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Redox homeostasis is the key to cell survival, and its imbalance can promote the occurrence and progression of tumors. However, it
remains unclear whether these redox-related genes (RRGs) have potential roles in the tumor microenvironment, immunotherapy,
and drug sensitivity. Here, we performed a systematic and comprehensive analysis of 489 prostate cancer (PC) samples from The
Cancer Genome Atlas database and 214 PC samples from 8 datasets in the Gene Expression Omnibus database to determine redox
modification patterns and the redox scoring system for PC.We identified twomodification patterns (Redox_A and Redox_B) in PC
using unsupervised consensus clustering based on 1410 differential expression RRGs. We then compared the prognostic value,
tumor microenvironment characteristics, immune cell infiltration, and molecular characteristics of the two patterns. The
Redox_A pattern was significantly enriched in the carcinogenic activation signaling pathways and had a poor prognosis, while
the Redox_B pattern was mainly enriched in a variety of metabolic and redox pathways and had a good prognosis. Next, redox-
related characteristic genes were extracted from these two patterns, and a scoring system (Redox_score) was constructed to
evaluate PC patients. Further analysis indicated that lower Redox_score patients had a better prognosis, while higher Redox_
score patients had a higher tumor mutation burden, driver gene mutation rate, and immune checkpoint inhibitor gene
expression. We also found that higher Redox_score patients were more responsive to anti-PD-1 immunotherapy. Moreover,
Redox_score was determined to be significantly correlated with anticancer drug sensitivity and resistance. Our study provides a
comprehensive analysis of redox modifications in PC and reveals new patterns of PC based on RRGs, which will provide
insights into the complex mechanisms of PC and develop more effective individualized therapeutic strategies.

1. Introduction

Prostate cancer (PC) is the most common noncutaneous
malignancy in men worldwide and the second leading cause
of tumor-related death in men [1]. It was estimated that
there were 191,930 new diagnoses and 33,330 deaths from
PC in the United States in 2020 [1]. Distant metastasis
occurs in approximately 20% of all PC patients and is the

leading cause of PC-related death [2]. And the 5-year sur-
vival rate for these patients dropped significantly, to nearly
30% [3, 4]. The most common site of distant metastasis
from PC is the bone, followed by the lung, lymph nodes,
and liver, which are the most deadly sites of metastasis
[5]. Thus, a better understanding of the occurrence and pro-
gression of PC may contribute to effective early diagnosis
and targeted therapy.
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Redox homeostasis is the balance of the equivalent of
reduction and oxidation and has a great importance in many
physiological and pathological processes. The imbalance of
redox homeostasis is mainly caused by changes in reactive
oxygen species (ROS)/reactive nitrogen (RNS) or antioxi-
dant protein levels [6]. ROS are present in the cell as free
radicals (OH−), neutral molecules (H2O2), or ions (O2

−),
while cellular RNS are present in the form of peroxynitrite
(ONOO−), nitric oxide (NO), and nitrogen dioxide (NO2)
[7, 8]. Studies have shown that RNS and ROS are crosstalk
and have obvious correlation [9]. Under physiological con-
ditions, various biological processes such as cell prolifera-
tion, cell differentiation, and adaptive immunity, as well as
a variety of proteins including kinases, receptors, transcrip-
tion factors, and ion channels, are dependent on ROS regu-
lation and modification [10, 11]. However, sustained
increases in intracellular ROS levels can cause a variety of path-
ological processes, such as cardiovascular disease, neurodegen-
eration, immune system dysfunction, and cancer [12].
Therefore, it is necessary to study the redox state in tumor cells.

Currently, there are not enough indicators to diagnose
PC at an early stage and to distinguish between those who
need a prostatectomy and those who need tumor treatment.
Even prostate-specific antigen (PSA) levels, the most com-
mon marker for PC development and progression, can
remain within normal ranges or have false negative results
[13]. To this end, several researchers have sought to identify
specific biomarkers in the redox system to determine the
severity of prostate cancer. For example, the Süle et al. [13]
study found that patients with early stage PC had signifi-
cantly lower levels of cytokines and growth factors than con-
trols. Blázovics et al. [14] found that the results of binding
formaldehyde, Zn-protoporphyrin, and free protoporphyrin
in erythrocytes were significantly different in patients with
metastatic, histologically negative, and histologically positive
PC treated with taxane compared with healthy controls.
These findings are closely related to the redox state [15].
However, the large number of redox regulatory factors
makes it difficult for traditional research methods to reflect
the macrolandscape of the redox state of individual tumors.
Moreover, the occurrence and progression of tumors are
highly coordinated interactions of multiple regulatory fac-
tors, so a more comprehensive and effective analysis of the
characteristics of redox reactions in PC is required. Herein,
we comprehensively evaluated genomic changes and redox
patterns by integrating transcriptome data of 489 PC sam-
ples from The Cancer Genome Atlas (TCGA) database and
214 PC samples from 8 datasets in the Gene Expression
Omnibus (GEO) database. Two PC subclasses, Redox_A
and Redox_B, were identified based on redox-related genes
(RRGs) and by the unsupervised clustering method. Further
analysis showed that the two patterns were enriched in
different biological pathways and showed different charac-
teristics of the immune microenvironment. Next, we
extracted the redox-associated characteristic genes from
these two modification patterns and constructed a scoring
scheme (Redox_score) to quantify the redox patterns of
individual tumors and evaluate its prognostic value, clinical
characteristics, drug sensitivity, and immunotherapy.

2. Materials and Methods

2.1. Collection and Pretreatment of PC Datasets. Tran-
scriptome data and corresponding clinical characteristics of
PC patients were collected and collated from TCGA and
GEO databases, respectively. Specifically, in the TCGA data-
base, we mainly collected RNA sequencing data (FPKM
format and read counts), somatic mutation data (MAF
format), miRNA sequencing data, and clinical prognosis
information of PC patients (https://portal.gdc.cancer.gov/).
The FPKM format was then converted into transcripts per
kilobase million (TPM) format for subsequent analysis.
Next, we obtained 8 datasets from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) that shared the same
microarray sequencing platform (Affymetrix GPL570-HG-
U133 plus 2.0), including GSE69223 (n = 30), GSE55945
(n = 19), GSE46602 (n = 50), GSE45016 (n = 11), GSE26910
(n = 12), GSE17951 (n = 154), GSE17906 (n = 25), and
GSE3325 (n = 19). Subsequently, background adjustment
and quantile normalization were performed on the original
“CEL” files of the above 8 datasets through the “RMA” algo-
rithm of the “affy” R package. The batch effects of merging 8
datasets were then removed by using the “ComBat”
approach of the “SVA” R package. Moreover, we directly
downloaded the standardized sequencing data and corre-
sponding clinical prognosis information of the GSE70769
dataset from the GEO database and were used for subse-
quent score validation.

2.2. Differential Expression of RRGs and Identification of PC
Subclasses. In order to obtain all RRGs, we used “redox” as
the key word to screen human genes related to redox from
the OMIM database (https://www.oncomine.org/resource/),
gene function module of the NCBI database (https://www
.ncbi.nlm.nih.gov/gene/), GeneCards database (https://www
.genecards.org/), and GSEA-MSigDB (https://www.gsea-
msigdb.org/gsea/msigdb), and finally, we got a total of
4087 RRGs. Subsequently, the differential expression RRGs
were obtained through the “DESeq2” R package in TCGA-
PRAD and GEO-PRAD cohorts based on the standard P <
0:05. 2616 differentially expressed RRGs were obtained from
TCGA-PRAD and 1850 differentially expressed RRGs were
obtained from GEO-PRAD. Finally, the same differentially
expressed RRGs (n = 1410) in TCGA-PRAD and GEO-
PRAD cohorts were selected for subsequent analysis. Next,
we used the k-means algorithm in the “Consensus-
Clusterplus” R package to perform unsupervised consensus
clustering for these RRGs and repeated it for 1000 times to
ensure classification stability [16].

