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Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory,
antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H,O,-
induced apoptosis in rat adrenal pheochromocytoma PCI12 cells and the possible mechanisms. The results of cell viability assay
showed that AEE could increase the viability of PC12 cells stimulated by H,O,, while AEE alone had no significant effect on the
viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly
increased in the H,O, group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px
were increased in H,O,-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H,0O, via
reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial
membrane potential (A¥m). Furthermore, the results of western blotting showed that compared with the control group, the
expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly
increased in the H,O, group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2
and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H,O,. The silencing of PI3K with shRNA
and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on
H,0,-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.

1. Introduction

There are growing evidences that oxidative stress is closely
related to human neurodegenerative diseases, including Alz-
heimer’s disease (AD) and Huntington’s disease (HD) [1-5].
Excessive production of reactive oxygen species (ROS) is one
of the main causes of oxidative stress [6-9]. ROS in the body
mainly includes hydroxyl radicals, superoxide anions, and
singlet oxygen [10-12]. The normal level of ROS helps to
maintain normal cell function. However, excessive ROS stim-
ulates cells not only to cause structural damage and promotes

oxidative stress but also destroy the redox balance and lead to
cell damage and apoptosis [13-15]. There are many closely
related antioxidant systems in the body. The main role of
antioxidant systems is to prevent oxidative damage to the
body by removing excess ROS from cells [16-18]. In fact,
the dynamic balance of oxidants and antioxidants in the
body is very important for neuroprotection [19-21]. The
key antioxidant enzymes in cells are SOD, CAT, and
GSH-Px [22-24]. ROS-mediated oxidative stress mainly
activates the inherent apoptosis pathway by releasing a
variety of prodeath factors into the cytoplasm of damaged
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mitochondria [25-27]. Among them, the PI3K/Akt path-
way is an important signal pathway to promote neuronal
survival. Studies have shown that it can affect cell survival
by inhibiting the expression of proapoptotic protein and
inducing the expression of antiapoptotic protein of Bcl-2
family [28-30].

As a new compound, AEE plays an active role in many
aspects [31-40]. AEE can prevent tail thrombosis induced
by kappa-carrageenan in rats [39]. At the same time, AEE
can attenuate thrombus induced with high-fat diet in rats
by regulating hemorheology and blood biochemistry [37].
With a further study, a rat model of blood stasis was estab-
lished and it was observed that AEE could alleviate the symp-
toms of blood stasis in rats [41]. It was also found that AEE
can inhibit agonist-induced platelet aggregation in rats by
regulating PI3K/AKkt signal pathways [33]. AEE has not only
the effects of anti-inflammation, antithrombosis, and anti-
blood stasis but also the effect of antiatherosclerosis and
other cardiovascular diseases. The previous studies proved
that AEE had an antioxidant effect and could reduce H,O,-
induced mitochondrial dysfunction by regulating Bcl-2 and
Nrf2 [32, 34]. It is not clear whether AEE can play a neuro-
protective role in neurodegenerative diseases. The purpose
of this study was to explore whether AEE can attenuate
H,0,-induced oxidative damage in PC12 cells and its possi-
ble mechanism.

2. Materials and Methods

2.1. Chemicals. 3% H,O, solution and dimethyl sulfoxide
were obtained from Sigma (St. Louis, MO). RPMI-1640 cul-
ture medium, 0.05%Trypsin-EDTA, and fetal bovine serum
(FBS) were from Gibco (Grand Island, NY, USA). One step
TUNEL apoptosis assay kit, puromycin dihydrochloride,
bicinchoninic acid assay kit, glutathione peroxidase kit, cata-
lase assay kit, DAPI staining solution, DAF-FM diacetate kit,
dihydroethidium, superoxide dismutase, and malondialde-
hyde assay kit were obtained from Beyotime (Shanghai,
China). Anti-Bax, anti-Bcl-2, and anti-Caspase-3 were from
Abcam (Cambridge, MA, USA). Anti-PI3K, anti-Akt, anti-
phosphorylation-PI3K, and antiphosphorylation-Akt were
purchased from Cell Signaling Technology, Inc. (Beverly,
MA, USA). Immobilon-PSQ transfer membrane was
obtained from Millipore (Billerica, MA, USA). An Annexin
V/FITC apoptosis detection kit was from BD Biosciences
(San Diego, CA, USA). PI3-kinase LY 294002 was purchased
from MedChemExpress LLC (New Jersey, USA). Lipofecta-
mine™ 3000 transfection reagent was purchased from
Thermo Fisher Scientific, Inc. (Invitrogen, USA). Lentivirus
control and PI3K shRNA (U6-MCS-Ubiquitin Cherry-
IRES-puromycin) were purchased from GeneChem (Shang-
hai, China).

