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Due to high energy and material metabolism requirements, mitochondria are frequently active in tumor cells. Our study found
that the high energy metabolism status is positively correlated with the poor prognosis of patients with lung adenocarcinoma.
We constructed a scoring system (mitoRiskscore) based on the gene expression of specific mitochondrial localized proteins
through univariate and LASSO cox regression. It has been shown that high mitoRiskscore was correlated with a shorter
survival time after surgery in patients with lung adenocarcinoma. Compared with the typical TNM grading system, the
mitoRiskscore gene panel had higher prediction accuracy. A vast number of external verification results ensured its
universality. Additionally, the mitoRiskscore could evaluate the metabolic pattern and chemotherapy sensitivity of the tumor
samples. Lung adenocarcinoma with higher mitoRiskscore was more active in glycolysis, and oxidative phosphorylation
expression of proliferation-related pathway genes was also significantly upregulated. In contrast, patients with low
mitoRiskscore had similar metabolic patterns to normal tissues. In order to improve the accuracy of prediction ability and
promote clinical usage, we developed a nomogram that combined mitoRiskscore and clinical prognostic factors to predict the
3-year, 5-year, and 10-year survival rates of patients. We also performed in vitro experiments to verify the function of the key
genes in the mitoRiskscore panel. In conclusion, the mitoRiskscore scoring system may assist clinicians to judge the
postoperative survival rate and chemotherapy of patients with lung adenocarcinoma.

1. Introduction

In recent decades, lung cancer is a common occurrence and
the leading cause of cancer-related deaths. According to
epidemiological data in 2018, there were 2.09 million lung
cancer cases and 1.76 million deaths worldwide [1]. Lung
adenocarcinoma (LUAD) accounts for approximately 85%
of lung cancers and is the most common histological type.
At present, the known factors related to the occurrence of
LUAD include gender, age, smoking, environment, and
heredity [2]. With the rise of medical technology, lung can-
cer treatment is gradually increasing, from simple surgical

resection to surgery combined with adjuvant chemotherapy,
immunotherapy, targeted drug therapy, and biological
therapy [3]. Although we have made innovations in lung
cancer treatment, LUAD’s annual mortality rate has not
decreased as expected. It may be due to our lack of assess-
ment of LUAD patients’ survival status after surgery [4]. If
we can accurately predict patients’ survival rate after surgery
and each patient’s treatment preference, clinicians can pro-
vide patients with accurate postoperative treatment. For
example, patients with low predicted survival rates should
be reviewed more frequently and treated with high-dose
drugs; for patients with high predicted survival rates, more
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conservative treatments should be used to improve patients’
quality of life.

For the prognostic evaluation of LUAD, although there
are some methods (such as age, stage, and grade) to predict
patients’ survival rate, these prediction methods are not
accurate enough. It is generally believed that patients with
early lung cancer have a good prognosis, but the five-year
survival rate after surgical intervention fluctuates by 34%
(10% to 44%) [5]. Besides, age and stage cannot explain
the evaluation basis of patients’ resistance to immunother-
apy [6]. Therefore, we need to develop more methods to
accurately predict the postoperative survival and treatment
preferences of LUAD patients.

Mitochondria are the most important places for energy
and matter conversion in organisms. When a cell undergoes
a malignant transformation, the mitochondrial metabolism
mode, transport mode, kinetics, and response to oxidative
stress will change significantly [6]. Among them, the inten-
sity of glucose metabolism in cancer cells is significantly
increased to produce more intermediate metabolites [7].
Due to the increased energy demand of cancer cells, the
mitochondrial oxidative phosphorylation of (OXPHOS) is
also significantly improved [8]. In addition, the decomposi-
tion of fatty acids and glutamine in cancer cells was also
enhanced to provide intermediates for mitochondrial
productivity [9]. The high metabolism of mitochondria in
cancer cells produces excessive amounts of reactive oxygen
species (ROS), cause the death of normal cells, thereby pro-
moting tumor progression [10]. Abnormal mitochondrial
function plays an essential role in the occurrence and devel-
opment of cancer. From another perspective, we can judge
the malignant degree and progress trend of the tumor by
evaluating the activity of the mitochondria of the tumor.

We analyzed four LUAD mRNA microarrays and
reached the same conclusion. Compared with normal
tissues, LUAD has a significant increase in mitochondria’s
metabolic activity, especially the expression of genes encod-
ing mitochondrial localization protein (mito-protein genes).
Besides, we also found that a vast number of mito-protein
genes are significantly related to patients’ prognosis. There-
fore, we established a mitochondrial risk score (mitoRisk-
score) to predict the prognosis and treatment preferences

of LUAD patients. The robustness of the risk score has been
verified in multiple external data sets. It brings the possibility
of precise treatment of LUAD patients after surgery.

