. Given that the ablation of CsA and PINKI1 notably
reduces PINKI and Parkin protein levels, CsA and PINKI
can be used to inhibit mitophagy and cell senescence in car-
diomyocytes. The Akt2 knockout protects against cardiac
aging through the upregulation of Foxol-mediated BNIP3,
PINK1, and Parkin and maintains mitochondrial integrity
[62]. The depletion of NIX leads to damaged mitophagy
and exacerbated ischemic stroke, whereas the NIX overex-
pression reverses these phenotypes [115]. The DUSP1 over-
expression protects the myocardial tissue injury after I/R by
inhibiting BNIP3 activation, deactivating the JNK pathway,
and repressing mitophagy [116]. The FUNDCI ablation in
I/R mice induces inhibited mitophagy and aggravated car-
diac injury [117].
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8.3. MicroRNAs (miRNAs). As small, single-stranded non-
coding RNAs, miRNAs are principally involved in the trans-
lation inhibition and degradation of targeted mRNAs. A
multitude of miRNAs are aberrantly expressed in cardiac
diseases. For example, miR-410 is evidently elevated in the
I/R injury model in human adult cardiomyocytes, which is
accompanied by weakening mitochondrial function and
mitophagy [118]. The overexpression of miR-410 exhibits
reduced cell viability, ATP generation, mitochondrial mem-
brane potential, and mitophagy. By contrast, the downregu-
lation of miR-410 shows opposite features. HSPB1 is
identified to be the direct target of miR-410 and modulates
autophagy [114]. As a modulator of NIX and FUNDCI,
miR-137 is upregulated upon hypoxia and destroys mito-
phagy [119] (Figure 3). miR-133a is low in diabetic mouse
models and is accompanied by elevated NIX. The overex-
pression of miR-133a suppresses the translation of NIX
and stabilizes the mitochondrial membrane potential [62].

8.4. Long Noncoding RNAs (IncRNAs). Long noncoding
RNAs (IncRNAs) are a type of RNA with transcripts exceed-
ing 200 nucleotides that are not translated into proteins.
Their roles in mitophagy have been studied. For example,
IncRNA H19 governed mitophagy and restored mitochon-
drial respiration in the heart through the Pink1/Parkin path-
way during obesity [120]. Also, the IncRNA Malatl
regulated microvascular function after myocardial infarction
in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial
dynamics. Depletion of Malat1 further increased mitophagy,
as evidenced by more enhanced expression of Parkin and
PINKI1 [121].

8.5. Circular RNA (circRNA). Changes in the expression of
circRNAs have been reported in a number of diseases,
including cancer, heart disease, and neurological disorders.
The specific functions of cirRNA are also identified in the
mitophagy process. The circRNA ZNF292 alleviated oxygen
glucose deprivation-induced injury in rat cardiomyocytes via
targeting BNIP3, and BNIP3 further promoted the produc-
tion of ROS by activating mitophagy in the ischemic myo-
cardium [122]. MFN2 is the host gene of hsa_circRNA_
100053. MFN2 could regulate heart failure-related mito-
phagy by altering the mitochondrial membrane potential,
suggesting the role of circRNA_100053 in mitophagy
[123]. In addition, the circRNA ACR attenuated myocardial
ischemia/reperfusion injury by suppressing autophagy via
modulation of the Pinkl/FAM65B pathway [124].

8.6. Environmental Stimuli. Mitophagy can also be modu-
lated by some specific environmental stimuli. FUNDCI1-
mediated mitophagy can be induced by hypoxia, which can
alleviate I/R preconditioned cardiac injury [125]. BNIP3-
related mitophagy is remarkably upregulated in response to
acute exercise, which makes mitochondria adapt to this
stress and alleviates myocardial injury [126]. The upregula-
tion of Parkin-mediated mitophagy induced by exercise pre-
conditioning inhibits hypoxic-ischemic injury induced by
excessive exercise [127].

9. Conclusion and Outlook

The abnormal function and damage of mitochondria remain
the main pathogenesis of heart disease. Under the action of
external stimuli, the mitochondria in cardiomyocytes are
depolarized and damaged. The damaged mitochondria are
specifically encapsulated in autophagosomes and fused with
lysosomes to complete degradation, thereby playing an
important role in maintaining the normal function and mor-
phology of cells. At present, mitochondrial autophagy is a
hot topic among the molecular mechanisms of organelle-
specific autophagy. The induction of mitophagy can potently
alleviate damaged mitochondria and maintain adequate nor-
mal mitochondria for cell homeostasis. The mechanisms for
mitophagy are complicated, interlinked, and tightly regu-
lated by multiple factors. These factors function during
essential biological processes, including cell growth, develop-
ment, aging, and cell death. The aberrant regulation of mito-
phagy may affect normal cellular function and influence
heart disease, thereby making mitophagy a promising thera-
peutic target for heart disease.

However, whether the induction or inhibition of mito-
phagy is beneficial for the pathogenesis of heart disease
remains to be seen. Moreover, whether mitophagy is con-
tributed by the distinct features of different molecules
remains unclear. Future investigations are essential for the
validation of mutual effects of various molecules involved
in mitophagy induction and the function of mitophagy in
heart disease, ultimately making progress in the develop-
ment of therapeutics in heart disease. Although no magic
bullet is currently available to improve mitochondrial quality
control, further insight into the molecular mechanisms of
mitochondrial autophagy can help in understanding how
to counteract the inhibition of mitochondrial autophagy
and ultimately prevent these mutations from -causing
disease.
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