2.2. Cell Cultures and Cell Treatment. PC12 cells were rou-
tinely maintained in RPMI-1640 medium containing 10%
FBS (v/v) at 37°C in a humidified atmosphere of 5% CO,
and then randomly divided into the control group, H,O,
group, and AEE pretreatment group.
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2.3. Cell Viability. Cell viability was determined via CCK-8
assay. Briefly, PC12 cells (1 x 10* cells/well) were plated on
a 96-well culture plate and incubated for 24 h. 10 uL. CCK-8
solution was added to each well. The number of viable cells
was assessed by the measurement of the absorbance at 450
nm.

2.4. TUNEL Staining. PC12 cells (5 x 10* cells/well) were
seeded into 12-well culture plates. After treatment, cells were
washed with PBS and fixed with 4% paraformaldehyde in
PBS at 25°C for 30 min. After the cells were washed with
PBS twice, 0.3% Triton X-100 PBS was added and incubated
at 25°C for 5 min. The wells were washed twice with PBS, and
TUNEL detection solution was added. After incubation of
cells at 37°C for 1h, DPAI staining solution was added and
incubated at room temperature for 20 min. The cells were
washed with PBS. Images were captured using a scanning
laser confocal microscope (LSM800, Carl Zeiss, Germany).

2.5. Flow Cytometric Analysis. PC12 cells were seeded into a
6-well plate. After treatments, PC12 cells were assessed using
the corresponding commercial kit according to the manufac-
turer’s protocols [34]. PC12 cells were sorted by a flow cyt-
ometer (BD FACSVerse, CA, USA), and the data were
analyzed with Flow]Jo 7.6.

2.6. Mitochondrial Membrane Potential (A¥m) Assays. The
A¥m was determined using MitoTracker® Red CMXROS
(Invitrogen; Thermo Fisher Scientific, Inc.). Briefly, the cells
were seeded in 12-well plates. MitoTracker® Red probe was
directly added into the culture media and incubated for 30
min at 37°C in the dark. Images were captured using a scan-
ning laser confocal microscope (LSM800; Carl Zeiss,
Germany).

2.7. Measurement of Intracellular Superoxide Anion and
Total Intracellular and Mitochondrial ROS Generation. Intra-
cellular and mitochondrial ROS generation and superoxide
anion were measured using a DCFH-DA or MitoSOX™ red
probe or Dihydroethidium (DHE) as previously described
[42].

2.8. Determination of MDA, SOD, GSH-Px, and CAT. The
activities of MDA, SOD, GSH-Px, and CAT in PC12 cells
were assessed using the corresponding commercial kits
according to the manufacturer’s protocols [43, 44].

2.9. Protein Expression Analysis. The expression of Bcl-2,
Bax, Caspase-3, PI3K, Akt, phospho-PI3K, and phospho-
Akt was assessed by western blot analysis. Cell samples were
lysed on ice with lysis buffer containing cocktail proteinase
inhibitors and protein phosphatase inhibitors (Thermo
Fisher Scientific, Inc., Rockford, USA). The protein concen-
tration was quantified using a bicinchoninic acid (BCA)
assay kit (Beyotime, Shanghai, China). Protein samples were
separated by SDS-PAGE using 4-20% precast gradient poly-
acrylamide gels (Shanghai Suolaibao Bio-Technology Co.,
Ltd., Shanghai, China). After separation by SDS-PAGE, pro-
teins were transferred to a PVDF membrane. The blots were
then incubated with primary antibodies and subsequently
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FIGURE 1: AEE pretreatment enhances the viability of PC12 cells induced by H,O,. (a) Effects of different concentrations of AEE on the
viability of PC12 cells. (b) Effects of AEE at different concentrations and at different times on H,O,-induced viability of PC12 cells. (c)
Effects of pretreatment with different concentrations of AEE on the viability of PCI12 cells induced by H,0,. *P <0.05 compared with
control group; “P < 0.05 compared with the H,O, group. “+”: with the treatments in the PCI12 cells; “~”: without the treatments in the

PC12 cells.

incubated with horseradish peroxidase- (HRP-) conjugated
secondary antibodies. The results were detected using
G:Box Chemi XRQ imaging system (Cambridge, Britain).

