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Objective. To identify the key genes involved in prostate cancer and their regulatory network. Methods. The dataset of
mRNA/miRNA transcriptome sequencing was downloaded from The Cancer Genome Atlas/the Gene Expression Omnibus
database for analysis. The “edgeR” package in the R environment was used to normalize and analyze differentially expressed
genes (DEGs) and miRNAs (DEmiRNAs). First, the PANTHER online tool was used to analyze the function enrichment
of DEGs. Next, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape tools. Finally,
miRNA-gene regulatory networks were constructed using the miRTarBase. Results. We identified 4339 important DEGs, of
which 2145 were upregulated (Up-DEGs) and 2194 were downregulated (Down-DEGs). Functional enrichment analysis
showed that the Up-DEGs were related to the immune system and the cell cycle in prostate cancer, whereas the Down-
DEGs were related to the nucleic acid metabolic process and metabolism pathways. Twelve core protein clusters were
found in the PPI network. Further, the constructed miRNA-gene interaction network showed that 11 downregulated
miRNAs regulated 16 Up-DEGs and 22 upregulated miRNAs regulated 22 Down-DEGs. Conclusion. We identified 4339
genes and 70 miRNAs that may be involved in immune response, cell cycle, and other key pathways of the prostate
cancer regulatory network. Genes such as BUB1B, ANX1A1, F5, HTR4, and MUC4 can be used as biomarkers to assist in
the diagnosis and prognosis of prostate cancer.

1. Introduction

Prostate cancer (PCa) is one of the most common malignant
tumors in urology. Its incidence has been increasing in
recent years, and it has now become the leading cause of
cancer-related deaths among middle-aged men [1]. Andro-
gen deprivation therapy using surgical or chemical castra-
tion is the standard treatment for all stages of PCa [2].
However, patients ultimately tend to develop castration-
resistant PCa, which requires further treatment. The treat-
ment of PCa is limited by the low selectivity of medication
and drug resistance encountered in all radiotherapy, chemo-
therapy, and immunotherapy. Thus, the reduction of multi-
drug resistance and identification of a clear molecular target
would significantly improve the efficacy of therapeutic inter-

ventions for PCa. With the development and clinical appli-
cation of molecule-targeted drugs, the molecule-targeted
treatment of tumors has been widely accepted. However,
there is currently a lack of precise and effective indicators
to predict the efficacy of chemotherapy and targeted drug
therapy. Therefore, there is an urgent need to find new indi-
cators to indicate the use of correct drugs and improve
patient survival and quality of life [3]. These new indicators
or tumor molecular markers would be helpful in the diag-
nostic and prognostic evaluation of PCa.

With the development of high-throughput gene chip and
sequencing technology, it is possible to rapidly study the
gene expression profile of PCa, thereby identifying the gene
expression and key gene expression changes in PCa tissues
and cells under specific conditions. Bioinformatics involves
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gene chip data analyses. It uses sequence alignment, statisti-
cal analysis, visual mapping, biological clustering, biological
molecular network, and pathway analysis to mine the mas-
sive and complex bioinformatics data generated by gene chip
technology to enable more systematic study and comprehen-
sive treatment of diseases [4]. In recent years, large-scale
genome sequencing and gene chip detection approaches
have been used in cancer research. The Cancer Genome
Atlas (TCGA) database contains the global gene chip data-
set. As the largest cancer gene information database available
at present, the TCGA database includes rich and standard-
ized clinical data on many cancer types and multiple groups,
including data on gene expression, miRNA expression, copy
number variation, DNA methylation, and single nucleotide
polymorphism, based on large sample sizes for each cancer
type. Thus, this database can be used for the search for can-
cer biomarkers using bioinformatics tools.