2.3. Gene Set Variation Analysis (GSVA). We first down-
loaded the “c2.cp.kegg.v7.2.symbols” gene set and
“h.all.v7.4.symbols” gene set from MSigDB database. We
performed GSVA analysis and differential analysis using
the “GSVA” and “Limma” R packages, respectively, to
explore the biological processes that significantly differed
between redox patterns. In addition, we also utilized the
“clusterProfiler” R package for functional annotation of
these RRGs.
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2.4. Evaluation of Immune Cell Infiltration between PC
Patterns. The cell-type identification by estimating relative
subsets of RNA transcripts (CIBERSORT) algorithm devel-
oped by Newman et al. [17] and its attached LM22 gene
set were used to assess differences in immune cell infiltra-
tion between different PC patterns. Here, in order to make
the results more reliable, 1000 permutation tests were
performed, and the results were screened according to
the P < 0:05 criterion.

2.5. Construction of the Redox_Score to Evaluate Individual
PC. We developed a redox scoring scheme based on the
genes most associated with prognosis to assess individual
PC patients. Specifically, we performed differential expres-
sion analysis for PC patterns and screened the results based
on ∣log2 fold change ðFCÞ ∣ >1 and adjusted P < 0:05. Next,
univariate Cox regression analysis, least absolute shrinkage
and selection operator (LASSO) regression analysis, and
multivariate Cox regression analysis were performed to
identify RRGs most associated with prognosis. Then, we
used the regression coefficients obtained from the multivar-
iate Cox analysis and calculated the redox score based on the
following formula: Redox score =∑n

i=1Expiβi, where Exp
represents the expression value of the gene and β represents
the regression coefficient of the corresponding gene.

2.6. miRNA-RRG Regulatory Network and PC Mutation
Analysis. miRNA expression data in PC were obtained from
the TCGA database, and the differential expression miRNAs
were identified between the normal group and the tumor
group. We then conducted the coexpression analysis of these
miRNAs and prognostic-related RRGs. miRNAs with ∣Cor
∣ >0:3 and P < 0:001 were considered to be correlated. Next,
the “maftools” R package was used to analyze the somatic
mutation data and calculate the tumor mutation burden
(TMB). We further analyzed the difference of TMB expres-
sion in different risk groups and its correlation with
Redox_score. We also delineate the landscape of driving
gene mutations between low- and high-risk groups.

2.7. Benefit of Redox_Score in Predicting Immunotherapy
Reactivity. We first compared the expression differences of
different immune checkpoint inhibitor (ICI) genes between
low- and high-risk groups and further investigated whether
the Redox_score still had an impact on the prognosis of
patients when the expression of the ICI gene was considered.
Then, based on available data for melanoma patients receiv-
ing immunotherapy, we analyzed the similarity of gene
expression profiles between patients in different risk groups
and melanoma patient groups by SubMap to indirectly
predict the response of Redox_score-based PC patients to
immunotherapy [18]. Moreover, we obtained an open access
immunotherapy cohort of patients with metastatic mela-
noma undergoing anti-PD-1 therapy and performed a
Kaplan–Meier analysis of pretreatment patients based on
the Redox_score.

2.8. Correlation Analysis between Redox_Score and Drug
Sensitivity. We downloaded transcriptional data of tumor
cell lines, IC50 values of antitumor drugs, and drug target-

s/pathways from the Genomics of Drug Sensitivity in Cancer
(GDSC, https://www.cancerrxgene.org/) database. Then, we
did the Pearson correlation analysis between the Redox_
score and drug sensitivity and according to the P < 0:05
and ∣Rs ∣ >0:15 filtering results.

2.9. Real-Time Quantitative Polymerase Chain Reaction (RT-
QPCR) Verification. We first used a TRIzol reagent (Beyo-
time, Jiangsu, China) to extract total RNA from various
prostate cancer cells. These total RNA were then reversely
transcribed into cDNA using the Hifair®III 1st Strand cDNA
Synthesis SuperMix for qPCR (gDNA digester plus) (YEA-
SEN, Shanghai, China), which was subsequently detected
by qPCR using the Hieff® qPCR SYBR® Green Master Mix
(Low Rox) (YEASEN, Shanghai, China) an ABI Prism
7300 system (Thermo Fisher Scientific). In this experiment,
GAPDH was used as an internal reference gene, and all
primer sequences are shown in Table S1.

3. Results

3.1. Identification of Core Differentially Expressed RRGs and
Redox Patterns in PC. Figure 1(a) shows the analysis flow
chart of this study. After 4087 RRGs were obtained from
the OMIM, NCBI, GeneCards, and GSEA-MSigDB data-
bases, differential expression analysis was performed in
TCGA-PRAD and GEO-PRAD cohorts. Then, we got 1410
overlapping RRGs from both cohorts. Next, we conducted
unsupervised consensus clustering of PC samples in TCGA
(n = 489) and GEO (n = 214) based on the 1410 RRGs. By
calculating the cophenetic correlation coefficients of the
two cohorts (delta area and CDF curve), k = 2 was chosen
as the optimal cluster number (Redox_A and Redox_B,
Figures 1(b) and 1(c), Figure S1). When k = 2, the
boundary between the heat maps of the consistency matrix
remains clear, indicating that the sample classification was
robust. 305 patients in the TCGA cohort were assigned to
Redox_A, and 184 were assigned to Redox_B. In the GEO
cohort, 103 patients were assigned to Redox_A and 111
were assigned to Redox_B. In order to further verify the
subclass assignment, we also performed t-SNE dimension
reduction, and the results showed that the t-SNE
distribution was consistent with the subclass (Figure 1(d),
Figure S1D). Here, we defined the biochemical relapse
(BCR) in PC patients as an end point event and compared
outcomes between subclasses in the TCGA cohort. Kaplan–
Meier analysis revealed that Redox_B had a significant
survival advantage in BCR-free survival compared with
Redox_A (P = 0:009, Figure 1(e)). These results suggested
that these RRGs presented two subclasses with different
survival advantages in PC, which required further analysis.

3.2. Molecular and Tumor Microenvironment Characteristics
of Different Redox Patterns in PC. In order to understand the
biological process of redox patterns in PC, GSVA enrich-
ment and pathway difference analyses were performed, and
the results were filtered according to ∣log2 FC ∣ >0:15 and
adjusted P < 0:05 (Figure 2(a)). The results showed that the
Redox_A pattern was significantly enriched in carcinogenic
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activation signaling pathways, such as the JAK-STAT signal-
ing pathway, TGF-β signaling pathway, ECM receptor inter-
action, and NOD-like receptor signaling pathway, which
also partly explained why Redox_A has a shorter BCR-free
survival time. The Redox_B pattern was mainly enriched
in various energy metabolism pathways, such as arginine
and proline metabolism, glutathione metabolism, tyrosine
metabolism, fatty acid metabolism, and oxidative phosphor-
ylation. Then, we further applied GSEA enrichment analysis
to identify the enrichment pathways in each subclass. The
results showed that the Redox_A pattern was significantly
enriched in cell adhesion molecules, rap1 signaling pathway,
NOD-like receptor signaling pathway, and transcriptional
misregulation in cancer (Figure 2(b)), while the Redox_B
pattern was significantly enriched in the biosynthesis of
amino acids, calcium signaling pathway, HIF-1 signaling
pathway, MAPK signaling pathway, cGMP-PKG signaling
pathway, and PPAR signaling pathway (Figure 2(c)).

Next, the differences in immune-related characteristics
among the subtypes of PC revealed by the above analysis
results prompted us to further explore the infiltrating char-
acteristics of the tumor microenvironment. We first used
the CIBERSORT algorithm to evaluate the abundance of
infiltrated immune cells in each sample of different redox
patterns in PC, and the results were shown in Figure 2(d).
Specifically, the infiltration of M2 macrophages
(P = 9:5e − 10), memory B cells (P = 2:2e − 11), CD8 T cells
(P = 0:007), M1 macrophages (P = 0:003), naive B cells

(P = 1:4e − 5), activated dendritic cells (P = 0:029), resting
mast cells (P = 0:049), T regulatory cells (Tregs) (P = 0:024
), and resting NK cells (P = 0:014) was higher in Redox_A,
while the infiltration of plasma cells (P = 4:0e − 16) was
higher in Redox_B. Moreover, we further evaluated the
tumor microenvironment of each sample in different PC
subclasses by the ESTIMATE algorithm to determine their
stromal score, immune score, ESTIMATE score, and tumor
purity. The results show that in pattern Redox_A, immune
score, stromal score, ESTIMATE score, and tumor purity
were −274:825 ± 188:801 (Figure 2(e)), −400:188 ± 139:841
(Figure 2(f)), −675:013 ± 290:894 (Figure 2(g)), and 0:874
± 0:021 (Figure 2(h)), respectively, while in pattern
Redox_B, immune score, stromal score, ESTIMATE score,
and tumor purity were −385:982 ± 122:966 (Figure 2(e)), −
510:698 ± 111:203 (Figure 2(f)), −896:680 ± 199:951
(Figure 2(g)), and 0:890 ± 0:013 (Figure 2(h)), respectively.
Compared with pattern Redox_B, the stromal cell and
immune cell infiltration level in pattern Redox_A was
higher, but the tumor purity was decreased.