2.10. Cell Transfection. Lentiviral vectors expressing PI3K
shRNA or control shRNA were obtained from GeneChem
(Shanghai, China). Following the manufacturer’s protocol,
PC12 cells were cotransfected with lentivirus and packaging
vectors using Lipofectamine 3000. Lentiviruses were har-
vested 48h after transfection, centrifuged, and filtered
through 0.45 ym membrane filters (Millipore). Lentiviruses
were transduced in 50% confluent PCI12 cells. Stable cells
were selected by selected in 1 yg/mL puromycin.

2.11. Determination of Apoptosis after Inhibition of Signal
Pathway. The PI3K/Akt signaling pathways in the PC12 cells
were inhibited by short hairpin RNA (shRNA) and inhibitor

LY 294002 against PI3K. In this part, it was divided into
eleven groups. These PC12 cells were treated with 4.0 uM
AEE and H,0, according to the protocol described in Section
2.2,

2.12. Statistical Analysis. The statistical analysis was per-
formed using SAS 9.2 software (SAS Institute Inc., Cary,
NC, USA). Statistical significance was defined as P value <
0.05. The statistical analyses were applied to selected pairs.

3. Results

3.1. AEE Protects the Cell Viability of H,0,-Stimulated PC12
Cells. As shown in Figure 1(a), the different concentrations of
AEE had no significant effect on PC12 cell viability. Com-
pared with the control group, 100 uM H,O, treatment for
12h could significantly decrease the viability of PC12 cells
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Figure 2: Continued.
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FIGURE 2: AEE pretreatment attenuates H,0,-induced apoptosis in PC12 cells. (a, b) Apoptosis was detected by DAPI and TUNEL staining.
Scale bar = 20 nm. (c, d) Apoptotic assay by flow cytometry. *P < 0.05 compared with the control group; *P < 0.05 compared with the H,0,

group. “+”: with the treatments in the PC12 cells; “~”: without the treatments in the PC12 cells.

(Figures 1(b) and 1(c)). As shown in Figure 1(b), the optimal
working time for AEE was 8h. Compared with the H,O,
group, the viability of PC12 cells increased significantly after
being pretreated with different concentrations of AEE (1.0,
2.0, and 4.0 uM) for 8 h (Figures 1(b) and 1(c)).

3.2. AEE Inhibits H,0,-Induced Apoptosis in PC12 Cells. The
apoptosis morphology was evaluated by DAPI staining.
Compared with the control group, the nucleus was signifi-
cantly smaller, the brightness was enhanced, and there were
characteristics of apoptosis in the H,O, group (Figure 2(a)).
To assess apoptosis-induced DNA fragmentation, TUNEL
assay was performed. Compared with the control group,
the number of TUNEL-positive cells (red fluorescence) of
PC12 cells treated with H,O, increased significantly
(Figures 2(a) and 2(b)). The results of flow cytometry showed
that H,0, can increase significantly PC12 cell apoptosis,
while AEE can inhibit the H,0,-induced PC12 cell apoptosis
(Figures 2(c) and 2(d)). Moreover, the different concentra-
tions of AEE (1.0, 2.0, and 4.0 M) can inhibit the apoptosis
of PC12 cells induced by H,0,.

3.3. AEE Antagonizes H,0 ,-Induced Oxidative Stress in PC12
Cells. To verify the changes of the redox state of PC12 cells,
the levels of superoxide anion, total reactive oxygen species,
and mitochondrial reactive oxygen species (mtROS) were
detected. AEE alone did not change the levels of superoxide
anion, intracellular ROS, and mtROS. Compared with the
control group, 100uM H,O, could significantly increase
the levels of superoxide anion, intracellular total ROS, and
mtROS. Pretreatment with 1.0, 2.0, and 4.0 uM AEE for 8h
could significantly inhibit the production of superoxide
anion, total ROS, and mtROS induced by H,O,
(Figures 3(a)-3(d), 3(f), and 3(h)). In addition, the mito-
chondrial membrane potential (A¥m) was further detected.
The results showed that AEE alone did not affect the A¥m
of PC12 cells (Figures 3(e) and 3(g)). AEE pretreatment
could significantly increase A¥m in PC12 cells, compared
with the H,0, group (Figures 3(e) and 3(g)). The results

showed that AEE could significantly alleviate the mitochon-
drial dysfunction of PCI12 cells via inhibiting intracellular
ROS, mtROS, and superoxide anion levels.