miRNAs are evolutionarily conserved short (approxi-
mately 18–22 nucleotides long) noncoding single-stranded
RNA molecules that function as posttranscriptional gene
regulators [5]. A large body of evidence has proven that
the occurrence and development of cancer is often accompa-
nied by the abnormal expression of some miRNAs [6]. Stud-
ies on lung cancer and breast cancer have shown that
miRNAs can be used as biological targets for cancer treat-
ment [7, 8]. Therefore, it is meaningful to use miRNAs as
biomarkers for the early diagnosis and prognosis of cancer,
but this use is limited as several functions and biological pro-
cesses of miRNAs remain unidentified. In this study, differ-
entially expressed genes (DEGs)/miRNAs were extracted
from the microarray transcriptome data of PCa in TCGA/
the Gene Expression Omnibus (GEO) database. Physiologi-
cal functions and signal transduction pathways related to
the DEGs were then obtained by Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. Further, the protein-protein
interaction (PPI) network and prostate-specific gene coex-
pression network were analyzed to identify the core protein
clusters and key genes. Finally, the miRNA-gene interaction
network was constructed. This process laid a foundation for
the clinical diagnosis and prognosis of PCa.

2. Materials and Methods

2.1. RNA-Seq and miRNA-Seq Data. The transcriptome pro-
filing datasets were downloaded from the GDC data portal
[9]. The RNA-Seq dataset was obtained by advanced search
with strings “cases.project.project_id” in [“TCGA-PRAD”],
“files.analysis.workflow_type” in [“HTSeq - Counts”], and
“files.data_category” in [“transcriptome profiling”]. And
the miRNA-Seq dataset was obtained by advanced search
with strings “cases.project.project_id” in [“TCGA-PRAD”],
“files.data_category” in [“transcriptome profiling”], and
“files.data_type” in [“miRNA Expression Quantification”].

Both the RNA-Seq and miRNA-Seq datasets originated
from a total of 499 clinical PCa samples, including white
(413 cases), black or African American (58 cases), Asian
(12 cases), American Indian or Alaska native (1 case), and
race not reported (14 cases) patients, and 52 normal prostate

samples (race not reported). The patient age ranged from 41
to 78 years old.

For the RNA-Seq dataset, HTSeq-Count tables of the
499 tumor and 52 normal samples were merged to form a
gene read count matrix. And for the miRNA-Seq dataset,
the “read_count” columns in the quantification files were
merged to form a miRNA count table.

2.2. Differential Expression Analyses. The read count matri-
ces of genes and miRNAs were, respectively, used to call
differentially expressed genes (DEGs) and differentially
expressed miRNAs (DEmiRNAs) between tumor and nor-
mal samples by the Bioconductor package “edgeR” in the R
software (version 4.0.2). The edgeR programs including fil-
tering, normalization, dispersion estimating, and quasilikeli-
hood F-tests were performed. The cut-off we used to pick
significant DEGs and DEmiRNAs was p value < 0.05, false
discovery rate ðFDRÞ < 0:05, and ∣log 2FC ∣ >1. The log-
fold change against log-counts per million, with DEGs or
DEmiRNAs highlighted, was plotted.

2.3. Gene Functional Enrichment Analyses. The official Gene
Ontology (GO) online tool (http://geneontology.org/) with
human genes as the background was used to implement
Gene Ontology enrichment. Ensemble gene lists of 2145
upregulated DEGs (Up-DEGs) and 2194 downregulated
DEGs (Down-DEGs) were separately submitted to the web
service powered by PANTHER. Overrepresentation tests
(released 20200728) were performed with Fisher’s exact test
as the test type and the calculated false discovery rate as the
correction method. The GO terms were sorted and filtered
by FDR and fold enrichment. And the top 10 terms of the
three GO domains (cellular component, biological process,
and molecular function) were shown.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed to reveal sig-
naling pathways in prostate cancer. Firstly, ensemble IDs
of DEGs were converted and filtered to 1481 Up-DEGs’
symbols and 1961 Down-DEGs’ symbols by the HGNC
(HUGO Gene Nomenclature Committee) BioMart server.
Then, the DEGs’ symbols were called by the gene-list enrich-
ment tool in KOBAS3.0 to do KEGG pathway enrichment
with default parameters. The cut-off for significant pathways
was set as corrected p value < 0.05, and the top 10 pathways
were shown.