2. Materials and Methods

2.1. Data Source and Study Population. The LUAD RNA-seq
dataset used in this study came from the Cancer Genome
Atlas project (TCGA) [11]. A total of nine microarray data-
sets of LUAD were downloaded from Gene Expression
Omnibus (GEO). Four datasets containing LUAD samples
and control samples were used to analyze the abnormal activ-
ity of mitochondria in lung cancer (GSE7670, GSE18842,
GSE19188, and GSE31210). Six datasets containing prognostic
information of patients were used to verify the prediction
ability of mitoRiskscore (GSE3141, GSE8894, GSE31210,
GSE50081, GSE68465, and GSE72094). The details about the
datasets used in this study are presented in Table 1. The self-
composed running scripts, together with the processed results
of current study, were merged into a repository that is avail-
able at https://github.com/XR-Zhang-group/mitoRiskscore.

2.2. Pathway Enrichment Analysis. First, the differentially
expressed genes between the LUAD samples and the control
samples were obtained by using the R package “limma.”
Then, the R package “clusterProfiler” [12] was used to per-
form gene set enrichment analysis (GSEA). The five path-
ways most related to mitochondrial activity were selected
for evaluation. The pathway gene sets (MITOCHONDRIAL
PART, HALLMARK FATTY ACID METABOLISM,
HALLMARK GLYCOLYSIS, HALLMARK HYPOXIA,
HALLMARK OXIDATIVE PHOSPHORYLATION, and
HALLMARK REACTIVE OXYGEN SPECIES PATHWAY)
were downloaded from the molecular signature database
(MSigDB) [13]. Mito-protein genes were obtained from the
gene set “MITOCHONDRIAL PART” in the MSigDB. The
systematic name of this pathway is M18830.

2.3. Preliminary Screening of Prognostic-Related Genes. Uni-
variate Cox proportional hazard regression analysis was
performed on each mito-protein gene to screen for genes
that were significantly related to the overall survival rate of

Table 1: Basic information of datasets used in this study.

Datasets Platform Country No. of patients No. of controls Cancer type Prognostic information

GSE7670 GPL96 China 31 27 LUAD —

GSE18842 GPL570 Spain 46 45 NSCLC —

GSE19188 GPL570 Netherland 45 65 LUAD —

GSE31210 GPL570 Japan 226 20 LUAD Yes

GSE3141 GPL570 USA 58 — LUAD Yes

GSE8894 GPL570 South Korea 63 — LUAD Yes

GSE50081 GPL570 Canada 127 — LUAD Yes

GSE68465 GPL96 USA 442 — LUAD Yes

GSE72094 GPL15048 USA 398 — LUAD Yes

TCGA-LUAD IlluminaHiSeq USA 513 59 LUAD Yes

LUAD: lung adenocarcinoma; NSCLC: non-small-cell lung cancer; TCGA: The Cancer Genome Atlas.
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TCGA-LUAD [14]. Then, the bootstrapping method was
used to test the robustness of these genes [15]. 70% of the
samples were randomly selected from the cohort, and the
survival impact of these genes was evaluated. This process
was repeated 1000 times. A gene that had a valid P value
at all times was considered to have passed the bootstrapping
robustness test.

2.4. Mito-Protein Gene Panel Generation. Because of the
large number of genes that passed the bootstrapping robust-
ness test, it is not convenient for follow-up clinical applica-
tion. The least absolute shrinkage and selection operator
(LASSO) Cox regression analysis was performed on the
genes that passed the test. While reducing the number, the
genes most related to prognosis were also screened out.
Through LASSO analysis, the gene represented by the
minimum penalty parameter λ will be selected to establish
a prognostic risk score formula (mitoRiskscore). We used
the “pheatmap” package to visualize the expression of each
gene in mitoRiskscore. The Kaplan-Meier method was used
to calculate the survival rate, and the log-rank test was per-
formed to evaluate its statistical significance. Univariate
and multivariate cox regression analyses were used to test
whether the prediction model based on mitoRiskscore was
an independent prognostic factor. The time-dependent
receiver operating characteristic curve (TDROC) from the
“survivalROC” package [16] was applied to test the predic-
tive ability of mitoRiskscore at 1, 3, and 5 years.

2.5. Gene Set Variation Analysis (GSVA). Gene set variation
analysis is one of the most commonly used methods for ana-
lyzing biological processes [17]. The gene set file “http://c2
.cp.kegg.v7.3.symbols.gm” downloaded from MSigDB was
used for GSVA, and the “GSVA” package in the R software
was used. The significance threshold was set at FDR < 0:05.

2.6. Prediction of Chemotherapy Response. The R package
“pRRophetic” [18] and the TCGA-LUAD data were used
to predict the drug sensitivity of each group of patients.
Among them, ridge regression was used to estimate the
maximum half-inhibitory concentration (IC50) of the sam-
ples, and ten-fold cross-validation was used to evaluate the
accuracy.