Studies have shown that the number of CD4+CD25+-

Foxp3+ inhibitory regulatory T cells increases in peripheral
blood of PC patients, and the ratio of CD4+/CD8+T cells is
unbalanced, indicating that PC patients may be in a state
of immunosuppression [19]. In addition, the previous anal-
ysis showed that M2 macrophages were associated with a
higher Redox_score, which also supported this conclusion.
These results suggest that there may be infiltration of
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immunosuppressed myeloid cells in PC. Therefore, we fur-
ther analyzed the correlation between myeloid markers
(ITGAM, OLR1, CD84, CD33, CD14, and VSIR) and the
Redox_score. Figure S2A shows significant positive
correlations between these myeloid marker molecules and
between these molecules and the Redox_score. At the same
time, it was found that the expression levels of these
myeloid marker molecules in the high-risk group were
significantly higher than those in the low-risk group
(Figure S2B, C, D, E, F, G). Further Kaplan–Meier survival
analysis showed that patients in the high-risk group had a
poor prognosis in both the high and low expression groups
of these molecules (Figure S2H, I, J, K, L, M).

3.3. Exploration Differential RRGs Associated with Redox
Phenotype and Construction of a Redox_Score. Although
the RRG-based unsupervised consensus clustering classified
PC patients into two redox phenotypes, the potential genetic
changes and expression disturbances in these phenotypes
were not clear. Based on these doubts, we further explored
possible changes in redox-related transcriptional expression
in these two PC patterns. Differential expression analysis of
the two redox patterns was performed through the “Limma”
R package according to the screening criteria of ∣log2 FC ∣ >1
and P < 0:05; a total of 157 differentially expressed RRGs
were obtained. Based on these RRGs, we conducted unsu-
pervised consensus clustering analysis and finally selected k
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Figure 2: Molecular and tumor microenvironment characteristics of different PC subclasses. (a) Heat map of GSVA enrichment based on
Hallmark and KEGG pathways from MSigDB in the redox patterns. (b) Heat map of GSEA enrichment of Redox_A pattern in PC. (c)
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= 2 as the optimal cluster number after comprehensive con-
sideration and divided PC patients into two different redox
gene characteristic subgroups (Genecluster_1 and Geneclus-
ter_2) (Figures 3(a) and 3(b)). Gene ontology analysis
revealed that these RRGs were also mainly enriched in
various metabolic and carcinogenic biological processes,
indicating that these RRGs could be used as characteristics
of redox-related genes (Figure 3(c)). We further conducted
Kaplan–Meier survival analysis, and the results showed that
the prognosis of PC patients in the two gene patterns was
significantly different; specifically, Genecluster_2 had a sig-
nificant survival advantage in BCR-free survival (P = 0:008,
Figure 3(d)).

Considering the heterogeneity and complexity of redox
function in the tumor, we further screened the most prog-
nostic redox characteristic RRGs to construct a score model
to quantify the PC patients. We first performed univariate
Cox regression analysis of these 157 RRGs and screened 46
prognostic RRGs. LASSO regression analysis was performed
for these RRGs based on the “glmnet” R package, and the 11
most prognostic RRGs were identified. The trajectory
changes of the 46 independent variable coefficients and the
results of cross-validation are shown in Figure S3A, B.
Subsequently, multiple stepwise Cox regression analysis
was performed for these 11 RRGs and the optimal
combinations were selected according to AIC (Figure S3C).
Finally, 6 RRGs were obtained and a redox score (Redox_
score) was constructed based on the following formula:
Redox score = ð0:1713 × ExpAKR1C3Þ + ð0:3673 × ExpCOL
1A1Þ + ð0:1393 × ExpCYP3A4Þ + ð0:2434 × ExpMYBL2Þ + ð
0:0958 × ExpRALYLÞ + ð−0:3018 × ExpSCN4AÞ. We found
that Redox_A had a higher Redox_score than Redox_B
(P = 1:6e − 11, Figure 3(e)). Similarly, Genecluster_1 had a
higher Redox_score than Genecluster_2 (P = 1:9e − 11,
Figure 3(f)).

3.4. Evaluation of Redox_Score Performance. We grouped
PC patients in the TCGA cohort (low-risk group and high-
risk group) according to the calculated median Redox_score.
Survival analysis revealed that the low-risk group had a
significant survival advantage in BCR-free survival
(P = 4:702e − 07, Figure 4(a)). The predicted area under the
receiver operating characteristic (ROC) curve of Redox_
score was 0.786, 0.757, and 0.718 at 1, 3, and 5 years, respec-
tively (Figure 4(e)). The results of the Kaplan–Meier survival
analysis and ROC analysis based on the GSE46602 cohort
were consistent with the above (Figures 4(b) and 4(f)). To
investigate whether Redox_score could independently
predict patient outcomes, we included common clinical
characteristics (including age, stage, Gleason score, and
Redox_score) for multivariate Cox analysis. The results
showed that the Redox_score was an independent and reli-
able prognostic factor for the prognosis of PC patients
(HR = 0:380, 95% CI 0.210–0.700, P = 0:002, Figure 4(c)).
We further used the GSE46602 cohort to verify the reliability
of the Redox_score (HR = 0:180, 95% CI 0.044–0.730, P =
0:016, Figure 4(d)). Additionally, we also used the
GSE70769 cohort to verify the predictive performance of
the Redox_score, which was consistent with the above find-
ings (Figures 4(g) and 4(h)). These results showed that the
Redox_score had great predictive potential.

3.5. Exploration of the Redox_Score’s Clinical Relevance and
miRNA-RRG Regulatory Networks. Next, we first evaluated
the relationship between Redox_score and BCR. As shown
in Figure 5(a), patients in the high-risk group had a higher
rate of BCR than patients in the low-risk group (25.73% vs.
6.80%, P < 0:001). Similarly, the higher the BCR rate, the
higher the Redox_score (P = 1:9e − 11, Figure 5(b)). Then,
we stratified PC patients in the TCGA cohort with the Glea-
son score and T stage, and the results showed that low-risk
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Figure 3: Identification of redox gene characteristic patterns in PC by unsupervised consensus clustering based on TCGA cohort. (a) Matrix
heat map of k-means clustering based on 157 differentially expressed RRGs. (b) CDF curve of k-means clustering. (c) GO enrichment
analysis of differentially expressed RRGs. (d) Kaplan-Meier survival curve of BCR for PC patients in the TCGA cohort based on gene
characteristic patterns. The difference of Redox_score between redox patterns (e) and gene characteristic patterns (f) in TCGA cohort.
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patients in each stratification had a higher survival advan-
tage (Figures 5(c)–5(e)).

miRNAs are a class of important regulatory factors that
significantly affect the genesis and progression of tumors
by regulating the entire cell signaling network [20, 21].
Meanwhile, mRNAs also have a great importance in main-
taining ROS homeostasis, and many studies focused on the
regulatory interaction between miRNA and ROS [22]. For
example, miR-21 can mediate ROS production by enhancing
KRAS and epidermal growth factor receptor signaling,
thereby promoting tumor development [23, 24]. Therefore,
this study deserved further attention on the relationship
between miRNAs and prognostic RRGs and to reveal the
regulatory network of miRNAs-RRGs. We obtained miRNA
expression data from the TCGA cohort, including 52 normal
samples and 499 PC samples. A total of 76 downregulated
miRNAs and 118 upregulated miRNAs were obtained after
differential analysis. Figure 5(f) showed the heat map of dif-
ferentially expressed miRNAs. Subsequently, we conducted
the coexpression analysis of these 6 prognostic RRGs (the
most prognostic redox characteristic RRGs) and these differ-
ential miRNAs and finally obtained 14 pairs of miRNA-RRG
regulatory networks (Figure 5(g)). Here, all miRNAs were
positively regulated corresponding RRGs. The specific regu-
latory relationship between these miRNAs and prognostic
RRGs is shown in Table S2. Moreover, we further analyzed
that the miRNAs related to the Redox_score correlated
with Redox_A and Redox_B by coexpression analysis
according to suggestion. According to the criteria of cor >
0:3 and P < 0:001, we found 11 miRNAs related to the
Redox_score correlated with Redox_A. And according to
the criteria of cor > 0:25 and P < 0:001, we found 15

miRNAs related to the Redox_score correlated with
Redox_B (Table S3).