2.4. Construction of Protein-Protein Interaction (PPI)
Networks. Firstly, 1481 Up-DEGs’ symbols and 1961
Down-DEGs’ symbols were separately input to the Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING) online tool [10] to build PPI networks, with
“the minimum required interaction score” set as “highest
confidence (0.900)” and the “hide disconnected nodes in
the network” option was checked. And the tabular text out-
put PPI files were exported.

Secondly, the PPI files were imported into the Cytoscape
3.8.2 software [11]. The MCODE application was used to
find clusters (highly interconnected areas) in the network,
and the score of key PPI nodes was calculated using the k
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-core decomposition algorithm. The cluster finding parame-
ters were node score cutoff, 0.2; haircut, true; fluff, false; k
-core, 7; and max. depth from seed, 100. The score of nodes
reflected the density of the nodes and the surrounding
nodes. Linked proteins had the same score and formed core
protein clusters.

Finally, to depict the PPI networks of the core protein
clusters, yFiles Layout Algorithms in Cytoscape applications
were used.

2.5. Profiling of miRNAs and Gene Regulation Networks. 50
upregulated DEmiRNAs (Up-DEmiRNAs) and 20 downreg-
ulated DEmiRNAs (Down-DEmiRNAs) were compared to
PCa-related miRNAs in miRCancer (miRNA Cancer Asso-
ciation Database), and a Venn diagram was drawn.

The miRTarBase provides information about experimen-
tally validated miRNA-target gene interactions [12, 13]. To
obtain miRNA-gene interactions in PCa regulation, the 91
Up-DEGs from five upregulated and 137 Down-DEGs from
seven downregulated core protein clusters were used to bait
the corresponding miRNA regulators verified by comprehen-
sive experiments.

To increase the reliability of miRNA-gene interactions in
PCa, we selected the DEmiRNAs and the corresponding
DEGs as high-confident regulation pairs. The experimen-
tally validated high-confident regulation networks were con-
structed and displayed using the Cytoscape 3.8.2 software.

3. Results

3.1. Identification of DEGs in Prostate Cancer Response. To
know how genes respond in prostate cancer, we collected
RNA-Seq datasets from the TCGA-PRAD project, including
449 tumor samples and 52 normal samples, and performed
transcriptome profiling.

Differential expression analyses uncovered DEGs either
upregulated or downregulated in comparison between
tumor and normal. In total, 4339 DEGs were identified,
and the screening criteria were (1) ∣logFC ∣ >1, (2) p < 0:05,
and (3) FDR < 0:05. The MA plot gives a quick overview
of the 2145 upregulated DEGs (Up-DEGs) and 2194 down-
regulated DEGs (Down-DEGs) (Figure 1(a)).

The ensemble IDs of DEGs were converted and filtered
to 1481 Up-DEGs’ symbols and 1961 Down-DEGs’ symbols,
which were then compared with the OncoKB cancer gene
list. 125 DEGs identified in this study were also found in
OncoKB, but we also detected a large proportion of DEGs
(96.4%, 3317/3442) that have potential to be actionable
genes in prostate cancer (Figure 1(b)).

3.2. Enrichment of Gene Functions in Prostate Cancer. To
reveal effective biological functions in prostate cancer, Gene
Ontology (GO) enrichment analyses of DEGs are conducted.
The GO enrichment analysis of the 2145 Up-DEGs showed
that in biological processes, they were mainly enriched in
complement activation, classical pathway, humoral immune
response mediated by circulating immunoglobulin, comple-
ment activation, and immunoglobulin-mediated immune
response; in molecular functions, mainly in antigen binding,
immunoglobulin receptor binding, signaling receptor bind-
ing, and hormone activity; and in cellular components,
mainly in immunoglobulin complex, DNA packaging com-
plex, nucleosome, and chromatin (Figure 2(a)). The GO
enrichment analysis of the 2194 Down-DEGs showed
that in biological processes, they were mainly enriched
in nucleobase-containing compound metabolic process,
nucleic acid metabolic process, heterocycle metabolic pro-
cess, and gene expression; in molecular functions, mainly in
RNA binding, nucleic acid binding, heterocyclic compound
binding, and organic cyclic compound binding; and in cellular
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Figure 1: Differentially expressed genes (DEGs) between PCa and normal samples. (a) The MA plot of DEGs. (b) Venn diagram of DEGs
overlapped with OncoKB cancer genes.
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Figure 2: Enrichment of Gene Ontologies (GO) of Up-DEGs and Down-DEGs: (a) GO enrichment of Up-DEGs; (b) GO enrichment of
Down-DEGs. The top 10 terms in the three GO domains (biological process, molecular function, and cellular component) are shown.
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components, mainly in nucleoplasm, protein-containing
complex, nuclear lumen, and membrane-enclosed lumen
(Figure 2(b)).

