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Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been recognized as potent antioxidant agents. Since SGLT2i are
nephroprotective drugs, we aimed to examine the urine antioxidant status in patients with type 2 diabetes mellitus (T2DM). One
hundred and one subjects participated in this study, including 37 T2DM patients treated with SGLT2i, 31 T2DM patients not using
SGLT2i, and 33 healthy individuals serving as a control group. Total antioxidant capacity (TAC), superoxide dismutase (SOD),
manganese superoxide dismutase (MnSOD), free thiol groups (R-SH, sulfhydryl groups), and catalase (CAT) activity, as well as
glucose concentration, were assessed in the urine of all participants. Urine SOD and MnSOD activity were significantly higher among
T2DM patients treated with SGLT2i than T2DM patients without SGLT2i treatment (p = 0:009 and p = 0:003, respectively) and to
the healthy controls (p = 0:002 and p = 0:001, respectively). TAC was significantly lower in patients with T2DM treated with SGLT2i
when compared to those not treated and healthy subjects (p = 0:036 and p = 0:019, respectively). It could be hypothesized that the
mechanism by which SGLT2i provides nephroprotective effects involves improvement of the SOD antioxidant activity. However,
lower TAC might impose higher OS (oxidative stress), and elevation of SOD activity might be a compensatory mechanism.

1. Introduction

Oxidative stress (OS) is defined as an imbalance between
antioxidants and oxidants in favor of the latter, which leads

to disruption of redox signaling and causes molecular dam-
age [1]. Reactive oxygen species (ROS) constitute metabolites
produced during physiological and metabolic processes and
are neutralized by the antioxidant system [2]. OS occurs as
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a consequence of insufficient neutralization of ROS. It is well
known that OS is involved in the development of diabetic
vascular complications [2]. OS assessment can be based on
measurement of ROS concentration, activities of antioxidant
enzymes, and concentration of nonenzymatic antioxidative
compounds [1]. Sodium-glucose cotransporter 2 inhibitors
(SGLT2i), a new class of antidiabetic drugs, are thought to
possess antioxidant properties. However, data on this issue
come mostly from animal studies [3–6]. Inhibition of
sodium-glucose cotransporter 2 (SGLT2) in proximal renal
tubules increases urinary glucose excretion and decreases
glycemia [7]. It is already known that besides the hypoglyce-
mic effect, SGLT2i also provides cardiovascular benefits and
nephroprotective effects through multiple biochemical
pathways [8–13]. It has recently been revealed in large,
randomized, placebo-controlled studies with canagliflozin
[8–10], dapagliflozin [11], and empagliflozin [12, 13] that
these drugs, in addition to their already proven cardioprotec-
tive properties, also exert substantial nephroprotective
effects. These effects seem to be independent of glucose-
lowering efficacy, but the exact mechanism of this action
remains to be clarified. One of the hypotheses of these protec-
tive cardiorenal effects may be the potential for OS reduction
preventing the free-radical generation [3–5] and enhanced
antioxidant defense by increased activity of protective
enzymes [14]. Unfortunately, studies assessing this phenom-
enon in patients treated with SGLT2i are scarce.

Superoxide is the primary ROS that links hyperglycemia
and pathways engaged in developing vascular complications
of T2DM. In turn, superoxide dismutase (SOD) is important
for each cell because it leads to superoxide scavenging, and its
isoform, manganese superoxide dismutase (MnSOD) local-
ized in mitochondria, is considered the first-line defense
against ROS [15]. Other important protective mechanisms
include catalase (CAT) [16] and free thiol groups (R-SH,
sulfhydryl groups) [17]. Activities of the enzymes mentioned
above and concentrations of nonenzymatic factors can be
measured to assess the redox status and intensiveness of an
OS. It is also possible to measure total antioxidant capacity
(TAC), which delivers information related to overall radical
removal ability [18]. To date, most of the studies that demon-
strate OS reduction caused by SGLT2 inhibition have been
conducted on animal models with the use of blood and tis-
sues of the studied animals [3–6]. There have also been
attempts to examine OS in urine, which is tempting since it
is a noninvasive, inexpensive, and simple to conduct assess-
ment [19–24]. In the presented study, we hypothesized that
treatment with SGLT2i would impact urinary antioxidant
enzymes and nonenzymatic biomolecules as indicators of
the antioxidant barrier. Urine examination was chosen
because of its efficiency, material collection simplicity, and
the possibility of using this method in further studies on a
larger group of patients.