2.7. Cell Culture and Treatment. Human lung adenocarci-
noma cells, A549, were cultured in RPMI-1640 medium sup-
plemented with 10% fetal bovine serum, 50U/mL penicillin,
and 50mg/mL streptomycin. Cells were incubated at 37°C
under 5% CO2. To knockdown VDAC1, A549 cells were
transfected with VDAC1 siRNAs (Tsingke Biotechnology,
China) using Lipofectamine 2000 regent (Thermo Fisher
Scientific, USA) according to the manufacturer’s recommen-
dation. The sequences of the two siRNA were as follows:

siRNA #1-F (5′-3′): GGAUACACUCAGACUCUAATT
siRNA #1-R (5′-3′): UUAGAGUCUGAGUGUAUCCTT
siRNA #2-F (5′-3′): GGAUGGCAAGAACGUCAAUTT
siRNA #2-R (5′-3′): AUUGACGUUCUUGCCAUCCTT

2.8. RNA Extraction and qRT-PCR. Total RNA was extracted
using TRIzol (Invitrogen, USA). qRT-PCR was carried out
with PrimeScript RT reagent Kit and TB Green Premix Ex
Taq II kit (TaKaRa, China) according to the manufacturer’s
protocol. The primers used in the study were as follows:

VDAC1-F1: GCAAAATCCCGAGTGACCCAGA
VDAC1-R1: TCCAGGCAAGATTGACAGCGGT
SLC25A42-F: GCAGCTACTATGGCTTCCGT
SLC25A42-R: TTTCCTTCGGGGTTACGGC
ABAT-F: CAAGGAAAGAGGGCAGAGGG
ABAT-R: GGGTATTTCAGCCGTGGGAA
IVD-F: GTGAGTACATCGGAGCCCTG
IVD-R: TGCTAAAGCCAGGCATACCC
AMT-F: CGAGGCTGGAGGCATCTTAG
AMT-R: ACAGCACTGGTCATGAAGGG

2.9. Extracellular Acidification Rate (ECAR) Detection.
Seahorse XF glycolysis pressure test kit was used to test
the glycolysis ability of cells. On the night before the
experiment, A549 cells were transfected into si-VDAC1
or control si-RNA for 48 hours, and the number of cells
per well was paved into XF24 test plate for overnight cul-
ture. At the same time, the test board will be soaked in the
test solution overnight. On the next day, the cells were
removed and washed with glycolysis pressure test solution
and then cultured in a CO2-free incubator for one hour.
During the period of cell culture, we prepared the concen-
tration of glucose, oligomycin, and 2-DG. Take out the
hydrated test board and add each medicine to the hole
as required. Set the experimental template on the XF con-
troller, and the default Mix-Wait-Measure time is 3min-
2min-3min. Usually, the basic value is measured three
times before adding the drug and then three times after
each addition. Put it into the test board and wait for the
machine to be calibrated, then replace the utility with
the cell culture plate for the ECAR test. Each experiment
was repeated three times.

2.10. Western Blotting. 72 hours after transfection of si-
VDAC1, A549 cells were collected and incubated in
200μL 1∗SDS-PAGE Sample Loading Buffer (Cat No.
P0015L), 98°C for 10 minutes until the cells were completely
lysis. Proteins were resolved on 10% gel using PAGE gel
quick preparation kit (10%, CAT: PG112) and transferred
to Trans-blot Turbo nitrocellulose membranes (Bio-Rad).
Then, incubate the membrane in 10% milk and seal it for 2
hours. For primary antibody–protein hybridization, mem-
branes were probed with the following antibodies at 4°C
overnight (Beyotime): LDHA Rabbit Polyclonal Antibody,
CAT: AF0216; COX IV Rabbit Polyclonal Antibody, CAT:
AF6549; Hexokinase II Rabbit Polyclonal Antibody, CAT:
AF7080; SDHB Rabbit Polyclonal Antibody, CAT: AF7956;
and PGK1 Rabbit Monoclonal Antibody, CAT: AF1825.
Thereafter, secondary anti-mouse (Beyotime CAT: LF101)
or anti-rabbit IgG antibodies (Beyotime CAT: LF102) were
incubated for 1 h at room temperature. Protein bands were
developed with chemiluminescent reagents (Beyotime) and
imaged with a Tanon 5200.
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2.11. Cell Proliferation Experiment (CCK8). After 36 hours
transfection, the cells were counted and inoculated in a 96-
well plate. After 24, 48, and 72 hours of culture, 10μL
CCK8 solution (Beyotime, China) was added to each well.
The OD value of each hole was measured.

2.12. Wound Healing Assay. After si-VDAC1 or NC mimic
transfection, A549 cells grew for 24 hours. When the cell
confluence rate was about 70-80%, the cells were scratch-
wounded in a straight line. The cells were photographed
after wounding and after 36 hours of incubation. The wound
healing rate was calculated as the area of cells that migrate
from the wound edge into the wound zone.

2.13. Transwell Invasion Assays. The cell invasion assay was
performed in 24-well plates using filters with an 8.0μm pore
size (Corning, USA) coated with 1: 8 dilution Matrigel (BD
Bioscience, USA). Six hundred μL medium containing 10%
FBS was added to the lower chamber, and A549 cells in
serum-free medium were seeded into the upper chambers.
After 36 hours of incubation, the cells were fixed with 4%
paraformaldehyde and stained with 0.5% crystal violet. Cells
that had invaded the lower surface were captured and evalu-
ated in 6 randomly selected areas.