To profile prostate cancer-responsive mechanisms,
enrichment analyses of biological pathways defined by Kyoto
Encyclopedia of Genes and Genomes (KEGG) were carried
out. Most of the Up-DEGs were significantly enriched in the
pathways termed as “neuroactive ligand-receptor interaction,”
“cell cycle,” “complement and coagulation cascades,” “oocyte
meiosis,” “maturity onset diabetes of the young,” “nicotine
addiction,” “linoleic acid metabolism,” and “bile secretion”
(Supplementary Figure 1A), whereas the Down-DEGs were
mainly involved in “calcium signaling pathway,” “metabolic
pathways,” “neuroactive ligand-receptor interaction,” “focal
adhesion,” “cAMP signaling pathway,” “arrhythmogenic
right ventricular cardiomyopathy (ARVC),” “dilated
cardiomyopathy (DCM),” “hypertrophic cardiomyopathy
(HCM),” “gastric acid secretion,” and “PI3K-Akt signaling
pathway” (Supplementary Figure 1B).

These results suggest the importance of these pathways
in PCa medical mechanisms.

3.3. Core Protein-Protein Interaction (PPI) Networks in
Prostate Cancer. To do further functional research of the

DEGs, the STRING database providing functional associa-
tion networks was retrieved. First, the identified Up-DEGs
and Down-DEGs were, respectively, submitted to the
STRING database to construct PPI networks. And “the min-
imum required interaction score” was set to the “highest
confidence (>0.9)” to filter high-confident interactions.
Next, to discover core protein clusters hidden under the
huge networks, MCODE clustering algorithms in Cytoscape
3.8.2 were applied. The score of key PPI nodes was calcu-
lated using the k-core decomposition algorithm, and the
functional clusters with scores ≥ 7, referred to as the “core
protein clusters,” were screened out.

In the PPI network of the Up-DEGs, there are 907 nodes
and 1307 edges retained, and the average node degree is
2.88. The expected number of edges is 497, and the network
has significantly more interactions than expected (the PPI
enrichment p value < 1.0e-16) (not shown). Finally, five core
protein clusters of Up-DEGs were constructed (Figure 3).
Cluster 1 has the maximum score 27.676, with 38 nodes
and 512 edges, including known cancer-related genes, such
as BUB1 (mitotic checkpoint serine/threonine-protein
kinase BUB1), CDC20 (cell division cycle protein 20 homo-
log), and PLK1 (serine/threonine-protein kinase PLK1).
Cluster 2 has 28 nodes and 198 edges, including proteins
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Figure 3: Core protein-protein interaction (PPI) networks of Up-DEGs. The network nodes are proteins. The edges represent the predicted
functional associations. The node fill color mapped the MCODE score, reflecting the density of the nodes and the surrounding nodes. The
edge transparency represents the combined interaction score between two nodes.
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in the coagulation system, such as KNG1 (kininogen-1) and
F5 (pronounced factor five). Cluster 3 has 9 nodes and 36
edges, including the GRPR (gastrin-releasing peptide recep-
tor) which is known to be expressed in numerous cancers.
Furthermore, there are 8 nodes and 8 edges in both cluster
4 and cluster 5.