2. Materials and Methods

2.1. Subjects. This was an observational study of patients
treated in the Outpatient Diabetology Clinic in the Univer-
sity Hospital in Zabrze, Poland. The consecutive eligible

patients who fulfilled the inclusion criteria were invited to
participate in the study. There were three groups of study
participants: patients with T2DM treated with SGLT2i
(group no 2), diabetic controls (i.e., patients with T2DM
not treated with SGLT2i) (group no 1), and healthy controls
(group no 3). Consecutive patients coming for a routine visit
in the outpatient diabetology clinic who fulfilled the inclusio-
n/exclusion criteria based on the medical documentation and
interview were assigned into the groups. Healthy controls
were recruited from the medical staff of the Hospital where
the Outpatient Diabetology Clinic is located. The informa-
tion about the recruitment process could be found on leaflets
located in the Outpatient Diabetology Clinic.

The inclusion criteria for the study groups were age ≥
18 years, T2DM of at least of 12 months duration, and treat-
ment with SGLT2i for at least one month. The inclusion cri-
teria for the diabetic controls were age ≥ 18 years, T2DM of at
least of 12 months duration, and treatment with any antidia-
betic drug except SGLT2i.

The exclusion criteria for the study groups were
eGFR ðestimated glomerular filtration rateÞ < 60ml/min/1:73
m2, clinical signs of urinary tract infection and any other
ongoing acute illness since these conditions could directly
affect urine OS. The inclusion criteria for the control group
were as follows: age ≥ 18 years and participants who had
recent (assessed within less than three months) serum creati-
nine concentration within the reference range (assessed as a
routine screening method performed in medical staff). The
exclusion criteria for the control group was as follows: any
chronic or acute illness at the time of enrolment into the study.

The medical history, including data regarding diabetes
duration, demographic characteristics, comorbidities, and
concomitant medications, was obtained from the medical
records. HbA1c (glycated hemoglobin A1c) was assessed as a
routine part of outpatient diabetes management. Body mass
and height were measured by standard methods. BMI (body
mass index) was calculated among all participants, and the
first morning urine void was collected on the day of the visit
to the Outpatient Diabetology Clinic. Healthy volunteers had
body mass and height measured by standard methods and
BMI calculated, and first morning urine void collected on
the day of informed consent was signed (leaflets advertising
the study contained instructions on how to collect the first-
morning urine void). The study protocol was exempt from
the necessity of obtaining the approval of the Ethics Commit-
tee by the Medical University of Silesia due to its observational
nature (KNW/0022/KB/33/19). Informed consent was
obtained from all participants before inclusion into the study.

2.2. Biochemical Analysis—Blood Samples. Venous blood
samples were taken as a routine part of diabetes management
for evaluation of plasma HbA1c and serum creatinine con-
centration with subsequent eGFR calculation during the
patient’s visit to the outpatient diabetology clinic. HbA1c
was measured with the HLPC (high-performance liquid
chromatography) method [25], creatinine was measured
with Jaffe’s colorimetric assay [26] (Cobas Integra 800, Roche
Diagnostics®), and eGFR was calculated according to CKD-
EPI formula [27].
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2.3. Biochemical Analysis—Urine Samples. The urine samples
were collected from the fresh urine, the first void of the day
into 75ml sterile containers. All urine specimens were stored
frozen at −80°C until testing at the end of the collection
period. All urine samples were analyzed for glucose, creati-
nine with subsequent urinary albumin-to-creatinine ratio
(UACR) calculation as well as SOD, MnSOD, TAC, R-SH,
and CAT.