3.4. AEE Enhances the Enzymatic Activities of ROS-
Scavenging Enzymes in H,O,-Stimulated PCI2 Cells. The
activities of MDA, SOD, GSH-Px, and CAT in cells were
detected to explore the possible mechanism of AEE attenuat-
ing H,0,-induced injury in PC12 cells. H,0, could signifi-
cantly increase the activity of MDA and decrease the
activity of SOD, GSH-Px, and CAT, compared with the con-
trol group. However, AEE pretreatment could significantly
increase the activities of SOD, GSH-Px, and CAT and
decrease the activity of MDA (Figures 4(a)-4(d)). These
results suggest that AEE pretreatment may attenuate H,O,-
induced oxidative damage in PCI2 cells by increasing the
enzymatic activities of ROS-scavenging enzymes.

3.5. AEE Regulates the Expression of Apoptosis-Related
Proteins in H,0,-Stimulated PC12 Cells. To further explore
the molecular mechanism of AEE attenuating H,O,-induced
apoptosis in PC12 cells, we used western blotting to detect
the expression of Caspase-3, Bcl-2, and Bax. As shown in
Figures 5(a) and 5(b), compared with the control group,
H,0, could significantly increase the expression of Bax and
Caspase-3 and decrease the expression of Bcl-2. Compared
with the H,0, group, AEE could significantly reverse the
above changes.

3.6. Effect of AEE on the PI3K/Akt Signal Pathway in PCI2
Cells Stimulated by H,O,. The PI3K/Akt signaling pathway
plays an important role in regulating neuronal apoptosis
[45, 46]. As shown in Figure 5, H,O, significantly decreased
the expression of p-Akt and p-PI3K but had no significant
effect on the expression of Akt and PI3K, compared with
the control group. Compared with the H,0, group, AEE pre-
treatment could significantly upregulate the expression of p-
Akt and p-PI3K in PC12 cells (Figures 5(a) and 5(b)). Inter-
estingly, AEE also had no significant effect on the expression
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F1GURE 4: AEE increases the activity of scavenging ROS enzyme in PC12 cells induced by H,0O,. (a) The level of MDA was measured. (b) The
activity of SOD was measured. (c) The activity of GSH-Px was measured. (d) The activity of CAT was measured. * P < 0.05, compared with the
control group; “P < 0.05, compared with H,O, group. “+”: with the treatments in the PC12 cells; “~”: without the treatments in the PC12 cells.

of Akt and PI3K in PCI12 cells. These results showed that  flow cytometry showed that compared with the control
AEE may have a protective effect on H,0,-induced PC12  group, the apoptosis rate of PC12 cells in the H,O, group
cells via the PI3K/Akt pathway. increased significantly, while the AEE+LY294002 treatment

PI3K inhibitors LY294002 and shRNA were used to  group and AEE+PI3K shRNA group could not inhibit the
inhibit the expression of PI3K (Figure 6(a)). The results of  apoptosis of PC12 cells induced by H,O, (Figures 6(b) and
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6(c)). The above results suggested that AEE can alleviate the
oxidative damage of PC12 cells induced by H,O, via the
PI3K/Akt pathway.

4. Discussion

The above studies suggested that AEE attenuates H,O,-
induced oxidative damage in PCI12 cells via inhibiting
oxidative stress. It is mainly manifested in inhibiting the
production of superoxide anion, MDA, intracellular ROS,
and mtROS and increasing the activity of CAT, SOD,
and GSH-Px.

PC12 cell line is derived from rat pheochromocytoma
[18, 47, 48]. Because of the high permeability of the plasma
membrane to H,0,, H,0,-induced PC12 cells are generally
considered to be an ideal cell model for studying neurode-
generative diseases [49-51]. Studies showed that the imbal-
ance between free radical accumulation and antioxidant

defense seems to be a link between cell death and the progres-
sion of neurodegenerative diseases [1, 9, 52]. ROS and the
resulting oxidative stresses play an important role in apopto-
sis. H,O, is an important source of intracellular ROS,
because it can penetrate the cell membrane and can be con-
verted into other free radicals, such as superoxide anions
and hydroxyl radicals [53, 54]. H,O, can also cause serious
damage to cells by attacking biomolecule membranes and
eventually lead to apoptosis [55, 56]. The results of cell viabil-
ity showed that the viability of PC12 cells decreased with
approximately 50% after 12h of 100 uM H,O, stimulation.
AEE pretreatment could significantly increase the viability
of PCI12 cells induced by H,0,.