3.6. Correlation of the Redox_Score with Mutations. Tumor
genomic patterns have been shown to be associated with
antitumor immunity. The accumulation of somatic muta-
tions is one of the main causes of tumorigenesis [25]. TMB
is also considered a biomarker for predicting tumor behavior
and immune response [26]. Higher TMB has been reported
to be associated with better prognosis in patients with mela-
noma and non-small cell lung cancer [27]. In order to inves-
tigate whether there were differences in somatic mutations
in Redox_score and to observe the mutation patterns
between Redox_score, we analyzed the data of somatic
mutations in the TCGA cohort. The results showed that
TMB levels were higher in the high-risk group
(P = 2:1e − 08, Figure 6(a)), and there was a significant pos-
itive correlation between the Redox_score and TMB
(R=0.31, P = 8:6e − 11, Figure 6(b)), indicating that TMB
increased with the increase of the Redox_score. We further
investigated whether TMB was associated with survival
advantage, and the analysis indicated that low TMB had a
significant survival advantage in BCR-free survival
(P = 0:005, Figure 6(c)). On this basis, we investigated
whether the Redox_score still had an impact on the progno-
sis of patients when the level of TMB was considered. The
results showed that high TMB and low-risk patients had a
significant survival advantage in BCR-free survival
compared with the high TMB and high-risk patients, and
the low TMB and low-risk patients had also a significant sur-
vival advantage in BCR-free survival compared with the low
TMB and high-risk patients (P < 0:001, Figure 6(d)). Next,
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Figure 4: Evaluation of Redox_score performance. (a) Kaplan-Meier survival curve of BCR between low- and high-risk groups in the TCGA
cohort. (b) Kaplan-Meier survival curve of BCR between low- and high-risk groups in the GSE46602 cohort. (c) Multivariate Cox regression
analysis of age, Gleason score, stage, and Redox_score were included in the TCGA cohort. (d) Multivariate Cox regression analysis of age,
Gleason score, stage, and Redox_score were included in the GSE46602 cohort. (e) Redox_score predicted AUC values at different time
points in the TCGA cohort. (f) Redox_score predicted AUC values at different time points in the GSE46602 cohort. (g) Kaplan-Meier
survival curve of BCR between low- and high-risk groups in the GSE70769 cohort. (h) Redox_score predicted AUC values at different
time points in the GSE70769 cohort.
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we showed the driver genes that were mutated in at least 3%
of the samples in the low- and high-risk patients. The results
indicated that there were more mutated driver genes in the
high-risk patients (Figures 6(e) and 6(f)). We selected three
driver genes (TP53, TTN, and SPOP) with high mutation
rates and explored whether the Redox_score still had an
impact on the prognosis of patients when the expression of
driver genes was considered. The results indicated that
the TP53 mutation and low-risk patients had a significant
survival advantage in BCR-free survival compared with
the TP53 mutation and high-risk patients, and the TP53
wild and low-risk patients had also a significant survival
advantage in BCR-free survival compared with the TP53

wild and high-risk patients (P < 0:001, Figure 6(g)). Con-
sistent results were observed in other driver genes
(Figures 6(h) and 6(i)). Considering that PTEN and AR
mutations have important clinical significance for PC
patients, we further analyzed whether Redox_score still
has an impact on the prognosis of patients when consid-
ering PTEN and AR mutations. We analyzed PTEN in
the TCGA-PRAD dataset and AR in the metastatic PC
dataset (Abida et al. PNAS 2019, cBioPortal, https://www
.cbioportal.org/). The results of Kaplan–Meier analysis
showed that the prognosis of high-risk patients was poor
in both the AR (or PTEN) mutation group and the AR
(or PTEN) wild group (Figure S4).
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Figure 5: Exploration of the Redox_score’s clinical relevance and miRNA-RRG regulatory networks. (a) Differences in BCR between
low- and high-risk groups in PC patients. (b) Differences in Redox_score between patients with and without BCR. (c) Kaplan-Meier
survival curve of BCR between low- and high-risk group G7(4+3)-10 patients in the TCGA cohort. (d) Kaplan-Meier survival curve
of BCR between low- and high-risk group T stage 1-2 patients in the TCGA cohort. (e) Kaplan-Meier survival curve of BCR
between low- and high-risk group T stage 3-4 patients in the TCGA cohort. (f) Expression heat map of differentially expressed
miRNAs. N represents the normal group, and T represents the tumor group. (g) Sankey plot of differentially expressed miRNAs and
prognostic RRG regulatory networks.
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3.7. Benefit of Redox_Score in Predicting Immunotherapy
Reactivity. Immunotherapy targeting ICI genes has been a
major breakthrough in antitumor therapy in recent years
[28]. In order to further study the complex interaction
between ICI genes and Redox_score, we first explored the
expression of these genes (PD-1, PD-L2, CTLA-4, B7-H3,
and B7-H4) in different patient groups of patients under
stratification of the Redox_score. The results indicated that
compared with the low-risk patients, the expression levels
of PD-1 (P = 0:014, Figure 7(a)), PD-L2 (P = 0:018,
Figure 7(b)), CTLA-4 (P = 5e − 05, Figure 7(c)), B7-H3
(P = 1:9e − 05, Figure 7(d)), and B7-H4 (P = 0:001,
Figure 7(e)) in the high-risk patients were significantly
upregulated, which was similar to the result of Sun et al.’s
[29] study that the expression level of the ICI gene was neg-
atively correlated with the prognosis of patients. We also
investigated whether the Redox_score still had an impact
on the prognosis of patients when the expression level of
the ICI gene was considered. The results showed that the
low-risk and high PD-1 expression patients had a significant
survival advantage in BCR-free survival compared with the
high-risk and high PD-1 expression patients, and the low-
risk and low PD-1 expression patients had also a significant
survival advantage in BCR-free survival compared with the
high-risk and low PD-1 expression patients (P < 0:001,
Figure 7(f)). Interestingly, when we stratified the Redox_
score based on the level of expression of the ICI gene, the
results showed that the low-risk (or high-risk) and low
PD-1 expression patients had no significant survival advan-
tage in BCR-free survival compared with the low-risk (or
high-risk) and high PD-1 expression patients. Similar results
were found for other genes (Figures 7(g)–7(j)). These results
suggested that the Redox_score may be a potential marker

for predicting response to immunotherapy in patients with
PC. By SubMap analysis, we further compared the expres-
sion data of Redox_scores from the TCGA and GEO
cohorts, with another available dataset of 47 melanoma
patients receiving PD-1 or CTLA-4 immunotherapy. Both
cohorts showed a significant correlation between the high-
risk patients and the PD-1 response (P = 0:004 and P =
0:037, Figures 7(k) and 7(l)), suggesting that patients with
a higher Redox_score were more responsive to PD-1 immu-
notherapy. Based on these results, we obtained an immuno-
therapy cohort of patients undergoing anti-PD-1 therapy for
metastatic melanoma to further assess whether the Redox_
score could predict patient response to ICI. The results indi-
cated that the low-risk patients had also a significant survival
advantage in BCR-free survival (P = 0:012, Figure 7(m)).
These results indicated that the Redox_score was associated
with response to immunotherapy and could further predict
PC patient outcomes.