2.3.1. Urine Glucose Concentration. Urine glucose concentra-
tion was measured by the colorimetric enzymatic method
(Alpha Diagnostics® test) [28]. The glucose oxidase enzyme
catalyzes the oxidation of glucose to gluconic acid and hydro-
gen peroxide [29]. The hydrogen peroxide oxidizes an oxy-
gen acceptor to give chromogenic oxidation products; the
intensity of its color is proportional to the amount of glucose
[29]. Glucose concentration was expressed as milligram per
decilitre of urine (mg/dl).

2.3.2. UACR Measurement. Urine albumin concentration
was measured with the turbidimetric immunoassay [30]
(Cobas c501,Roche Diagnostics®), and urine creatinine con-
centration was determined by the Jaffe colorimetric assay
[26]. UACR (mg/g creatinine) that has been calculated as
albumin concentration (mg/L) divided by creatinine concen-
tration (g/L) according to guidelines [30, 31].

2.3.3. Urine Total SOD and MnSOD Activity. Urine total
SOD activity, which is constituted by activities of all SOD iso-
zymes, that is, extracellular SOD and both intracellular iso-
forms CuZnSOD and MnSOD, was measured according to
the Oyanagui method [32, 33]. Superoxide anion, with the
participation of xanthine oxidase, reacts with hydroxylamine
creating nitrate ions, which after connection with naftyleno-
diamin and sulfanilic acid, produces color; for MnSOD
measurement, potassium cyanide was used to deactivate
other enzymes, including CuZnSOD and extracellular SOD
[32, 33]. Reading was calculated against a blank probe con-
sisted of bidestilled water, measured at a wavelength of 560
nm with Victor X3 Perkin Elmer® reader (Waltham, Mass.,
USA). This method is completely specific for SOD. The
enzyme activity was expressed as nitrite units (NU) per ml
of urine (NU/ml). One NU means the ability to 50% reduc-
tion of nitrate ion production in the presence of SOD.

2.3.4. Urine TAC. Urine TAC was measured according to the
Erel method. First, ABTS (2,2′-azinobis(3-ethylbenzothiazo-
line-6-sulfonic acid)) is oxidized to ABTS·+ radical cation by
hydrogen peroxide [34]. Spontaneous reduction of ABTS·+
and thus, decolorization of its green solution is then acceler-
ated by antioxidants, with a certain rate, depending on their
concentrations and antioxidant capacities [34]. Color change
was measured as a change of absorbance at a wavelength of
650nm on the Victor X3 Perkin Elmer® reader. The result
was determined from the standard curve, and an assay was
calibrated by Trolox. TAC was expressed as mmol/l urine.

2.3.5. Urine Free Thiol Groups. Urine free thiol group (R-SH,
sulfhydryl groups) concentration was measured according to
the Koster modified half-automatic method using the Victor

X3 Perkin Elmer® reader at a wavelength of 405nm [35].
This method is based on the reduction of DTNB (5,5′
-ditiobis(2-nitrobensoid) acid) by chemical compounds con-
taining sulfhydryl groups, and as a result, the yellow 5-tio-2-
nitrobensoid anion is produced [35]. R-SH concentration
was calculated from the standard curve; the sample was cali-
brated with glutathione. R-SH concentration was expressed
as μmol/l urine.

2.3.6. Urine CAT Activity. CAT activity was measured
according to the peroxidase method with Purpald (4-
amino-3-hydrazino-5-mercapto-1,2,4-triazole) as chromo-
gen [36]. This method is based on the reaction of the enzyme
with methanol in the presence of an optimal concentration of
hydrogen peroxide [36]. Produced formaldehyde was mea-
sured with Victor X3 Perkin Elmer® reader at the wavelength
of 560 nm. Calibration was performed with formaldehyde.
CAT activity was expressed as IU/l urine.