Excessive ROS can lead to cell dysfunction and apoptosis,
especially in neurodegenerative diseases [57-59]. Previous
studies found that H,O, could cause excessive accumulation
of intracellular ROS, mtROS, and superoxide anion in PC12
cells. AEE pretreatment could reduce the increase of
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F1GURE 7: The molecular mechanism of AEE inhibiting H,O,-induced apoptosis in PC12 cells.

intracellular ROS, mtROS, and DHE in PCI12 cells induced
by H,O,. MDA can cause damage to the cell membrane
[60-62]. It is also an important biomarker to evaluate the
level of oxidative stress in cells [61, 63, 64]. In addition, there
are a variety of scavenging active oxygen enzymes in organ-
isms, such as SOD, CAT, and GSH-Px [65-67]. Under nor-
mal physiological conditions, these antioxidant enzymes
work together to maintain the redox balance of the body
[68]. SOD catalyzes the conversion of superoxide radicals to
0, and H,O,, while CAT catalyzes dismutation reactions of
H,0, into H,O [69, 70]. GSH-PX prevents the formation
of toxic hydroxyl and peroxyl radicals via providing electrons
to H,0O, and lipid peroxides [71]. Studies showed that H,O,
induced PC12 cells could produce excessive MDA, intracel-
lular ROS, and mtROS and significantly reduce the activities
of SOD, GSH-Px, and CAT. AEE pretreatment not only
decreased the levels of MDA, intracellular ROS, and mtROS
of PC12 cells but also increased the activities of SOD, GSH-
Px, and CAT. As previously reported, the accumulation of
ROS can lead to mitochondrial dysfunction by depolarizing
mitochondrial membrane potential [72, 73]. Mitochondrial
membrane potential (A¥m) is a sensitive index to measure
the function of mitochondria [74, 75]. The results showed
that there was an obvious apoptosis in PC12 cells after

H,0, stimulation, and the cell viability and A¥m decreased.
As expected, AEE pretreatment could reduce H,O,-induced
apoptosis. These results suggested that AEE may reduce the
apoptosis of PC12 cells induced by H,O, via inhibiting the
excessive production of ROS.

The PI3K/Akt signaling pathway plays an important role
in cell survival, differentiation, proliferation, and apoptosis
[76-78]. Phosphatidylinositol 3 kinase (PI3Ks) belongs to
the lipid kinase family, which phosphorylates inositol phos-
phate at the D-3 position of the inositol head group, resulting
in the production of the D-3 phosphate. PI3K mediates extra-
cellular signal transduction and regulates a variety of cellular
events, including cell mitosis, cell survival, and membrane
transport. According to the enzyme domain structure and
substrate specificity of PI3K, it can be divided into three cat-
egories in mammals (I-III). Among them, the class I subfam-
ily is the most widely studied. The class I subfamily consists
of four catalytic subunits, including three IA subunits (p110
@, p110 3, and p110 &) and one IB subunit (p110 y). When
phosphorylation of PI3K increases, it transduces signals
through inositol 3-phosphate-dependent protein kinase-1
(PDK1), a serine/threonine kinase. PDK1 is recruited to the
cell membrane after PI3K activation, where it phosphorylates
and activates Akt, the main medium of the PI3K signal
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transduction pathway. Akt, a serine/threonine kinase, is piv-
otal in cellular metabolism, growth, and survival [79, 80].
When Akt is activated, it plays a key role in PI3K-mediated
signal transduction [81-83]. The phosphorylation of AKT
can increase the expression of Bcl-2 and inhibit the expres-
sion of Bax in mitochondria. LY294002 is not only a compet-
itive DNA-PK inhibitor but also a commonly used PI3K drug
inhibitor, which acts on the ATP binding site of PI3K
enzyme, thus selectively inhibiting PI3K-Akt connection.
Pretreatment with LY294002 for 2h significantly counter-
acted the protective effect of AEE. Consistent with this, using
shRNA to knock down PI3K has a similar result. H,O, treat-
ment of PC12 cells resulted in excessive production of intra-
cellular ROS. The phosphorylation of PI3K can be inhibited
by excessive production of ROS. However, AEE pretreatment
could inhibit the decrease of PI3K phosphorylation induced
by H,O,. With the recovery of mitochondrial membrane
potential, mitochondria will reduce the release of cytochrome
¢ and inhibit the activation of caspase family. At the same
time, the enzyme activity of CAT, SOD, and GSH-Px was
changed by AEE pretreatment, which further eliminated the
excess ROS in the PC12 cells (Figure 7). The results showed
that AEE can alleviate H,0,-induced apoptosis of PC12 cells
via upregulating the expression of p-PI3K, p-Akt, and Bcl-2
and downregulating the expression of Caspase-3 and Bax.

5. Conclusion

AEE may inhibit oxidative stress by regulating the PI3K/Akt
signal pathway, thus protecting PC12 cells from apoptosis
induced by H,0,. It is suggested that AEE may be a new
potential drug to treat neurodegenerative diseases caused by
oxidative stress.
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