3.8. Correlation Analysis between Redox_Score and Drug
Sensitivity. To explore the effect of the Redox_score on drug
sensitivity of tumor cells, we further evaluated the correla-
tion between the Redox_score and the drug response in the
GDSC database. We performed the Pearson correlation
analysis between the Redox_score and the drug response of
cancer cell lines, and based on ∣Rs ∣ >0:15 and P < 0:05
screening criteria, 48 significant correlation pairs were iden-
tified (Figure 8(a)). Of these, 28 correlation pairs showed
drug sensitivity associated with the Redox_score. For exam-
ple, A-443654 (Rs = −0:41, P = 6:42e − 18), FTI-277
(Rs = −0:41, P = 8:03e − 18), CGP-082996 (Rs = −0:38, P =
1:79e − 15), and GW843682X (Rs = −0:37, P = 7:76e − 15),
and 20 correlation pairs showed drug resistance associated
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Figure 6: Correlation of the Redox_score with mutations. (a) Differences in TMB between low- and high-risk groups in PC patients. (b)
Correlation analysis between Redox_score and TMB. (c) Kaplan-Meier survival curve of BCR between low- and high-TMB groups in the
TCGA cohort. (d) Kaplan-Meier survival curve of BCR among four groups stratified by the Redox_score and TMB. (e) Mutation
waterfall plot of patients in the low-risk group. (f) Mutation waterfall plot of patients in the high-risk group. Kaplan-Meier survival
curve of BCR among four groups stratified by the Redox_score and TP53 (g), TTN (h), and SPOP (i).
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with the Redox_score. For example, AG-014699 (Rs = 0:48,
P = 2:76e − 25), JNJ-26854165 (Rs = 0:48, P = 2:72e − 25),
CCT018159 (Rs = 0:43, P = 2:60e − 20), and EHT-1864
(Rs = 0:38, P = 1:97e − 15). We further analyzed the related
signaling pathways of the drug-targeted genes mentioned
above. The results indicated that the Redox_score was
related to drug sensitivity to targeted apoptosis regulation,
cell cycle, DNA replication, and ERK MAPK signaling path-
ways, while the Redox_score was related to drug resistance
to targeted hormone-related, p53, and PI3K/MTOR signal-
ing pathways (Figure 8(b)), indicating that higher Redox_
score patients may be more effective for drugs targeting apo-
ptosis or the cycle pathway, while lower Redox_score
patients may be more effective for drugs targeting

hormone-related or p53 pathway. These results indicated
that the Redox_score was related to the sensitivity of tumor
cells to drugs and could be used as a potential biomarker.

3.9. RT-qPCR Verification. To further evaluate the reliability
of the Redox_score, we detected the actual expression levels
of these six redox characteristic genes in normal prostate
epithelial cells (RWPE-1), hormone-dependent PC cells
(LNCaP), and hormone-resistant PC cells (22RV1, DU-
145, and PC-3) by RT-qPCR. The analysis results of the
experiment are shown in Figure 9. AKR1C3 expression was
significantly downregulated in LNCaP, DU-145, and PC-3
cells, while significantly upregulated in 22RV1 cells com-
pared with RWPE-1 cells. Compared with RWPE-1 cells,
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Figure 7: Benefit of Redox_score in predicting immunotherapy reactivity. Differences in expression of PD-1 (a), PD-L2 (b), CTLA4 (c), B7-
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CYP3A4 expression was significantly downregulated in
22RV1 and DU-145 cells, while there was no significant dif-
ference in LNCaP and PC-3 cells. COL1A1 and MYBL2
were significantly downregulated in LNCaP, 22RV1, DU-
145, and PC-3 cells compared with RWPE-1 cells. Com-
pared with RWPE-1 cells, the RALYL expression was signif-
icantly upregulated in LNCaP cells and downregulated in
DU-145 and PC-3 cells, while there was no significant differ-
ence in the RALYL expression in 22RV1 cells. Compared
with RWPE-1 cells, SCN4A was significantly upregulated
in LNCaP, 22RV1 and PC-3 cells, while downregulated in
DU-145 cells.

4. Discussion

Imbalance of redox homeostasis has been shown to be
closely related to cancer genesis, proliferation, invasion,
and vascularization [30, 31]. In addition, ROS components
produced by a variety of inflammatory cells located in the
tumor microenvironment, such as superoxide and hydrogen
peroxide, can further affect the function of cancer cells and
adjacent immune cells [30]. Although numerous studies
have revealed the different roles of redox in numerous
cancer-related processes, most current studies have only
explored the function of a single redox gene; the overall

A-
44

36
54

Rs
 o

f d
ru

g 
se

ns
iti

vi
ty

 an
d 

Re
do

x_
sc

or
e

–0.5

–0.2

0.1 Drug sensitivity (n = 28)

Drug resistance (n = 20)

–log10 (p value)

20

15

5

10

0.4
FT

I-
27

7
CG

P-
08

29
96

CG
P-

60
47

4
Bo

rt
ez

om
ib

JW
-7

-5
2-

1
BI

-2
53

6
Er

lo
tin

ib
A

BT
-8

88
A

S6
01

24
5

KU
-5

59
33

JN
K 

in
hi

bi
to

r V
II

I
G

SK
-6

50
39

4
G

em
ci

ta
bi

ne
M

et
ho

tre
xa

te
Cy

clo
pa

m
in

e
Bo

su
tin

ib
CH

IR
-9

90
21

A
Z6

28
CI

-1
04

0
G

SK
26

99
62

A
Et

op
os

id
e

A
P-

24
53

4
Ci

sp
lat

in
Br

yo
sta

tin
 1

Cy
ta

ra
bi

ne
G

D
C0

44
9

CE
P-

70
1

JN
K-

9L
BM

S-
75

48
07

A
IC

A
R

Im
at

in
ib

AU
Y9

22
BI

BW
29

92
A

ZD
80

55
A

KT
 in

hi
bi

to
r V

II
I

LF
M

-A
13

D
oc

et
ax

el
Bi

ca
lu

ta
m

id
e

El
es

clo
m

ol
EH

T-
18

64
CC

T0
18

15
9

JN
J-

26
85

41
65

AG
-0

14
69

9

G
W

84
36

82
X

CM
K

M
G

-1
32

A
BT

-2
63

(a)

WNT signaling

PI3K/MTOR signaling

JNK and p38 signaling
Hormone-related
Genome integrity

ERK MAPK signaling
EGFR signaling

DNA replication
Cytoskeleton

Cell cycle
Apoptosis regulation

A-
44

36
54

A
BT

-2
63

A
BT

-8
88

AG
-0

14
69

9
A

IC
A

R
A

KT
 in

hi
bi

to
r V

II
I

Ap
-2

45
34

A
S6

01
24

5
AU

Y9
22

A
Z6

28
A

ZD
80

55
BI

-2
53

6
BI

BW
29

92
Bi

ca
lu

ta
m

id
e

BM
S-

75
48

07
Bo

rt
ez

om
ib

Bo
su

tin
ib

Br
yo

sta
tin

 1
CC

T0
18

15
9

CE
P-

70
1

CG
P-

08
29

96
CG

P-
60

47
4

CH
IR

-9
90

21
CI

-1
04

0
Ci

sp
lat

in
CM

K
Cy

clo
pa

m
in

e
Cy

ta
ra

bi
ne

D
oc

et
ax

el
EH

T-
18

64
El

es
clo

m
ol

Er
lo

tin
ib

Et
op

os
id

e
FT

I-
27

7
G

D
C0

44
9

G
em

ci
ta

bi
ne

G
SK

-6
50

39
4

G
SK

26
99

62
A

G
W

84
36

82
X

Im
at

in
ib

JN
J-

26
85

41
65

JN
K-

9L
JN

K 
in

hi
bi

to
r V

II
I

JW
-7

-5
2-

1
KU

-5
59

33
LF

M
-A

13
M

et
ho

tre
xa

te
M

G
-1

32

p53 pathway
Other, kinases

Other
Mitosis

Metabolism

RTK signaling
Protein stability and degradation

–0.4
Rs

–0.2 0.0

0 3
Number of drugs

Drug response
Drug sensitivity
Drug resistance

6

0.2 0.4

(b)

Figure 8: Correlation analysis between Redox_score and drug sensitivity. (a) Pearson correlation analysis was used to evaluate the
correlation between Redox_score and drug sensitivity and drug resistance. (b) Related signaling pathways of drug-targeted genes
associated with Redox_score.