2.4. Statistical Analysis. The descriptive statistics of continu-
ous variables were expressed as median (min-max) and 95%
confidence interval (CI). The Shapiro-Wilk test was used to
verify the normality of data distribution. For normally dis-
tributed variables, the independent Student t-test was applied
for comparisons between groups. The χ2 Pearson’s test was
used for comparison between groups for categorized vari-
ables. The homogeneity of variance was checked using
Levene’s test. When more than two subgroups were com-
pared, analysis of variance (ANOVA) and posthoc verifica-
tion with the least significant difference test (LSD) and
Bonferroni correction was utilized. Pearson’s correlation
coefficient measured the strength of the association between
two variables. p value <0.05 was considered significant.
Statistical analysis was conducted using Statistica Statsoft®
version 13.3.

3. Results

3.1. Population Characteristics. The study included 101 par-
ticipants. The demographic and clinical characteristics of
the study subjects are described in Table 1. There were 37
patients (group 2) with T2DM treated with SGLT2i for at
least 1 month (empagliflozin, n = 19 and canagliflozin, n =
18) and a control group of 31 patients (group 1) with
T2DM not treated with SGLT2i and 33 healthy individuals
(group 3) . There were significantly fewer men in the control
group of healthy individuals than the patients treated
(p = 0:012) or not treated (p = 0:0055) with SGLT2i. There
was also a significant difference in age between the studied
groups of patients and the healthy control group
(p = 0:0012 for comparison of T2DM patients treated with
SGLT2i and healthy controls and p = 0:0001 in case of com-
paring T2DM not treated with SGLT2i to healthy controls).
There was also a significant difference in diabetes duration
between patients treated or not with SGLT2i (p = 0:032).
The only comorbidity among patients with diabetes was
hypertension, and patients treated and not treated with
SGLT2i did not differ in terms of the prevalence of hyperten-
sion, as well as the number and class of blood pressure-
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lowering medications. Healthy volunteers were not using any
drugs in the long-term.

ACEI: angiotensin-converting enzyme inhibitors; ARB:
angiotensin II receptor blockers; BMI: body mass index;
eGFR: estimated glomerular filtration rate; HbA1c: glycated
hemoglobin A1c; T2DM: type 2 diabetes mellitus; SGLT2i:
sodium-glucose cotransporter 2 inhibitor; UACR: urine
albumin-to-creatinine ratio; n: number of patients; p value:
level of significance; ∗χ2, ∗∗ANOVA, ∗∗∗student t-test. Con-
tinuous variables are presented as median (min-max; 95%
CI).

3.2. Antioxidant Status. Table 2 displays the comparison of
urine antioxidant status and urine glucose concentration
between both T2DM patient groups and healthy controls.
Presented differences are independent of patients’ age, which
was proved in the ANOVA analysis.

T2DM: type 2 diabetes mellitus; SGLT2i: sodium-glucose
cotransporter 2 inhibitors; SOD: superoxide dismutase;
MnSOD: manganese superoxide dismutase; TAC: total anti-
oxidant capacity; R-SH: sulfhydryl groups; CAT: catalase; n:
number of patients. Continuous variables are presented as
median (min-max; 95% CI).

LSD tests’ significance: ap < 0:01 (between (1) and (2)),
bp < 0:001 (between (2) and (3)), cp < 0:01 (between (1) and
(2)), dp < 0:001 (between (2) and (3)), ep < 0:01 (between
(1) and (2)), fp < 0:05 (between (2) and (3)), gp < 0:05
(between (1) and (3)), hp < 0:01 (between (2) and (3)),
ip < 0:001 (between (1) and (2)), jp < 0:001 (between (1)
and (3)), and kp < 0:001 (between (2) and (3)).

We also performed the analysis of the possible relation-
ship between glucosuria and the activities of the antioxidant

enzymes. Analysis revealed significant positive correlations
with CAT, SOD, and MnSOD (Figures 1, 2, and 3, respec-
tively). SOD and MnSOD positive correlation stay in line
with a significantly higher level of these enzymes in patients
treated with SGLT2i.