In the PPI network of the Down-DEGs, 1668 nodes and
2524 edges were identified, and the average node degree is
3.03. The expected number of edges is 1389, and the network
has significantly more interactions than expected (the PPI
enrichment p value < 1.0e-16) (not shown). Finally, seven
core protein clusters of Down-DEGs were constructed
(Figure 4). Cluster 1 has the maximum score 32.549, with
52 nodes and 830 edges, including known cancer-related
genes, such as ANXA1 (annexin A1) and SSTR2 (somato-
statin receptor type 2). Cluster 2 has 15 nodes and 105 edges,
including KRT (keratin) family proteins whose expression is
helpful in determining the epithelial origin in anaplastic can-
cers. Cluster 3 has 13 nodes and 78 edges, including the
FBXO32 (F-box only protein 32) which was reported to be
associated with tumorigenesis. Further, there are 11 nodes
and 55 edges in cluster 4, 17 nodes and 81 edges in cluster
5, 19 nodes and 88 edges in cluster 6, and 10 nodes and 40
edges in cluster 7.

The above results suggest that all of these PPI interac-
tions in the core protein clusters play essential roles in
prostate cancer regulation networks and deserved further
research.

3.4. Well-Grounded miRNA-Gene Regulation Networks in
PCa. To explore how miRNAs respond in prostate cancer,
we collected miRNA-Seq datasets from the TCGA-PRAD
project, including 449 tumor samples and 52 normal sam-
ples, and performed miRNA-Seq analyses.

Firstly, differential expression analyses uncovered
DEmiRNAs either upregulated or downregulated in com-
parison between tumor and normal. In total, 70 DEmiRNAs
were identified, and the screening criteria were (1) ∣logFC ∣ >
1, (2) p < 0:05, and (3) FDR < 0:05. The MA plot gives a
quick overview of the 50 upregulated DEmiRNAs (Up-
DEmiRNAs) and 20 downregulated DEmiRNAs (Down-
DEmiRNAs) (Figure 5(a)).

Compared to PCa-related miRNAs in miRCancer
(miRNA Cancer Association Database), 24 DEmiRNAs
identified in this study were also found in miRCancer, but
we also detected more than half of DEmiRNAs (65.7%,
46/70) that have potential to be actionable miRNAs in pros-
tate cancer (Figure 5(b)).

Subsequently, the DEGs in the five upregulated core pro-
tein clusters and the seven downregulated core protein
clusters were uploaded as “seeds” to the miRTarBase (exper-
imentally validated miRNA-target interaction database), and
the miRNA-DEG interaction network verified by compre-
hensive experiments was obtained. The results showed that
in the core protein cluster, 91 Up-DEGs interacted with
829 miRNAs and 137 Down-DEGs interacted with 791
miRNAs.
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Figure 4: Core protein-protein interaction (PPI) networks of Down-DEGs. The network nodes are proteins. The edges represent the
predicted functional associations. The node fill color mapped the MCODE score, reflecting the density of the nodes and the surrounding
nodes. The edge transparency represents the combined interaction score between two nodes.
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Lastly, miRNAs are noncoding single-stranded small
molecular RNAs that are highly conserved in evolution
and regulate gene expression through translational inhibi-
tion. Therefore, the 791 miRNAs that were found to interact
with the 137 downregulated “seeds” were crossed with the 50
Up-DEmiRNAs; this revealed 22 Up-DEmiRNAs (hsa-mir-
500a, hsa-mir-17, hsa-mir-425, hsa-mir-20b, hsa-mir-508,
hsa-mir-3074, hsa-mir-106a, hsa-mir-183, hsa-mir-25, hsa-
mir-18a, hsa-mir-342, hsa-mir-20a, hsa-mir-93, hsa-mir-
3653, hsa-mir-561, hsa-mir-200c, has-mir-96, has-mir-148a,
has-mir-1304, has-mir-146b, has-mir-7-1, and has-mir-
5586) that could predict the gene expression regulation in
PCa (Figure 6(a)). Next, the 829 miRNAs that were found
to interact with the 91 upregulated “seeds” were crossed
with the 20 Down-DEmiRNAs; this revealed 11 Down-
DEmiRNAs (hsa-mir-187, hsa-mir-1251, hsa-mir-889, hsa-
mir-204, hsa-mir-222, hsa-mir-221, hsa-mir-23c, hsa-mir-143,
hsa-mir-10a, hsa-mir-652, and hsa-mir-450b) that could pre-
dict the gene expression regulation in PCa (Figure 6(b)).