24 Oxidative Medicine and Cellular Longevity



characteristics of cancer mediated by comprehensive redox
genes, as well as their relationships and functions in cancer,
have not yet been fully understood. Therefore, a comprehen-
sive and effective analysis of redox modification patterns and
characteristics in the PC tumor will contribute to a deeper
understanding of the role of redox in the PC tumor and its
interrelationship and promote more effective and precise
treatment strategies. Here, we first identified two different
redox modification patterns based on 1410 differentially
expressed RRGs in TCGA and GEO cohorts. We analyzed
the characteristics of the molecular and the tumor immune
microenvironment of these two patterns. Next, we further
identified two redox characteristic gene patterns through
redox characteristic genes. Finally, we constructed a scoring
system and assessed its benefit in predicting patient out-
comes, responses to immunotherapy, and sensitivity or
resistance to drug responses.

In this study, we identified two redox patterns based on
differentially expressed RRGs. In these two patterns, the
molecular characteristics of pattern A were significantly
enriched in carcinogenic activation signaling pathways, for
example, the JAK-STAT signaling pathway, TGF-β signaling
pathway, ECM receptor interaction, and NOD-like receptor
signaling pathway, while pattern B was mainly enriched in
metabolic- and redox-related pathways, for example,
arginine and proline metabolism, glutathione metabolism,
tyrosine metabolism, fatty acid metabolism, peroxisome,
and oxidative phosphorylation. Activation of the TGF-β
signaling pathway regulates gene expression in a variety of
cell biological processes, including cell proliferation, apopto-
sis, invasion, epithelial-mesenchymal transformation, and
immune regulation [32]. Moreover, studies have shown that
TGF-β is closely related to the invasion and metastasis of
advanced cancer cells [33]. In the case of PC, TGF-β-regu-
lated vimentin levels were significantly associated with
patients’ BCR, with TGF-β3 ligand being more able to con-
trol the metastatic behavior of cancer cells [34, 35]. Activa-
tion of the JAK-STAT signaling pathway is also a common
event in multiple stages of carcinogenesis in PC [36]. Not
surprisingly, patients with pattern A fared worse than those
with pattern B. Pattern B enrichment in metabolic and redox
signals suggested that these patients may benefit from
metabolic therapy. Metabolic therapy, which targets certain

metabolic processes, offers alternative therapies for these
patients. Given the complex interrelationship between redox
homeostasis and metabolic pathways in cancer, multiple
studies have focused on the treatment of cancer by targeting
ROS with metabolic regulators. For instance, several studies
have revealed that orlistat, as an antitumor drug, inhibits
tumor growth in a variety of cancers, including prostate can-
cer, by inhibiting fatty acid synthase [37]. Biguanides (met-
formin and metformin) increase the AMP/ATP ratio
mainly by inhibiting mitochondrial respiratory chain com-
plex I, thus activating AMPK, further inducing catabolism
process, increasing ATP level, reducing protein and lipid
synthesis, and ultimately inhibiting tumor growth [38, 39].
This would provide new insights into metabolic therapy as
an alternative therapy.

Next, we identified differentially expressed genes from
the two patterns, which were significantly enriched in vari-
ous metabolic pathways and immunoregulatory biological
processes, and were considered to be gene characteristics
associated with redox phenotypes. We also identified two
gene patterns based on these redox signature genes and fur-
ther constructed a scoring system (Redox_score) based on
the redox signature genes most associated with prognosis
to more accurately guide the treatment strategies of individ-
ual patients. We found that the A pattern, characterized by
stromal and carcinogenic activation pathways, had a higher
Redox_score, while the B pattern, characterized by metabolic
and redox pathways, had a lower Redox_score. Further anal-
ysis found that the Redox_score independently predicted the
prognosis of patients with PC in both the TCGA and GEO
cohorts, suggesting that the Redox_score had a high predic-
tive potential in patients with PC.

The continuous accumulation of somatic mutations is
one of the important causes of tumorigenesis and contrib-
utes to the production of new antigens [24]. Therefore, the
evaluation of mutation-driving genes in human tumors is
an important basis for cancer diagnosis and treatment for-
mulation. Here, a significant positive correlation was found
between Redox_score and TMB. In addition, we found that
SPOP was the most mutated driver gene in the low-risk
patients, while TP53 was the most mutated driver gene in
the high-risk patients. Several studies have revealed that
SPOP inhibited the progression of PC by promoting the
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degradation of various oncoproteins, such as androgen
receptor [40], steroid receptor coactivator 3 [41], and Myc
[42]. However, SPOP mutation rates have been reported
to reach 6-15% in local and advanced PC [43], so SPOP
mutations have been identified as an early event in the
occurrence and progression of PC, partly due to genetic
instability [44]. TP53 exerted the tumor inhibitory effect
by regulating signaling pathways such as genomic stabiliza-
tion and cell cycle arrest [45]. TP53 has a higher mutation
frequency in patients with PC, affecting 50% of patients
with metastatic PC [46]. Multiple studies have shown that
TP53 levels have prognostic significance in castration-
resistant PC and serve as a biomarker of adverse responses
to novel hormone therapy [47].

The latest EAU guidelines indicated the currently
approved ICI in PC target molecules CTLA4, PD-1, and
PD-L1. Anti-CTLA-4 or anti-PD-1 monotherapy or combi-
nation immunotherapy was currently being rigorously tested
in PC [48]. A phase II trial of 258 PC patients treated with
pembrolizumab showed an objective response rate of about
4%, but these responses were long-lasting [49]. In our study,
we also explored the expression relationship between com-
mon ICI genes (PD-1, PD-L2, CTLA4, B7-H3, and B7-H4)
and the Redox_score, and we found that compared with
the low-risk patients, the expression levels of ICI genes in
the high-risk patients were significantly upregulated.
Immune checkpoint refers to a class of inhibitory or irritat-
ing molecules expressed mainly on tumor cells, antigen
presenting cells, or immune cells. Immune checkpoint
molecules expressed in antigen-presenting cells or immune
cells mainly mediate the processes of the adaptive and innate
immune systems. The immune checkpoint molecules
expressed in different types of tumors play important roles
in tumor cell biology, such as inducing epithelial-
mesenchymal transformation, promoting tumor initiation,
and promoting tumor metastasis, antiapoptosis, and antitu-
mor drug resistance [50, 51]. Our results were consistent
with previous findings that the expression level of the ICI
gene was negatively correlated with the prognosis of patients
[29, 50]. Moreover, SubMap analysis indicated that the high-
risk patients were more responsive to ICI than the low-risk
patients, which was consistent with the above results. We
also further determined the potential value of the Redox_
score in predicting immunotherapy reactivity by analyzing
the immunotherapy cohort of patients receiving PD-1 treat-
ment for melanoma. We believed that our Redox_score will
be useful in assessing the benefit of patients receiving anti-
CTLA-4 or anti-PD-1 immunotherapy. Therefore, accessible
datasets of PC patients receiving immunotherapy were
needed to further validate these results. Finally, the correla-
tion between Redox_score and drug sensitivity and drug
resistance was also analyzed. We found that the drugs
related to Redox_score-high mostly targeted apoptosis regu-
lation, cell cycle, DNA replication, and ERK MAPK signal-
ing pathways, while the drugs related to Redox_score-low
mostly targeted hormone-related, p53, and PI3K/MTOR
signaling pathways.

Overall, although we have analyzed the overall redox
modification profile in PC and developed a scoring system

with prognostic potential, there are some limitations to this
study. First, our study was based on retrospective datasets
to determine redox modification patterns and Redox_score,
and prospective cohorts are needed to validate our results.
Secondly, the specific biological functions and molecular
mechanisms of RRGs affecting the prognosis of PC are still
unclear, and further analysis is needed through experiments.
Thirdly, the Redox_score needs to be further validated in
open-access expression data of cancer patients receiving
antioxidant therapy. Finally, we used available immunother-
apy cohorts for other tumor (melanoma) to validate the role
of the Redox_score, which needs further validation with
available PC immunotherapy cohorts.