4. Discussion

In this study, we report that the urine antioxidant status in
patients treated with SGLT2i differs significantly from the
one measured in T2DM patients not treated with SGLT2i,
as well as from healthy controls. To date, only a limited num-
ber of studies have attempted to assess antioxidant enzyme
activities in the urine of patients with T2DM, and neither
one was performed in patients treated with SGLT2i. Hence,
the direct comparison of our findings with other studies is
not possible. Therefore, this discussion is focused on antiox-
idant status in blood and tissues in studies performed on ani-
mal models. In the presented study, among measured
antioxidative enzymes, only CAT activity was comparable
between the studied groups, whereas urine SOD andMnSOD
activity was significantly higher among T2DM patients
treated with SGLT2i compared to diabetic controls not
receiving SGLT2i and to healthy controls. TAC was signifi-
cantly lower in patients with T2DM treated with SGLT2i
when compared to those untreated with SGLT2i and healthy
subjects. In the case of R-SH, its concentration was signifi-
cantly lower in patients with T2DM treated with SGLT2i
than healthy controls. Yet, among patients with T2DM
treated with SGLT2i and treated otherwise, the difference
was not statistically significant.

Table 1: Demographic and clinical characteristics of the study subjects.

Variables
T2DM patients not treated with

SGLT2is (1) n = 31
T2DM patients treated with

SGLT2is (2) n = 37
Healthy controls (3)

n = 33 p value

Male [n (% men)] 17 (55) 22 (59) 7 (21) <0.01∗

Mean age [years]
60.0 (42.0-80.0;

95% CI: 56.7-62.7)
65.0 (39.0-78.0;

95% CI: 60.4-66.1)
51.0 (40.0-63.0;

95% CI: 49.3-53.2)
<0.001∗∗

Diabetes duration [years]
6.0 (0.00-20.00;
95% CI: 5.8-10.2)

13.0 (3.0 – 23.0;
95% CI: 27.8-31.1)

— <0.01∗∗∗

HbA1c [%]
7.9 (6.2-11.4;

95% CI; 7.6-8.6)
7.6 (6.4-10.0;

95% CI: 7.3-7.9)
— >0.05∗∗∗

BMI [kg/m2]
29.7 (22.8-42.5;

95% CI: 28.5-31.6)
28.7 (21.9-52.7;

95% CI: 27.8-31.3)
26.6 (21.6-30.1;

95% CI: 25.4-27.0)
<0.001∗∗

eGFR [ml/min/1,73m2]
90.0 (62.3-106.1;
95% CI: 82.3-91.0)

92.5(62.1.3-113.7;
95% CI: 82.8.-92.6)

91,n(71.6-115.7;
95% CI: 85.8-93.7)

>0.05∗∗

Urinary albumin
concentration [mg/l]

6.3 (0.2-16.5;
95% CI: 4.9-8.3)

4.2 (0.8-13.4;
95% CI: 3.8-6.2)

4.3 (1.2-9.4;
95% CI: 4.0-5.4)

>0.05∗∗∗

Urinary creatinine
concentration [g/l]

0.5 (0.1-0.7;
95% CI: 0.4-0.5)

0.4 (0.1-0.7;
95% CI: 0.4-0.5)

0.4 (0.2-0.7;
95% CI: 0.4-0.5)

>0.05∗∗∗

UACR [mg/g]
13.3 (0.7-25.1;

95% CI: 10.6-15.3)
11.8 (1.8-21.8;

95% CI: 9.4-12.9)
10.4 (2.1-15.1;

95% CI: 9.3-11.4)
>0.05∗∗∗

ACEI or ARB [n (%)] 8 (25.8) 10 (27.0) 0 (0) >0.05∗

Beta-blockers [n (%)] 4 (12.9) 5 (13.5) 0 (0) >0.05∗

Hypertension [n (%)] 10 (32.0) 11 (30.0) 0 (0) >0.05∗
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On the other hand, R-SH concentration was significantly
lower in patients with T2DM not using SGLT2i than healthy
individuals. This observation might suggest that R-SH con-
centration is related rather to diabetes itself than to the mode
of antidiabetic treatment. Yet, it needs further studies in
larger groups of patients.