2.14. Statistical Analyses. Unpaired Student’s t-test or one-
way ANOVA test was used to compare normally distributed

data. Nonnormally distributed data were performed using
the Mann–Whitney U test or Kruskal-Wallis test. The prog-
nostic nomogram’s construction used R package “rms” and
followed by Iasonos’ guide [19]. All statistical tests and visual
analyses were performed using the R software (version 4.0.3)
or GraphPad Prism 6.0 (GraphPad Software, USA).

3. Results

3.1. GSEA Analysis of Mitochondrial Activity in LUAD. In
order to explore the mitochondrial activity in lung cancer,
we downloaded several mitochondrial-related pathways
from MSigDB, including the complete mito-protein genes,
fatty acid metabolism, glycolytic pathways, hypoxia and high
expression genes, and oxidative phosphorylation. Next, the
changes of these pathways in the four microarrays were
analyzed, namely, GSE7670: 31 LUAD vs. 27 normal,
GSE18842: 46 LUAD vs. 45 normal, GSE19188: 45 LUAD
vs. 65 normal, and GSE31210: 226 LUAD vs. 20 normal.
In all four data sets (Figure 1), glycolytic activity in LUAD
was the most significantly increased. Mito-protein genes
and oxidative phosphorylation are also upregulated. How-
ever, fatty acid metabolism and hypoxia are indeed down-
regulated in LUAD. It shows that lung cancer cells are not
hypoxic, and fatty acid metabolism is not vigorous. The
results of GSEA indicate that there is a significant correlation
between LUAD and mitochondrial activity and provide a
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Figure 1: GSEA analyzes the difference in mitochondrial activity between lung adenocarcinoma and normal controls. Five gene sets related
to mitochondrial activity from four GEO cohorts were analyzed. The curve above the enrichment score of 0 points indicates that the gene set
is activated in lung adenocarcinoma. A curve below 0 points indicates that it is more active in the control group than in lung
adenocarcinoma. p.adjust: adjusted p value; NES: normalized enrichment score.
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theoretical basis for the development of mito-protein genes
to predict the prognosis of LUAD patients.

3.2. Relationship between Mito-Protein Genes and Prognosis.
We used TCGA-LUAD mRNA-seq data and clinical data to
perform univariate Cox regression analysis to examine the
relationship between mito-protein genes and patients’ prog-
nosis. As shown in Supplementary Figure S1, we found 199
genes that are significantly related to the prognosis of
LUAD patients (p < 0:05, HR < −1, or HR > 1) and passed
the bootstrap test. Among them, 90 genes have hazard

ratios less than 1, indicating that patients who overexpress
these genes have a longer survival time. In comparison,
109 genes with hazard ratios greater than 1 have the
opposite meaning.

3.3. Construction of a Prognostic Risk Panel. The 199 robust
prognostic genes were subjected to LASSO Cox regression
analysis for dimension reduction. The convergence of the
regression coefficients is shown in Figure 2(a). Through a
random sampling method of 10 cross-validation, we found
that the model constructed from 5 genes performed best
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Figure 2: Construction of the mitoRiskscore prediction panel. (a) The convergence of the LASSO cox regression coefficients. (b) A
coefficient profile plot of the log (lambda) in the LASSO model. (c) The distribution of mitoRiskscore and the survival status of patients
with different scores. (d) Heat map of the expression profiles of the mitoRiskscore gene panel. (e) Kaplan-Meier curves of overall
survival for patients in high-risk group and low-risk group.
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(Figure 2(b)). Based on the model correlation coefficient, we
constructed a mito-protein gene panel to predict the prog-
nosis of LUAD patients.

mitoRiskscore = 0:8056 ∗ ExpVDAC1 − 0:1433 ∗ ExpSLC25A42
− 0:1913 ∗ ExpABAT − 0:1083 ∗ ExpIVD
− 0:0255 ∗ ExpAMT

ð1Þ

We calculated the mitoRiskscore score for each LUAD
patient. Patients were divided into two groups (high-risk
group and low-risk group) according to mitoRiskscore by
using the median of the cohort as the cut-off value. The dis-
tribution of mitoRiskscore and patient survival status is
shown in Figure 2(c). Figure 2(d) shows the expression of
these 5 genes in the two groups of patients. The Kaplan–
Meier curve indicated that the survival rate of patients in
the high-risk group was significantly lower (Figure 2(e)).