5. Conclusions

In our study, we systematically and comprehensively
assessed the redox modification patterns of RRGs in PC,
revealing their molecular mechanisms and immune micro-
environment characteristics in PC. We also constructed a
scoring system (Redox_score) and identified its upstream
regulatory network, prognostic value, benefit in predicting
immunotherapeutic response, and drug sensitivity relation-
ships in PC, which will help to develop individualized treat-
ment strategies for PC patients.

Abbreviations

PC: Prostate cancer
ROS: Reactive oxygen species
RNS: Reactive nitrogen
TCGA: The Cancer Genome Atlas
GEO: Gene Expression Omnibus
RRGs: Redox-related genes
GSVA: Gene set variation analysis
CIBERSORT: Cell-type identification by estimating relative

subsets of RNA transcripts
FC: Fold change
LASSO: Least absolute shrinkage and selection

operator
TMB: Tumor mutation burden
ICI: Immune checkpoint inhibitor
GDSC: Genomics of Drug Sensitivity in Cancer
BCR: Biochemical relapse
ROC: Receiver operating characteristic.

Data Availability

The data and materials can be obtained by contacting the
corresponding author.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Y.W. designed the study and performed the data analysis.
X.Z., H.F., B.H., Z.D., C.W., and B.L. performed the data
analysis. Y.L., Y.R., X.L., Z.L., and J.L. performed the data

26 Oxidative Medicine and Cellular Longevity



analysis and revised the manuscript. T.W. designed the
study and revised the manuscript. All authors read and
approved the final manuscript.

Acknowledgments

This work was supported by a grant from the National
Natural Science Foundation of China (No. 81874165).

Supplementary Materials

Supplemental Figure S1: identification of redox patterns in
PC by unsupervised consensus clustering based on GEO
cohort. Supplemental Figure S2: correlation analysis between
myeloid marker molecules and the Redox_score. Supple-
mental Figure S3: identification of prognosis-related RRGs.
Supplemental Figure S4: correlation of the Redox_score with
PTEN and AR mutations. Supplemental Table S1: the
sequences of primer RNA. Supplemental Table S2: miRNA
and RRG regulatory networks. Supplemental Table S3: miR-
NAs related to which Redox_score they correlated with
Redox_A and Redox_B. (Supplementary Materials)

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2020,” CA: a Cancer Journal for Clinicians, vol. 70, no. 1,
pp. 7–30, 2020.

[2] C. G. Drake, “Visceral metastases and prostate cancer treat-
ment: die hard, tough neighborhoods, or evil humors'?,”
Oncology (Williston Park, N.Y.), vol. 28, no. 11, pp. 974–980,
2014.

[3] D. Bausch, S. Thomas, M. Mino-Kenudson et al., “Plectin-1 as
a novel biomarker for pancreatic cancer,” Clinical Cancer
Research, vol. 17, no. 2, pp. 302–309, 2011.

[4] J. E. Bekelman, R. B. Rumble, R. C. Chen et al., “Clinically
localized prostate cancer: ASCO clinical practice guideline
endorsement of an American Urological Association/Ameri-
can Society for Radiation Oncology/Society of Urologic
Oncology Guideline,” Journal of Clinical Oncology, vol. 36,
no. 32, pp. 3251–3258, 2018.

[5] J. E. Damber and G. Aus, “Prostate cancer,” Lancet, vol. 371,
no. 9625, pp. 1710–1721, 2008.

[6] W. Zhong, H. L. Weiss, R. D. Jayswal et al., “Extracellular
redox state shift: a novel approach to target prostate cancer
invasion,” Free Radical Biology & Medicine, vol. 117, pp. 99–
109, 2018.

[7] S. Parvez, M. J. C. Long, J. R. Poganik, and Y. Aye, “Redox sig-
naling by reactive electrophiles and oxidants,” Chemical
Reviews, vol. 118, no. 18, pp. 8798–8888, 2018.

[8] M. Calvani, A. Subbiani, M. Vignoli, and C. Favre, “Spotlight
on ROS and β3-adrenoreceptors fighting in cancer cells,” Oxi-
dative Medicine and Cellular Longevity, vol. 2019, Article ID
6346529, 2019.

[9] C. C. Winterbourn, “The biological chemistry of hydrogen
peroxide,” Methods in Enzymology, vol. 528, pp. 3–25, 2013.

[10] K. Brieger, S. Schiavone, F. J. Miller Jr., and K. H. Krause,
“Reactive oxygen species: from health to disease,” Swiss Medi-
cal Weekly, vol. 142, 2012.

[11] L. B. Sullivan and N. S. Chandel, “Mitochondrial reactive oxy-
gen species and cancer,” Cancer & Metabolism, vol. 2, 2014.

[12] C. Gorrini, I. S. Harris, and T. W. Mak, “Modulation of oxida-
tive stress as an anticancer strategy,” Nature Reviews. Drug
Discovery, vol. 12, no. 12, pp. 931–947, 2013.

[13] K. Süle, K. Szentmihályi, G. Szabó et al., “Metal- and redox
homeostasis in prostate cancer with vitamin D3 supplementa-
tion,” Biomedicine & Pharmacotherapy, vol. 105, pp. 558–565,
2018.

[14] A. Blázovics, P. Nyirády, G. Bekõ et al., “Changes in erythro-
cyte transmethylation ability are predictive factors for tumor
prognosis in prostate cancer,” Croatica Chemica Acta,
vol. 84, no. 2, pp. 127–131, 2011.

[15] A. Blazovics, “Redox homeostasis, bioactive agents and trans-
duction therapy,” Current Signal Transduction Therapy,
vol. 2, no. 3, pp. 226–239, 2007.

[16] M. D. Wilkerson and N. D. Hayes, “ConsensusClusterPlus:
a class discovery tool with confidence assessments and item
tracking,” Bioinformatics, vol. 26, no. 12, pp. 1572-1573,
2010.

[17] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[18] W. Roh, P.-L. Chen, A. Reuben et al., “Integrated molecular
analysis of tumor biopsies on sequential CTLA-4 and PD-1
blockade reveals markers of response and resistance,” Science
Translational Medicine, no. 9, 2017.

[19] S. Sotosek, V. Sotosek Tokmadzic, I. Mrakovcic-Sutic et al.,
“Comparative study of frequency of different lymphocytes
subpopulation in peripheral blood of patients with prostate
cancer and benign prostatic hyperplasia,” Wiener Klinische
Wochenschrift, vol. 123, no. 23-24, pp. 718–725, 2011.

[20] E. Anastasiadou, L. S. Jacob, and F. J. Slack, “Non-coding RNA
networks in cancer,” Nature Reviews. Cancer, vol. 18, no. 1,
pp. 5–18, 2018.

[21] M. Fan, R. Krutilina, J. Sun et al., “Comprehensive analysis of
microRNA (miRNA) targets in breast cancer cells,” The Jour-
nal of Biological Chemistry, vol. 288, no. 38, pp. 27480–
27493, 2013.

[22] J. Banerjee, S. Khanna, and A. Bhattacharya, “MicroRNA reg-
ulation of oxidative stress,” Oxidative Medicine and Cellular
Longevity, vol. 2017, Article ID 2872156, 2017.

[23] M. E. Hatley, D. M. Patrick, M. R. Garcia et al., “Modulation of
K-Ras-dependent lung tumorigenesis by microRNA-21,” Can-
cer Cell, vol. 18, no. 3, pp. 282–293, 2010.

[24] M. Seike, A. Goto, T. Okano et al., “miR-21 is an EGFR-
regulated anti-apoptotic factor in lung cancer in never-
smokers,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 106, no. 29, pp. 12085–
12090, 2009.

[25] M. M. Gubin, M. N. Artyomov, E. R. Mardis, and R. D.
Schreiber, “Tumor neoantigens: building a framework for
personalized cancer immunotherapy,” The Journal of Clini-
cal Investigation, vol. 125, no. 9, pp. 3413–3421, 2015.