Taken together, we constructed the experimentally vali-
dated high-confident regulation networks of the DEmiRNAs
and the corresponding DEGs in PCa, which indicate that
these miRNA-Gene interactions play essential roles in PCa
molecular regulation.

4. Discussion

In this study, we attempted to identify tumor
microenvironment-related genes/miRNAs from the TCGA
database that contribute to PCa occurrence and develop-
ment. First, there were 2145 upregulated genes and 2194
downregulated DEGs between PCa and normal samples.
Next, the DEGs, were subsequently subjected to GO and
KEGG pathway enrichment analysis, which showed that
these DEGs were significantly enriched in the functional
modules and biological process of cancer development, and
indicated some significant characteristics of PCa, such as

hyperactivity of immune response [14], hormone activity,
diabetes [15, 16], and nicotine addiction [17]. Finally, the
results of PPI network analysis and prostate tissue-specific
gene coexpression network analysis revealed that six upregu-
lated genes (BUB1B, F5, KNG1, CCKAR, HTR4, and
LY6G6C) and eight downregulated genes (ANXA1, KRT24,
TRIM9, ADCYAP1R1, MSLN, ITGA1, FIGF, and MUC4)
were present as the core genes in the prostate tissue-specific
gene coexpression network.

These genes play an important role in various human
cancers, including prostate cancer. For example, Rajan
et al. identified seven hub genes (ADAM7, fam72b, BUB1B,
ccnb1, ccnb2, TTK, and cdk172) related to cell cycle in pros-
tate biopsy tissues before and after docetaxel chemotherapy
and androgen deprivation therapy in patients with advanced
hormone-naive prostate cancer [18]. BUB1B also had differ-
ential expressions in our results. BUB1B is a key mitotic
checkpoint kinase. Ding et al. identified BUB1B as the top-
scoring kinase by RNA interference and bioinformatics
analysis, which can monitor proper spindle microtubule
attachment to the kinetochore, and it is knocked down
inducing mitotic catastrophe and cell death in glioblastoma
[19, 20]. The above research suggests that BUB1B has poten-
tial to be a novel antimitotic target in some cancers, includ-
ing prostate cancer.

For another example, our study found that the expres-
sion of ANXIA1 is downregulated in prostate cancer, and
the results are also proven in other literatures [21–23], which
occurs in the early stage of cancer or intraepithelial tumor
transformation of prostate cancer and becomes more prom-
inent with the development of cancer. Inokuchi et al. proved
that reducing the expression of ANXA1 can enhance the
invasion of prostate cancer tumor by upregulating the
expression and activity of IL-6 [24]. Therefore, the loss of
ANXA1 may be a useful marker for the development
and progression of prostate cancer. However, some studies
have proven that the expression of ANXA1 is negatively
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Figure 5: Differentially expressed miRNAs (DEmiRNAs) between PCa and normal samples. (a) The MA plot of DEmiRNAs. (b) Venn
diagram of DEmiRNAs overlapped with PCa-related miRNAs in miRCancer.
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correlated with androgen receptor (AR), and the expres-
sion of ANXA1 increases after AR knockdown or AR
antagonists are used, which accelerates the invasion and
metastasis of advanced PCa [25, 26]. ANXA1 may act as
a tumor inhibitor in the early stage of cancer, but in the
late stage of cancer, it may play the opposite role. To
sum up, as a “double-edged sword,” the clinical research
and treatment of using ANXA1 as tumor inhibitors should
be cautious and limited.

The F5 gene, which is the most common genetic coagu-
lation factor mutation, also increases the risk of thrombosis.
Garber et al. found that F5 gene variation was associated
with breast cancer. The F5 expression was enriched in breast
cancer and was associated with overall survival [27]; more-
over, the F5 gene was associated with the risk of thrombosis
in cancer patients [28]. F5 is also associated with the risk of
thrombosis in patients with metastatic androgen-dependent
prostate cancer who undergo diethylstilbestrol and docetaxel
chemotherapy [29]. This provides an interesting direction
for further research to strengthen the relationship between
cancer and coagulation.