3.4. Independent Prognostic Value of the MitoRiskscore.
Univariate and multivariate Cox regression analyses demon-
strated that mitoRiskscore was a strong independent risk fac-
tor for the overall survival of LUAD patients (Figure 3(a)).
The predictive power of mitoRiskscore (p < 0:001, HR =
1:704, 95% CI = 1:425-2.038) was even higher than age and

TMN stage. In the ROC analysis of one year, three years,
and five years (Figure 3(b)), mitoRiskscore showed higher pre-
dictive ability than the TNM stage and age. The accuracy of
mitoRiskscore’s judgment of the patient’s survival status
reached more than 0.7 in all three ROC analyses. These data
indicated that mitoRiskscore is an independent prognostic
factor and may predict patient prognosis more accurately than
existing clinical parameters.

3.5. External Verification of the MitoRiskscore. A robust pre-
diction panel is universally applicable to other cohorts. In
order to verify whether mitoRiskscore applies to other
LUAD cohorts, we used external data for verification. We
enrolled six cohorts with more than 50 samples each to
ensure the reliability of the analysis results (GSE3141,
GSE8894, GSE31210, GSE68465, GSE72094, GSE50081).
We performed the same procedure to divide patients into
high-risk and low-risk groups based on mitoRiskscore. The
detailed data of the GEO cohorts performed in the external
verification was uploaded in https://github.com/XR-Zhang-
group/mitoRiskscore. Surprisingly, in all validation cohorts,
patients in the high-risk group showed a higher mortality
rate. Except for GSE50081 (p = 0:1004), the other results
were statistically significant (Figure 4). Besides, we also use
mitoRiskscore to predict patients’ 1-year, 3-year, and 5-
year survival rates. In most ROC analyses, mitoRiskscore’s
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Figure 3: Verification of the independent prognostic value of the mitoRiskscore. (a) Forest plots of the univariate and multivariate
Cox regression analyses among mitoRiskscore and clinical factors. (b) Time-dependent receiver operating characteristic curves at 1-year,
3-year, and 5year. AUC: Area Under Curve.
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AUC reached 0.6 or more. The above data showed that
mitoRiskscore has specific practical application value in pre-
dicting the prognosis of LUAD patients.

3.6. Identify the Metabolic Patterns of Patients with Different
MitoRiskscore. In order to determine the metabolism and
mitochondrial activity in patients with high mitoRiskscore
and patients with low scores, we performed a GSEA analysis
(Figure 5(a)). The results showed that fatty acid metabolism,
glycolysis, hypoxia, oxidative phosphorylation, ROS path-
way, and mito-protein genes were significantly activated in
patients with high mitoRiskscore compared with patients
with low scores. We performed GSVA enrichment analysis
to determine the biological behavior characteristics of
patients with different mitoRiskscore (Figure 5(b)). The
results showed that LUAD with high mitoRiskscore scores
has higher glycometabolism and energy generation, as well
as higher proliferation activity and nucleotide repairment.

In addition, we found that the energy metabolism pattern
of low mitoRiskscore LUAD was similar to that of the
adjacent cancer controls. They are not active in glycometa-
bolism and oxidative phosphorylation, but they had more
lipid metabolism than LUAD with high mitoRiskscore. It
confirmed that mitoRiskscore could distinguish LUAD
patients with different metabolic patterns.

3.7. MitoRiskscore Predicts Therapeutic Benefit of
Chemotherapy. Adjuvant chemotherapy is the main
treatment strategy for LUAD patients after surgery. The
effectiveness of chemotherapy drugs is often related to the
metabolism of tumor cells. We selected six commonly used
chemotherapy drugs for LUAD patients and evaluated the
chemotherapy sensitivity of patients with different mitoRisk-
score. All LUAD samples were divided into high-risk and
low-risk groups based on the mitoRiskscore. 59 paracancer-
ous tissues in the TCGA-LUAD dataset were used as a
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Figure 5: The mitochondrial activity and metabolic patterns of patients with different mitoRiskscore. (a) Enrichment plot of the five gene
sets related to mitochondrial activity between the high- and low-risk groups in TCGA-LUAD using GSEA analysis. (b) Heat map showing
the activation status of the biological processes in patients with different mitoRiskscore using GSVA analysis.
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control group. The differences in chemotherapy sensitivity
between the three groups were then compared (Figure 6(a)).
For cisplatin, the IC50s of the LUAD groups were higher than
that of the control group. For vinorelbine and paclitaxel, there
were no significant difference in IC50s between the LUAD
groups and the control group. The IC50s of etoposide in the
LUAD groups were lower than that in the control group. But
at the same time, many scattered points were displayed higher
than the control group’s average. It means that etoposide’s
effectiveness varies greatly, and some patients are not sensitive
to it. Furthermore, the LUAD groups were more sensitive to

docetaxel and gemcitabine than the control group. Then, we
did correlation analysis on the relationship between the IC50
of these two drugs and mitoRiskscore (Figure 6(b)). The
results showed that the higher the mitoRiskscore, the lower
the IC50 (R = −0:39 and R = −0:42). It showed that docetaxel
and gemcitabinemay be two effective drugs for highmitoRisk-
score patients.