Since the results stemming from the animal studies
implicate that SGLT2i mode of action is to reduce the OS
[3–6], in this context, higher activity of the mentioned
enzymes is surprising because this suggests that the OS is
actually higher under this treatment. Previous studies per-
formed in patients with diabetes revealed that TAC was lower
among patients with chronic renal failure on maintenance
dialysis [37], and total R-SH group concentration in urine
of patients with diabetic kidney disease was similar to healthy
subjects (although its serum concentration was lower in
patients with diabetes) [20]. Similarly, other studies indicate

that decreased systemic R-SH groups directly reflect
increased whole body OS [38–41]. On the other hand, Shin
et al., in their studies on animal models, demonstrated that
dapagliflozin reduced OS by increasingMnSOD, Cu/ZnSOD,
and catalase expression in renal tissues of animals with dia-
betic kidney disease [5]. As mentioned in the introduction,
in addition to an already known protective effect in cardio-
vascular diseases, SGLT2i were recently found to have
nephroprotective properties. ACEI (angiotensin-converting
enzyme inhibitors), another class of nephroprotective agents,
also contributes to protection against oxidative stress, for
example, leading to the enhancement of SOD activity [42].
Therefore, one might hypothesize that for SGLT2i, the case
might be similar. However, it must be kept in mind that this
association was observed in blood, not in urine.

Also, the data on antioxidant enzyme activities in diabe-
tes is controversial, and studies present equivocal results.

Table 2: Comparison of antioxidant status and glucose concentration in urine among studied groups.

Variables
T2DM patients not treated with

SGLT2i (1), n = 31
T2DM patients treated with

SGLT2i (2), n = 37
Healthy controls (3),

n = 33 p ANOVA

Total SOD [NU/ml]
25.2 (8.9-35.8;

95% CI: 21.1-26.2)a
28.5 (16.7-36.0;

95% CI: 26.1-29.4)a,b
23.2 (9.7-25.1;

95% CI: 20.2-25.2)b
<0.01

MnSOD [NU/ml]
22.6 (8.6-35.9;

95% CI: 19.1-24.4)c
27.1 (14.3-35.9;

95% CI: 24.9-28.5)c,d
21.6 (8.34-35.1;

95% CI: 18.8-23.9)d
<0.001

TAC [mmol/l]
9.9 (0.0-45.8;

95% CI: 7.9-14.6)e
7.9 (0.0-29.1;

95% CI: 6.5-11.7)e,f
9.2 (0.4-51.2;

95% CI: 8.4-15.2)f
<0.05

R-SH [μmol/l]
1.7 (0.0-51.0;

95% CI: 4.5-16.2)g
1.9 (0.0-54.7;

95% CI: 3.4-11.8)h
13.6 (0.0-117.9;

95% CI: 10.8-30.6)g,h
<0.05

CAT [IU/l]
2.9 (1.0-8.4;

95% CI: 2.5-3.6)
3.4 (1.3-16.4;

95% CI: 3.2-4.9)
2.6 (0.6-9.5;

95% CI: 2.3-3.6)
>0.05

Urinary glucose
concentration [mg/dl]

305 (49.0-3346.3;
95% CI: 269.9-897.7)i,j

2699.3 (85.7-3447.7;
95% CI: 2190.9-2742.0)i,k

2.8 (0.0-9.4
95% CI: 2.0-3.7) j,k <0.001
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Figure 1: Correlation between urine CAT activity and urine glucose concentration in a group of patients treated with SGLT2i (p < 0:001).
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Sundaram et al. [43] revealed in their experiment that plasma
and erythrocyte SOD and CAT activities were decreased in
patients with diabetes when compared to the nondiabetics.
Similarly, Hartnett et al. [44] found reduced SOD activity
in patients with diabetes. They suggested that increased activ-
ity of SOD might serve as a compensatory mechanism what
was also mentioned as a reason for the elevation of plasma
SOD activity in patients with T2DM in the study by Turk
et al. [45].