[26] A. M. Goodman, S. Kato, L. Bazhenova et al., “Tumor muta-
tional burden as an independent predictor of response to
immunotherapy in diverse cancers,” Molecular Cancer Thera-
peutics, vol. 16, no. 11, pp. 2598–2608, 2017.

[27] H. Chen, W. Chong, Q. Wu, Y. Yao, M. Mao, and X. Wang,
“Association of LRP1B mutation with tumor mutation burden
and outcomes in melanoma and non-small cell lung cancer
patients treated with immune check-point blockades,” Fron-
tiers in Immunology, vol. 10, 2019.

27Oxidative Medicine and Cellular Longevity

https://downloads.hindawi.com/journals/omcl/2021/4548594.f1.docx


[28] H. Chen, M. Yang, Q. Wang, F. Song, X. Li, and K. Chen, “The
new identified biomarkers determine sensitivity to immune
check-point blockade therapies in melanoma,” Oncoimmunol-
ogy, vol. 8, no. 8, 2019.

[29] J. Sun, Z. Zhang, S. Bao et al., “Identification of tumor immune
infiltration-associated lncRNAs for improving prognosis and
immunotherapy response of patients with non-small cell lung
cancer,” Journal for Immunotherapy of Cancer, vol. 8, no. 1,
article e000110, 2020.

[30] C. Hegedűs, K. Kovács, Z. Polgár et al., “Redox control of can-
cer cell destruction,” Redox Biology, vol. 16, pp. 59–74, 2018.

[31] V. Helfinger and K. Schröder, “Redox control in cancer devel-
opment and progression,” Molecular Aspects of Medicine,
vol. 63, pp. 88–98, 2018.

[32] J. Massagué, “TGFβ in Cancer,” Cell, vol. 134, no. 2, pp. 215–
230, 2008.

[33] D. Padua and J. Massagué, “Roles of TGFβ in metastasis,” Cell
Research, vol. 19, no. 1, pp. 89–102, 2009.

[34] Q. Zhang, B. T. Helfand, T. L. Jang et al., “Nuclear factor-
kappaB-mediated transforming growth factor-beta-induced
expression of vimentin is an independent predictor of bio-
chemical recurrence after radical prostatectomy,” Clinical
Cancer Research, vol. 15, no. 10, pp. 3557–3567, 2009.

[35] L. Walker, A. C. Millena, N. Strong, and S. A. Khan, “Expres-
sion of TGFβ3 and its effects on migratory and invasive behav-
ior of prostate cancer cells: involvement of PI3-kinase/AKT
signaling pathway,” Clinical & Experimental Metastasis,
vol. 30, no. 1, pp. 13–23, 2013.

[36] R. Dhir, Z. Ni, W. Lou, F. DeMiguel, J. R. Grandis, and A. C.
Gao, “Stat3 activation in prostatic carcinomas,” The Prostate,
vol. 51, no. 4, pp. 241–246, 2002.

[37] H. Y. Chuang, Y. P. Lee, W. C. Lin, Y. H. Lin, and J. J. Hwang,
“Fatty acid inhibition sensitizes androgen-dependent and
-independent prostate cancer to radiotherapy via FASN/NF-
κB pathway,” Scientific Reports, vol. 9, no. 1, p. 13284, 2019.

[38] C. Rubiño, D.-M. Alcalá, and B. Marchal, “Phenformin as an
anticancer agent: challenges and prospects,” International
Journal of Molecular Sciences, vol. 20, no. 13, p. 3316, 2019.

[39] D. G. Hardie, “AMPK: a target for drugs and natural products
with effects on both diabetes and cancer,” Diabetes, vol. 62,
no. 7, pp. 2164–2172, 2013.

[40] J. An, C. Wang, Y. Deng, L. Yu, and H. Huang, “Destruction of
full-length androgen receptor by wild-type SPOP, but not
prostate-cancer-associated mutants,” Cell Reports, vol. 6,
no. 4, pp. 657–669, 2014.

[41] X. Dai, W. Gan, X. Li et al., “Prostate cancer-associated SPOP
mutations confer resistance to BET inhibitors through stabili-
zation of BRD4,” Nature Medicine, vol. 23, no. 9, pp. 1063–
1071, 2017.

[42] C. Geng, S. Kaochar, M. Li et al., “SPOP regulates prostate epi-
thelial cell proliferation and promotes ubiquitination and
turnover of c-MYC oncoprotein,” Oncogene, vol. 36, no. 33,
pp. 4767–4777, 2017.

[43] C. E. Barbieri, S. C. Baca, M. S. Lawrence et al., “Exome
sequencing identifies recurrent _SPOP_ , _FOXA1_ and
_MED12_ mutations in prostate cancer,” Nature Genetics,
vol. 44, no. 6, pp. 685–689, 2012.

[44] K. Hjorth-Jensen, A. Maya-Mendoza, N. Dalgaard et al.,
“SPOP promotes transcriptional expression of DNA repair
and replication factors to prevent replication stress and geno-

mic instability,” Nucleic Acids Research, vol. 46, no. 18,
pp. 9484–9495, 2018.

[45] P. A. Muller and K. H. Vousden, “Mutant p53 in cancer: new
functions and therapeutic opportunities,” Cancer Cell,
vol. 25, no. 3, pp. 304–317, 2014.

[46] D. Robinson, E. M. Van Allen, Y.-M. Wu et al., “Integrative
clinical genomics of advanced prostate cancer,” Cell, vol. 161,
no. 5, pp. 1215–1228, 2015.

[47] A. A. Hamid, K. P. Gray, G. Shaw et al., “Compound genomic
alterations of TP53, PTEN, and RB1 tumor suppressors in
localized and metastatic prostate cancer,” European Urology,
vol. 76, no. 1, pp. 89–97, 2019.

[48] P. Cornford, R. C. N. van den Bergh, E. Briers et al., “EAU-
EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer.
Part II–2020 update: treatment of relapsing and metastatic
prostate cancer,” European Urology, vol. 79, no. 2, pp. 263–
282, 2021.

[49] E. S. Antonarakis, J. M. Piulats, M. Gross-Goupil et al., “Pem-
brolizumab for treatment-refractory metastatic castration-
resistant prostate cancer: multicohort, open-label phase II
KEYNOTE-199 study,” Journal of Clinical Oncology, vol. 38,
no. 5, pp. 395–405, 2020.

[50] Y. Zhang and J. Zheng, “Functions of immune checkpoint
molecules beyond immune evasion,” Advances in Experimen-
tal Medicine and Biology, vol. 1248, pp. 201–226, 2020.

[51] J. Wang, T. Yang, and J. Xu, “Therapeutic development of
immune checkpoint inhibitors,” Advances in Experimental
Medicine and Biology, vol. 1248, pp. 619–649, 2020.

28 Oxidative Medicine and Cellular Longevity


	Exploration of Redox-Related Molecular Patterns and the Redox Score for Prostate Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Collection and Pretreatment of PC Datasets
	2.2. Differential Expression of RRGs and Identification of PC Subclasses
	2.3. Gene Set Variation Analysis (GSVA)
	2.4. Evaluation of Immune Cell Infiltration between PC Patterns
	2.5. Construction of the Redox_Score to Evaluate Individual PC
	2.6. miRNA-RRG Regulatory Network and PC Mutation Analysis
	2.7. Benefit of Redox_Score in Predicting Immunotherapy Reactivity
	2.8. Correlation Analysis between Redox_Score and Drug Sensitivity
	2.9. Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) Verification

	3. Results
	3.1. Identification of Core Differentially Expressed RRGs and Redox Patterns in PC
	3.2. Molecular and Tumor Microenvironment Characteristics of Different Redox Patterns in PC
	3.3. Exploration Differential RRGs Associated with Redox Phenotype and Construction of a Redox_Score
	3.4. Evaluation of Redox_Score Performance
	3.5. Exploration of the Redox_Score’s Clinical Relevance and miRNA-RRG Regulatory Networks
	3.6. Correlation of the Redox_Score with Mutations
	3.7. Benefit of Redox_Score in Predicting Immunotherapy Reactivity
	3.8. Correlation Analysis between Redox_Score and Drug Sensitivity
	3.9. RT-qPCR Verification

	4. Discussion
	5. Conclusions
	Abbreviations
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