MUC4 usually plays an important role in the pathogen-
esis of pancreatic, ovarian, and breast malignancies [30–32].
Through abnormal overexpression, MUC4 can interact with
HER2 (a ligand-dependent receptor tyrosine kinase) physi-
cally and phosphorylated activate and stabilize HER2 to pro-

mote tumor invasion and metastasis. Our study has proven
that MUC4 is downregulated in prostate cancer tissues, like
other literatures [33, 34]. In line with our results, Dizeyi et al.
found that the HTR4 expression was upregulated in prostate
cancer [35]. They found that HTR4 is associated with the
late progression of hormone refractory prostate cancer,
possibly due to the paracrine/autocrine mechanism of
HTR4-induced hormones or growth factors, and HTR4 is
also associated with estrogen receptor α and estrogen recep-
tor β. The overexpression of the receptor of the neuroendo-
crine cell product may be related to the occurrence of
hormone refractory prostate cancer, which provides a new
direction for the trigonometric relationship between cancer
neuroendocrine sex hormones. Our study first described
the upregulation of KNG1 and CCKAR in prostate cancer.
Previous studies have described the presence of KNG1 and
CCKAR as biomarkers of various types of cancer, such as
thyroid cancer [36, 37], liver cancer [38], ovarian cancer
[39], and cholangiocarcinoma [40]. In different stages of
PCa development and progression, especially in the process
of hormone-sensitive PCa progressing to castration-resistant
PCa, the proteomic alterations and transcriptomic data have
significant differences in changes [41]. By analyzing the
microarray-based profiling data of isogenic prostate cancer
xenograft models published by Chen et al. [42], we found
that the differentially expressed genes of hormone-sensitive

Validation experiments
Clash
HITS-CLIP
Multi-methods

PAR-CLIP
Reporter assay
Sequencing

(a)

Color legend
Up-regulated
Down-regulated

(b)

Figure 6: Experimentally validated DEmiRNA-DEG interaction networks: (a) Up-DEmiRNAs targeted Down-DEGs; (b) Down-
DEmiRNAs targeted Up-DEGs. Line types indicate validation experiments of the interactions. “Multi-methods” includes luciferase
reporter assay, qRT-PCR, and Western blot.
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PCa compared with castration-resistant PCa included
BUB1B, ADCYAP1R1, HTR4, and LY6G6C, which was also
proposed in our study. These results indicate that the core of
this study has the potential to become a new biomarker
of prostate cancer, especially for the prognosis evaluation
of castration-resistant PCa.

In addition, our study also reported the full expression of
microRNA in prostate cancer and predicted the micro-
RNA/mRNA interaction network in a very reliable way. In
this study, several microRNAs were first proposed to upreg-
ulate or downregulate differential expression in prostate can-
cer tissues. Some of them have been reported in the
literature. For instance, Schaefer et al. found that 15 differen-
tially expressed microRNAs were related to the diagnosis
and prognosis of prostate cancer [43], of which the upregu-
lated hsa-mir-183 and downregulated hsa-miR-222 overlap
our results. hsa-mir-25 is related to the invasion of prostate
cancer and may be a signaling mechanism of aurora kinase
A or integrin [44]. Yang et al. found that hsa-mir-93 can
act as a tumor promoter through the regulatory axis
Dab2/AKT/ERK1/2 [45]. hsa-mir-200c can reverse the epi-
thelial stromal transformation of prostate cancer [46]. hsa-
mir-204 has been widely studied in prostate cancer, which
is negatively related to the expression of UCA1 and plays a
role in tumor metastasis and sensitivity to chemotherapy
[47]. The functions of these miRNAs in prostate cancer
deserve further investigation.

5. Conclusions

We constructed a series of functional networks centered on
core genes involved in PCa. These networks provide new
ideas for future research on the occurrence, development,
and metastasis of PCa and also indicate potential new targets
and biomarkers for its clinical treatment and diagnosis,
respectively.
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