While focusing on urine antioxidant activity studied to
date in patients with diabetes, it is worth mentioning the
study performed by Gul et al., who measured urinary antiox-
idant enzyme activities in T2DM subjects with urinary tract
infection compared them with healthy subjects [46]. These
authors revealed that both SOD and CAT activities were sig-
nificantly lower in T2DM subjects with urinary tract infec-
tion than healthy controls, suggesting that elevated OS
caused enzyme consumption [46]. Liu et al. demonstrated a
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Figure 2: Correlation between urine SOD activity and urine glucose concentration in a group of patients treated with SGLT2i (p < 0:001).
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Figure 3: Correlation between urine MnSOD activity and urine glucose concentration in a group of patients treated with SGLT2i (p < 0:001).
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higher concentration of OS biomarkers in the urine of T2DM
patients with vascular complications as compared to those
without it [24].

Additionally, since SGLT2i treatment leads to glucosuria,
we performed a correlation analysis of glucosuria and antiox-
idant enzyme activity, which revealed significant positive
correlations with respect to CAT, SOD, and MnSOD. These
positive correlations are consistent with significantly higher
SOD and MnSOD activity among patients treated with
SGLT2i, whereas CAT activity seemed not to be affected by
this treatment. Because no information regarding glucosuria
and OS could be found in the literature, we can only hypoth-
esize that glucosuria might stimulate OS and antioxidative
defense by increasing SOD and MnSOD activity. Proximal
tubules under treatment with SGLT2i are largely protected
from glucose toxicity since their uptake by these cells is min-
imized. At the same time, tubular filtrate that reaches more
distally located nephron segments is significantly enriched
with glucose. Most of the recent interest concerning glucose
handling by the kidney has been focused on the glucose
uptake in the proximal nephron and the role of SGLT1 and
SGLT2. Still, absorption of glucose in the loop of Henle and
distal nephron segments (although much less important
from a physiologic point of view) has also been confirmed
[47, 48]. The apical glucose transporter (GLUT) transporters
have been identified in the apical membranes of late nephron
segment cells and were shown to be upregulated in the exper-
imental models of diabetes; renal GLUT knockout can also
induce glycosuria [49]. In the available literature, we did
not find any data on glucose handling by the distal nephron
following treatment with SGLT2i (although it has been
shown that increased reabsorption of glucose by GLUT9 in
proximal tubule following SGLT2i treatment is one of the
mechanisms that competitively lowers uric acid reabsorption
in this part of nephron) [50]. We hypothesize that increased
glucose influx into the cells of distal nephron during the
treatment with SGLT2i might inhibit Nrf2 (nuclear factor
erythroid 2-related factor 2, the master transcription factor
controlling defense against OS), thus enhancing OS in this
part of nephron [51, 52]. It cannot be ruled out that to coun-
terbalance this effect, certain antioxidant systems (possibly
not controlled by Nrf2) might become enhanced in this part
of nephron and result in increased activity of enzymes with
an antioxidative potential in the final urine (as observed in
our study). Several drugs which already used to treat diabetes
or under the investigation as potential therapeutic agents,
such as metformin, glucagon-like peptide-1 receptor
(GLP1R) agonists, and bardoxolone, were shown to upregu-
late Nrf2 [53, 54]; we did not find such data for SGLT2i
except for limited data on an animal model where empagli-
flozin is thought to promote the nuclear translocation of
Nrf2 and limit the OS in the heart of mice with diabetes
[3]. In our opinion, it is tempting to test such a hypothesis
in an experimental study focusing on glucose handling by
the distal nephron following the treatment with SGLT2i.
Recently, redox balance has been characterized for the first
time in saliva and blood of participants in different age
groups revealing that antioxidant barrier decreases with age
[55].Taking this information into account, an interesting

direction of future research in this field would be inclusion
of patients differing in age, especially elderly ones, since the
human population is aging, and this favors diabetes compli-
cations occurrence.