3.8. Develop a Prognostic Nomogram Based on MitoRiskscore.
In order to improve the accuracy of prognosis and facilitate
clinical usage, we developed a nomogram that integrates
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Figure 6: Differences in sensitivity of patients with different mitoRiskscore to chemotherapy. (a) The box plots of the estimated IC50
for commonly used chemotherapy drugs. (b) Correlation analysis between IC50 of two drugs and mitoRiskscore. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001, ∗∗∗∗p < 0:0001.
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mitoRiskscore and clinical prognostic factors to predict the 3,
5, and 10-year survival rate of patients (Figure 7(a)). The sum
of each factor’s contribution scores can be used to determine
the prognosis of the patient. The 3-year and 5-year calibration
charts (Figure 7(b)) showed that our nomogram performs well
compared to an ideal model. The decision curve analysis
shows that the clinical utility of our nomogram greatly over-
whelmed the clinical features (Figure 7(c)). It showed that by
using mitoRiskscore plus clinical features to predict prognosis,
more patients could benefit from it.

3.9. In Vitro Verification of MitoRiskscore. To further verify
the authenticity of mitoRiskscore, we conducted in vitro

experiments on the five genes in mitoRiskscore. First, we
used two lung adenocarcinoma cell lines (A549 and PC-9)
and a bronchial epithelial cell line (BEAS-2B) to detect the
expression of these five genes (Figure 8(a)). As expected,
VDAC1 was highly expressed in the two LUAD cell lines
and low in normal lung epithelial cells. The expression pat-
terns of the other four genes were reversed. Given that the
expression of VDAC1 accounted for the largest proportion
in mitoRiskscore, we further conducted in vitro experiments
to verify the function of VDAC1.

In order to explore the effect of VDAC1 on the metabolic
ability of lung cancer cells, we measured the extracellular
acidification rate (ECAR) to quantify the glycolysis ability
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Figure 7: The establishment and verification of prognostic nomogram based on mitoRiskscore. (a) A nomogram for predicting 3-, 5-, and
10-year survival possibilities of individual LUAD patients. (b) Plots depict the calibration of the nomogram based on mitoRiskscore in terms
of consistency between predicted and observed 3- and 5-year outcomes. (c) Decision curve analyses of the nomogram for 3- and 5-year risk.
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Figure 8: The regulation of the key genes in mitoRiskscore gene panel in the glycolysis metabolism, proliferation, and invasion of LUAD
cells. (a) The expression of five genes in bronchial epithelial cell line (BEAS-2B) and lung adenocarcinoma cell lines (A549 and PC-9).
(b) Knockdown efficiency of VDAC1 siRNA in A549 cell line. (c) Representative image and analysis of ECAR measurement in VDAC1
knockdown and control A549 cells. (d) Protein expression levels of LDHA, COXIV, SDHB, PGK1, and HKII in VDAC1 knockdown
cells. (e) CCK-8 assays were used to evaluate A549 cell proliferation after VDAC1 knockdown. (f) GSEA analysis between patients
with high and low expression of VDAC1. (g) The wound healing assay showed the migration ability of A549 cells after VADC1
knockdown. (h) Transwell experiments were performed to analyze the cell invasion ability after VDAC1 knockdown. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001, ∗∗∗∗p < 0:0001.
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in A549 cells knocking down VDAC1 in A549 cell line
(Figure 8(b) and 8(c)). The results showed that when the
expression of VDAC1 in lung cancer cells was downregu-
lated, both the basic glycolysis level and the maximum gly-
colysis level decreased significantly. The glycolysis level of
tumor cells is increased, suggesting that VDAC1 knockdown
may inhibit tumor growth by inhibiting cell metabolism.
Next, we tested the effects of knocking down VDAC1 on
several key enzymes of glycolysis and oxidative phosphoryla-
tion in A549 cells (Figure 8(d)). Our results showed that the
protein expression of cytochrome c oxidase IV (COXIV) and
lactate dehydrogenase (LDHA) decreased after knocking
down VDAC1. In contrast, there was no significant change
in the protein expression of other enzymes such as succinate
dehydrogenase complex subunits B (SDHB), hexokinase II
(HKII), and creatine phosphoglycerol kinase 1 (PGK1).

Based on the expression of VDAC1, we divided the
TCGA-LUAD samples into high expression (top 20%) and
low expression groups (bottom 20%). GSEA was used to
analyze the pathways activated in patients with high expres-
sion of VDAC1 compared to patients with low expression
(Figure 8(e)). The results showed that in patients with high
expression of VDAC1, the pathways that promote cell pro-
liferation, such as MYC, MTOR, and energy metabolism,
were significantly activated. CCK-8 assays indicated that
the downregulation of VADC1 significantly reduced the
proliferation ability of A549 cells (Figure 8(f)). Then, a
transwell assay was performed to examine the effect of
VDAC1 on the invasion ability of LUAD cells. The results
showed that knockdown of VDAC1 significantly inhibited
the invasion ability of A549 cells (Figure 8(h)). In contrast,
we found through wound healing assay that the silencing
of VDAC1 did not affect the migration of A549 cells
(Figure 8(g)). Taken together, in vitro experiments con-
firmed that knocking down VDAC1 attenuated the ability
of LUAD cells to glycolysis. At the same time, it can reduce
the proliferation and invasion ability of LUAD cells.