In addition to OS, investigating the advanced end glyca-
tion products (AGEs) also seems a promising direction for
future studies. AGEs are generated upon the nonenzymatic
reactions between glucose and other sugars with proteins,
lipids, or nucleic acids and participate in the pathogenesis
of diabetic vascular complications [56–59]. AGEs can be
related to oxidative stress because their formation starts
under hyperglycaemic and/or oxidative stress conditions
[60]. On the other hand, inhibiting the glycation process
may be the way to limit the diabetes related complications
[61]. Since there has been albumin glycation inhibition by
metformin and glipizide demonstrated, in vitro study [62]
maybe also SGLT2i may present this mode of action. The
study performed most recently with another nephroprotec-
tive class of drugs—angiotensin II receptor blockers
(ARB)—demonstrated their antiglycooxidant activity. These
findings support the need for future studies in this area with
the use of SGLT2i [63]. Given the fact that some literature
reports suggest SGLT2i interact with AGEs during their for-
mation, the next step in future studies could address this
matter further [64–66]. For example, administration of
empagliflozin for 4 weeks improved hyperglycemia and low-
ered HbA1c level and resulted in a decreased expression of
AGEs in kidneys of rats with streptozocin-induced diabetes
[64]. Dapagliflozin ameliorated glucotoxicity in human renal
proximal tubular epithelial cells by preventing AGE forma-
tion and synthesis of the proinflammatory cytokines such
as transforming growth factor beta 1 (TGF-β1) and interleu-
kin 8 (IL-8) [65]. A potential of AGEs to induce apoptosis of
tubular epithelial cells through and interaction with AGE-
receptor (RAGE) was ameliorated by the SGLT2 inhibition
in a study conducted on cultured human renal proximal
tubular epithelial cells [66]. Limitation of studies concerning
the impact of SGLT2i on AGEs conducted on human cells
suggests the need for further investigation in this field, with
the inclusion of T2DM patients treated with SGLT2i.

5. The Limitations of the Study

The limitations of the study include differences in demo-
graphic characteristics of the examined groups (as there were
more women among healthy individuals and those partici-
pants were younger than patients with T2DM) and differ-
ences in age and duration of T2DM between patients
treated or not treated with SGLT2i. However, taking into
account the mechanism of action of SGLT2i and its indepen-
dence from endogenous insulin secretion, duration of diabe-
tes should not affect the obtained results. Even though these
limitations are acknowledged shortcomings of observational
studies, it has been demonstrated recently that gender does
not influence level of oxidative stress [55] but one must keep
in mind that age differences could influence presented out-
comes. It should also be noted that due to the small size of
the group using ARBs, no additional analysis of their poten-
tial impact on the parameters of oxidative stress was
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performed. Given the fact that some recent literature reports
suggest SGLT2i interact with AGEs during their formation
and consequently affect the intensity of oxidative stress, the
next step in future studies could be addressing this matter
further.

6. Conclusions

In the presented study, we have demonstrated that treatment
with SGLT2i influences urine antioxidant status in patients
with type 2 diabetes. It could be hypothesized that the out-
comes of the presented study indicate that the mechanism
by which SGLT2i provides nephroprotective effects involves
improvement of the SOD antioxidant defense. It would be
of great value to elucidate the mechanism underlying the
upregulation of SOD induced by SGLT2i in future studies.
On the other hand, lower TAC might impose higher OS in
the urine of patients treated with SGLT2i, and elevation of
SOD activity might be a compensatory mechanism. Further
studies are needed to replicate these results and resolve why
TAC was lowered among patients treated with SGLT2i. It
would also be interesting to assess oxidative urine status in
prospective serial measurements in the same group of
patients.
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