4. Discussion

Abnormal metabolism is a very typical feature of cancer
cells. Due to the central position of mitochondria in cell
material metabolism, it is necessary for us to analyze the
mitochondrial state of cancer. The most famous theory
about the changes in mitochondria’s energy metabolism in
cancer was the Warburg effect put forward in the 20th cen-
tury. That was, most cancer cells produced energy through
glycolysis [20]. With the deepening of research, the Warburg
effect was gradually overturned. It has been found that the
primary way for cancer cells to produce energy was by aero-
bic oxidation, and the increase in glycolysis was to create
more intermediate metabolites [7]. For example, it has been
found that the colon cancer cell line SW620 had increased
OXPHOS but glycolysis [8]. Ovarian cancer cells gave prior-
ity to OXPHOS to address energy requirements [21].
Besides, increased glycolysis does not always promote the
development of cancer. In lung cancer cells, knockout of
AIF increased glycolysis and reduced oxidative phosphoryla-
tion level but inhibited cancer cells’ growth [22]. In addition

to OXPHOS, cancer cells also showed an increased break-
down of fatty acids and amino acids. For example, α-keto-
glutarate (an intermediate produced by the decomposition
of glutamine) could supplement mitochondrial TCA inter-
mediates [9]. The high metabolism of cancer cell mitochon-
dria produced excessive ROS, promoting the death of
normal cells, thereby promoting tumor progression [10]. In
addition, the dynamics of cancer mitochondria were also
changed. Mitochondria maintain their functions through
autophagy, division, and fusion. The activity of mitochon-
dria in cancer increased, and there were more mitochondria
in a single tumor cell [23]. Therefore, our research focused
on the changes in LUAD mitochondria.

We first analyzed the changes in mito-protein genes and
metabolism in LUAD and normal lung tissues. Not surpris-
ingly, both OXPHOS and glycolysis were very active in LUAD.
But we also found that lipid metabolism was not active.
Because the transcription of mito-protein genes was abundant
in LUAD, we tried to find the relationship between them and
patients’ prognosis. Among the 1136 mito-protein genes, we
found that 199 are significantly related to LUAD patients’
prognosis, which was a large proportion. Through LASSO
cox regression, we further screened five genes (VDAC1,
SLC25A42, ABAT, IVD, and AMT) and constructed a prog-
nostic panel named mitoRiskscore.

Among the genes of mitoRiskscore, VDAC1 is the most
studied. VDAC1 is a transporter protein on the outer mito-
chondrial membrane (OMM) [24]. The functions of VDAC1
in metabolism and energy homeostasis are reflected by its
facilitation of the transport of ions, nucleotides, and other
metabolites across the OMM [25–27]. Specifically, VDAC1
is a transporter of cellular metabolites [25], cholesterol
[28], lipids [29], and Ca2+ [30]. VDAC1 allows two-way
traffic, mediating the entry of metabolites including pyru-
vate, malate, succinate, and NADH into mitochondria and
the exit of newly formed molecules. The importance of
VDAC1 in cell energy and metabolism homeostasis is
reflected in the findings that downregulation of VDAC1
expression resulted in reduced metabolite exchange between
mitochondria and the cytosol and inhibited cell growth,
showing VDAC1 as essential for energy production and cell
growth [31]. In our current research, we performed GSEA
between the VDAC1 high expression group and the low
expression group. The results showed that glycolysis, oxida-
tive phosphorylation, MYC targets, E2F targets, and mTOR
signaling pathways were all significantly activated in the
high expression group. These activated pathways are related
to tumor proliferation and metastasis. This result was con-
sistent with our subsequent in vivo experiments. Because
VDAC1 plays an important role in material transport in
OMM, we believe that knocking down VDAC1 affects cell
metabolism by restricting substance transport. At the same
time, the expression of some metabolic enzymes decreased
reflexively [32, 33]. We also found that knocking down
VDAC1 could suppress the glycolysis metabolism, prolifera-
tion, and invasion of LUAD cells, which proved its momen-
tous position in the progression of LUAD.

ABAT (4-aminobutyric acid aminotransferase) is respon-
sible for the catabolism of γ-aminobutyric acid (GABA).
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GABA is an important inhibitory neurotransmitter in the
central nervous system. ABAT deficiency phenotypes
include psychomotor retardation, hypotension, hyperre-
flexia, lethargy, refractory epilepsy, and abnormal EEG.
The ABAT gene is closely related to neurological diseases,
but it is also associated with cancer. Our survival analysis
showed that ABAT was a protective gene. The low expres-
sion of ABAT in basal cell-like breast cancer (BLBC)
promoted the increase of GABA, thereby enabling the
development and metastasis of cancer cells by activating
the Ca2 + -NFAT1 axis [34]. In renal clear cell carcinoma,
low-expressed ABAT promoted tumor development by
boosting cancer cells’ metabolism, which the transcription
factor HNF4A may regulate [35]. ABAT was related to the
prognosis of patients with liver cancer, pancreatic cancer,
and breast cancer [14, 15, 36]. SLC25A42, AMT, and IVD
genes have also been found in other prognostic models of lung
cancer [37, 38]. However, no studies have found a relationship
between AMT and cancers. Our research found that these
three genes’ high expression was related to LUAD patients’
prognosis and was a protective factor. Further study of the
specific mechanisms of these three genes inhibiting LUAD
may provide new directions for LUAD treatment.

MitoRiskscore contains the above five genes, and its
ability to predict the prognosis of LUAD patients is higher
than that of clinical features (Figure 3). What is more com-
mendable is that we have used a lot of external datasets to
verify this conclusion (Figure 4). MitoRiskscore predicted
LUAD patients’ prognosis well in most external verifica-
tions, indicating that it is a reliable and effective prognostic
evaluation tool. Next, we explored the specific biological sig-
nificance of mitoRiskscore. High mitoRiskscore represents
relatively active metabolism and high expression of mito-
chondrial localization protein genes (Figure 5). Specifically,
the glycometabolism and OXPHOS pathways are signifi-
cantly activated in LUAD with high mitoRiskscore, which
indicates that cells have higher energy production and pro-
liferation capabilities. However, we have also observed acti-
vation of the p53 pathway and nucleotide repair in high
mitoRiskscore tumors, which may be feedback to the cell’s
high DNA replication and proliferation state. On the other
hand, we found that lipid metabolism is relatively weak in
high mitoRiskscore tumors. Fatty acid synthesis occurs in
the cytoplasm. They are derived from acetyl-coenzyme A
and are mainly provided by the tricarboxylic acid (TCA)
cycle [39]. Based on the above results, we speculate that
there is an upregulation of carbohydrate metabolism in lung
cancer with highly activated mitochondria, which generates
much energy through OXPHOS. The energy and acetyl-
coenzyme A produced by these TCAs are not used to syn-
thesize lipids. They are used by cells to maintain a high pro-
liferation state and are associated with poor postoperative
survival rates for patients. In short, mitoRiskscore can eval-
uate the energy metabolism patterns of the samples.

In this study, the R software package “pRRophetic” and
mRNA expression profile were used to predict patients’ six
drug sensitivity and controls. This method required more
clinical trial verification and only gave us a preliminary hint
(Figure 6). The results showed no difference in the sensitivity

of each group to vinorelbine, and even the control group was
more sensitive to cisplatin. Different samples in the same
group had different sensitivity to etoposide and paclitaxel.
The high mitoRiskscore group’s sensitivity to docetaxel
and gemcitabine was higher than that of the low mitoRisk-
score group, and both groups were higher than the control
group. Furthermore, the sensitivity of patients to docetaxel
and gemcitabine was significantly negatively correlated with
the mitoRiskscore. It showed that the use of docetaxel and
gemcitabine to treat LUAD with active mitochondrial func-
tion might achieve better results.

We constructed a nomogram containing mitoRiskscore
and clinical features, making the results of this study easier
to apply to the clinic (Figure 7). Nomogram is a popular tool
for predicting the prognosis of cancer. It uses statistical
methods to combine patients’ parameters to predict their
prognosis. Due to a combination of factors, the accuracy of
nomogram is more accurate than that of a single stage of
cancer [19, 40]. The calibration chart analysis and the deci-
sion curve analysis showed that the nomogram had better
prediction accuracy and can benefit more patients.

One of the innovations of our research is that we
developed a LUAD prognosis predictive model based on
mitochondrial localized genes for the first time. Since mito-
chondria are involved in most of the metabolic pathways,
our model is more representative than the general metabolic
model. In addition, our model screened several genes that
have not been studied in the field of lung cancer but are
closely related to the prognosis of LUAD patients, such as
SLC25A42, AMT, and IVD, which provides a basis for
future research on the mechanism of lung cancer.

There were still some limitations in this study. Firstly,
the transcriptome data used for panel construction comes
from sequencing. Although we had verified the function of
mitoRiskscore using chip data, PCR data has not been used
yet. Secondly, since this study used gene expression data as
categorical variables to be input into Cox regression, it is
necessary to further determine the optimal cut-off value.
Thirdly, because the study was retrospective, the patient
population is heterogeneous, and the results may be biased.
The mitoRiskscore and nomogram obtained in this study
require more clinical studies to verify their effectiveness.

5. Conclusions

In conclusion, the mitoRiskscore gene panel is an effective
tool for the survival prediction of LUAD patients. It can also
assess the metabolic status of tumors and assist with clinical
chemotherapy. However, further clinical trials are needed to
verify our findings.

Data Availability

The self-composed running scripts, together with the proc-
essed results of current study, were merged into a repository
that is available at https://github.com/XR-Zhang-group/
mitoRiskscore. The data used to support the findings of this
study are also available from the corresponding author upon
request.
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